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1. Summary
Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and trans-

ported by the shuttling receptor PEX5 to the peroxisomal membrane docking/

translocation machinery, where they are translocated into the organelle matrix.

Under certain experimental conditions this protein import machinery has the

remarkable capacity to accept already oligomerized proteins, a property that

has heavily influenced current models on the mechanism of peroxisomal protein

import. However, whether or not oligomeric proteins are really the best and

most frequent clients of this machinery remain unclear. In this work, we present

three lines of evidence suggesting that the peroxisomal import machinery dis-

plays a preference for monomeric proteins. First, in agreement with previous

findings on catalase, we show that PEX5 binds newly synthesized (monomeric)

acyl-CoA oxidase 1 (ACOX1) and urate oxidase (UOX), potently inhibiting their

oligomerization. Second, in vitro import experiments suggest that monomeric

ACOX1 and UOX are better peroxisomal import substrates than the correspond-

ing oligomeric forms. Finally, we provide data strongly suggesting that although

ACOX1 lacking a peroxisomal targeting signal can be imported into peroxisomes

when co-expressed with ACOX1 containing its targeting signal, this import

pathway is inefficient.
2. Introduction
Peroxisomes are single membrane-bounded organelles that participate in many

biochemical pathways [1–4]. In mammals, they have a relatively simple protein

repertoire, harbouring about 50 enzymes in their matrix [5,6]. All these proteins

are synthesized on cytosolic ribosomes and post-translationally targeted to the

organelle matrix [7]. Their correct sorting relies on one of two peroxisomal

targeting signals (PTS): the PTS type 1 (PTS1), a C-terminal peptide generally

ending with the sequence Ser-Lys-Leu, found in the vast majority of peroxiso-

mal matrix proteins [8,9]; and the PTS2, a degenerate nonapeptide present at

the N-termini of just a few proteins [10–12].

According to current models [13–16], newly synthesized peroxisomal matrix

proteins are recognized by the shuttling receptor PEX5 while still in the cytosol

[17]. PTS1 proteins bind directly to PEX5, whereas PTS2 proteins require the ancillary

protein PEX7 to interact with PEX5 [8,12,18–21]. Following this recognition event,

the PEX5(.PEX7)–cargo protein complex interacts with the docking/translocation

machinery (DTM) [22–24], a multisubunit transmembrane protein complex of the
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peroxisome [25,26]. This interaction ultimately results in the

insertion of PEX5 into the DTM with the concomitant transloca-

tion of the cargo protein across the organelle membrane

[23,24,27,28]. Remarkably, none of these steps requires cytosolic

nucleoside triphosphates [23,24,28,29], a property that led to the

proposal that the driving force for the cargo translocation pro-

cess resides on the strong protein–protein interactions that are

established between PEX5 on one side and components of the

DTM on the other [29,30]. After cargo translocation, PEX5 is

extracted from the DTM [23,24,28], a process that requires its

monoubiquitination at a conserved cysteine residue [31,32]

and the ATP-dependent action of the mechano-enzymes PEX1

and PEX6 [29,33,34]. Once in the cytosol, monoubiquitinated

PEX5 is deubiquitinated, probably by a combination of enzy-

matic and non-enzymatic mechanisms, thus resetting the

peroxisomal import machinery (PIM) [35–37].

Although our knowledge on the general properties of

the PIM is fairly detailed, there are still many fundamental

aspects of this protein import pathway that remain ill-defined.

An important one regards the structure of the cargo proteins

accepted by the PIM. It is a widely accepted fact that peroxi-

somes can import already oligomerized proteins. The data

supporting this idea are abundant and include (i) several studies

showing that when two interacting proteins are expressed in the

same cell, the presence of a single PTS in one of those proteins is

sufficient to ensure targeting of at least a fraction of the other

protein to the peroxisome [38–44] and (ii) pulse–chase analyses

on yeasts suggesting that two peroxisomal matrix enzymes oli-

gomerize in the cytosol prior to import [45,46]. Collectively,

these data led to the generalization that most peroxisomal pro-

teins oligomerize in the cytosol before import, a concept that

can be found in many reviews and even in academic textbooks

[15,47–51]. However, it should be noted that all of the above

cited studies focused on proteins that were overexpressed,

either through the use of recombinant genes having strong pro-

moters or, in the case of yeasts/fungi, by simply growing these

organisms in special media that induce a dramatic proliferation

of peroxisomes. Such experimental conditions can potentially

lead to the titration of the PIM (e.g. PEX5 and/or PEX7) and

thus to the premature oligomerization of those proteins in the

cytosol. Naturally, this caveat does not affect the main con-

clusion of all those studies, namely that the PIM, in contrast to

the protein import machineries of mitochondria and endoplas-

mic reticulum, has the capacity to accept bulky/already folded

clients [39,40]. However, in the absence of additional data, it

remains unclear how frequent and efficient the import of

already oligomerized proteins into peroxisomes is, an uncer-

tainty that limits our understanding on the mechanism of the

PIM (see below).

The uncertainty regarding the concept that most peroxiso-

mal proteins are imported as oligomers is also fed by a

number of previous findings. For instance, pulse–chase ana-

lyses have shown that rat liver catalase (a homo-tetrameric

enzyme in its native state) and Candida boidinii alcohol oxi-

dase (an octameric enzyme) arrive at the peroxisome still as

monomers [52,53]. Also, some data suggesting that plant

monomeric isocitrate lyase (a homo-tetrameric enzyme in

its native state) is a better import substrate than the already

tetrameric enzyme have been provided [54]. In line with

these findings it was subsequently reported that (monomeric)

serum albumin containing a PTS is also imported into peroxi-

somes, clearly showing that cargo proteins do not have to be

oligomers in order to be accepted by the PIM [55]. Finally,
there are at least three peroxisomal matrix proteins that no

longer bind PEX5 upon oligomerization. These are alcohol

oxidase from Hansenula polymorpha and mammalian carbonyl

reductase and epoxide hydrolase [56–58]. Seemingly, at least

in these cases, the proteins have to remain monomeric in

order to be imported into peroxisomes.

Determining the type of substrate preferred by the PIM is of

major importance to understand its mechanism. If we assume

that almost all oligomeric peroxisomal proteins oligomerize in

the cytosol prior to import, then import of oligomeric cargoes

becomes the rule for protein translocation across the peroxiso-

mal membrane, because most peroxisomal matrix proteins are

indeed homo-oligomers [48]. This is the scenario behind some

previous models proposing that cargoes (containing multiple

PTSs due to their oligomeric nature) are presented to the DTM

by multiple molecules of PEX5 [48,49]. If, instead, we assume

that under normal physiological conditions newly synthesized

matrix proteins are kept in a monomeric near-native confor-

mation until they arrive at the organelle matrix, then a model

in which a single PEX5 molecule delivers a single cargo to the

DTM is more likely [59,60]. The outcomes of each of these

assumptions to the cargo protein translocation step are quite

different because, as stated above, all the available data suggest

that cargo proteins are translocated across the organelle mem-

brane by PEX5 itself, when the receptor becomes inserted into

the DTM. Thus, the first scenario would predict that each oligo-

meric cargo is translocated by several PEX5 molecules (see [15]

for a mechanism of this type), whereas in the second scenario a

single PEX5 molecule would suffice [59].

Previously, we found that PEX5 at physiological con-

centrations binds monomeric catalase, potently blocking its

tetramerization [61]. This property, together with the fact that

there is sufficient PEX5 in rat hepatocyte cytosol to bind all

newly synthesized peroxisomal matrix proteins, led us to hypoth-

esize that PEX5, in addition to its role as a receptor and

translocator, is also a chaperone/holdase, binding newly syn-

thesized monomeric proteins in the cytosol and inhibiting

premature or incorrect interactions [61]. In this work, we have

characterized the import pathway of acyl-CoA oxidase 1

(ACOX1; a homo-dimeric protein in its native state [62]) and

urate oxidase (UOX; a homo-tetramer [63]), two peroxisomal

matrix proteins which together with catalase comprise one-third

of the total protein molecules found in mouse/rat liver peroxiso-

mal matrix [62,64]. We found that PEX5 also binds the monomeric

version of these proteins, blocking their homo-oligomerization.

Importantly, peroxisomal import assays suggest that the mono-

meric versions of ACOX1 and UOX are much better substrates

for the PIM than the corresponding homo-oligomeric versions.

Altogether, these results suggest that import of monomeric pro-

teins into the peroxisome is not a phenomenon restricted to a

few particular clients. Rather, at the very least, our data raise the

possibility that many of the protein translocation events occurring

at the PIM involve monomeric cargoes.
3. Results
3.1. PEX5 inhibits dimerization of newly synthesized

acyl-CoA oxidase 1
We have recently shown that a rabbit reticulocyte lysate-

based in vitro translation system can be used to prepare

monomeric and tetrameric versions of catalase. The amount
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of each of these species in translation reactions is time-depen-

dent: synthesis reactions performed for a short period of time

yielded essentially monomeric catalase; longer incubations

led to the conversion of a fraction of the monomeric protein

into tetrameric catalase, a process that was strongly inhibi-

ted by PEX5 [61]. Here, we determined whether the same

experimental strategy could be applied to other oligomeric

peroxisomal matrix proteins. The aim was twofold: (i) to

characterize the effect of PEX5 on their oligomerization pro-

cess and (ii) to obtain monomeric and oligomeric versions

of these proteins so that their in vitro peroxisomal import

competences could be compared (note that all our attempts

to import monomeric or tetrameric catalase into rat/mouse

liver peroxisomes have failed thus far, probably because the

PEX5–catalase interaction is too transient, and therefore too

sensitive to the competition exerted by endogenous (liver)

soluble PTS1 proteins present in these in vitro assays;

T Francisco, JE Azevedo, unpublished observations, see also

[23]). We focused mainly on ACOX1, but some experiments

were repeated with another peroxisomal matrix protein (see

later). Native ACOX1 comprises two identical 74 kDa sub-

units, each of which is partially and slowly cleaved in the

peroxisomal matrix in vivo into an N-terminal domain of

53 kDa and a C-terminal 21 kDa polypeptide [65–67].

We first used an immunoprecipitation assay to assess

whether ACOX1 can interact with itself in the in vitro translation

system. As shown in figure 1a, upper panel, when ACOX1 and

an epitope-tagged version of it containing two haemagglutinin

(HA) sequences at the N-terminus (2HA-ACOX1) were co-

synthesized in vitro for 30 min, chased in the presence of cyclo-

heximide for 4 h, and subjected to immunoprecipitation using

an anti-HA antibody, a significant amount of ACOX1 was co-

immunoprecipitated with 2HA-ACOX1 (lane 7). No ACOX1

was recovered in immunoprecipitates when the two proteins

were synthesized separately for 30 min and mixed just before

immunoprecipitation, or when the co-synthesis and chase incu-

bations were performed in the presence of recombinant PEX5

(figure 1a, upper panel, lanes 6 and 8, respectively). For reasons

that will become apparent below, we used the same strategy to

determine whether 2HA-ACOX1 can interact with an ACOX1

species possessing a Flag epitope at its C-terminus (ACOX1-

Flag). The results shown in figure 1a, lower panel, suggest that

this is indeed the case.

In another approach, we used sucrose gradient centrifu-

gation to characterize the sedimentation behaviour of in vitro
synthesized ACOX1. As shown in figure 1b, ACOX1 synthesized

for just 30 min sedimented as a globular monomeric protein,

together with albumin, a 67 kDa protein (panel I, lane 6). We

refer to this species as monomeric ACOX1 (mACOX1). When

mACOX1 was chased for 4 h in the presence of cycloheximide,

a second ACOX1 population was detected in these gradients

(figure 1b, panel II, lane 9). Its sedimentation behaviour is iden-

tical to the one of native/dimeric mouse liver ACOX1 (figure 1b,

panel V, bands marked ACOX1a/b/c in lane 9). This species is

hereafter referred to as dimeric ACOX1 (dACOX1). Centrifu-

gation of the two 35S-labelled ACOX1 populations in the

presence of recombinant PEX5 resulted in a slight increase in

their sedimentation coefficients (figure 1b, panel III), suggest-

ing that both species interact with PEX5. In agreement with

the data shown in figure 1a, less dACOX1 was generated in

translation reactions chased for 4 h in the presence of PEX5.

In this case, the major ACOX1 population was detected in frac-

tions 7–8, a behaviour identical to the one observed for
mACOX1 in the sucrose gradient containing PEX5 (figure 1b,

compare panels III and IV).

To further characterize the two ACOX1 populations

detected in these experiments their resistance to proteolysis

was assessed. As shown in figure 1c (left panel) 35S-mACOX1

is quite sensitive to proteinase K. By contrast, 35S-dACOX1 is

cleaved by the protease into a major 51 kDa fragment plus

three fragments of 40, 32 and 21 kDa (figure 1c, right panel).

Importantly, an almost identical proteolysis pattern was

obtained for native mouse liver dimeric ACOX1, as assessed

by western blotting using antibodies directed to the 53 kDa

and 21 kDa polypeptides (figure 1d). The only difference

between the 35S-dACOX1 species and endogenous mouse

dACOX1 after protease treatment resides in the relative intensity

of the 21 kDa fragment which is barely detectable in the
35S-labelled protein. The fact that this domain of ACOX1 con-

tains only one of the 19 methionines present in full-length

ACOX1 justifies this difference.

In summary, the experiments described above suggest the

following: (i) ACOX1 synthesized in vitro for a short period of

time is a globular monomeric protease-sensitive protein;

(ii) further incubation of in vitro synthesized mACOX1 results

in its partial conversion into dACOX1; and (iii) PEX5 inhibits

ACOX1 dimerization.
3.2. Peroxisomal in vitro import efficiencies of mACOX1
and dACOX1

We next tested the peroxisomal import efficiencies of
35S-mACOX1 and 35S-dACOX1 using an established in vitro
import system. For this purpose mACOX1 and dACOX1

obtained from a sucrose gradient as the one presented in

figure 1b (panel II) were incubated with a rat liver post-nuclear

supernatant (PNS) in import buffer supplemented with 1.5 nM

recombinant PEX5 (see Material and methods for details). Two

control import reactions were included in these experiments. In

the first, the import buffer contained also 300 nM of a recombi-

nant protein comprising the C-terminal half of PEX5 (hereafter

referred to as TPRs). This truncated PEX5 protein retains the

capacity to interact with PTS1-containing proteins but lacks per-

oxisomal targeting information [68]. Thus, if the concentration

of TPRs is much larger than the concentration of PEX5 in the

assays then import of 35S-labelled ACOX1 should be strongly

inhibited. The second control reaction received 300 nM of an

inactive version of TPRs (TPRs(N526K)), a protein containing

a single missense mutation (N526K) that abolishes its PTS1-

binding capacity [18,69]. This recombinant protein should not

inhibit PEX5-dependent import of ACOX1. At the end of the

incubation, import reactions were treated or not with a large

amount of proteinase K and the organelles were isolated by cen-

trifugation and analysed by SDS-PAGE/autoradiography. The

results of this experiment are shown in figure 2a. Approximately

50% of mACOX1 sedimenting with the organelles acquired

a protease-resistant status (compare lanes 1 and 7). An identi-

cal result was obtained in the reaction supplemented with

TPRs(N526K) (compare lanes 3 and 9), as expected. By contrast,

the amount of protease-protected mACOX1 in the reaction sup-

plemented with TPRs was strongly diminished (compare lanes

7 and 8). A different result was obtained for dACOX1. Indeed,

although a significant fraction of this protein sedimented with

the organelles (lanes 4–6), the vast majority of it remained acces-

sible to the protease (lanes 10–12), indicating that it was not
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translocated across a membrane. Note that a very small amount

of intact dACOX1 is detected in these samples. However, this

material is unresponsive to recombinant TPRs (compare lane
11 with lanes 10 and 12) and, therefore, it does not represent

authentic imported protein. In agreement with this interpret-

ation, the amount of uncleaved dACOX1 in import assays



Figure 1. (Opposite.) Newly synthesized ACOX1 dimerizes in vitro, a process inhibited by PEX5. (a) ACOX1 dimerizes in vitro. Upper panel: ACOX1 and HA-tagged
ACOX1 (2HA-ACOX1) were synthesized individually (lanes 1 and 2) or co-synthesized in the absence (2) or presence (þ) of 1 mM recombinant PEX5 (lanes 4 and 5,
respectively) for 30 min and subjected to a 4 h chase. A mixture of the two proteins synthesized individually (lane 3) and the co-synthesis reactions (lanes 4 and 5)
were subjected to immunoprecipitation (IP) using anti-HA antibody agarose beads (lanes 6 – 8, respectively). Note that all samples were made chemically identical
before immunoprecipitation by adding recombinant PEX5. Lower panel: An identical experiment was performed using 2HA-ACOX1 and ACOX1-Flag. IVT, in vitro
transcription/translation. (b) Sedimentation behaviour of in vitro synthesized ACOX1. ACOX1 synthesized for 30 min ( panel I), and ACOX1 synthesized for 30 min
and chased for 4 h in the absence ( panels II and III) or presence of 1 mM PEX5 ( panel IV) were loaded onto the top of sucrose gradients supplemented
with 1 mM of either PEX5 ( panels III and IV) or a control protein ( panels I and II). After centrifugation, fractions were collected from the bottom of the gradients
and subjected to SDS-PAGE/autoradiography. Ovalbumin (OA), bovine serum albumin (BSA) and immunoglobulins (IgGs) were used as sedimentation coefficient
standards. Peroxisomal matrix proteins from mouse liver were also subjected to this analysis. A Coomassie-stained gel is shown ( panel V). Carbamoyl phosphate
synthetase (CPS), 2-enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (EHHADH), acyl-CoA oxidase I subunits a, b and c (ACOX1a, ACOX1b, ACOX1c, respectively)
and catalase (Cat) were identified by nano-HPLC-MALDI-MS/MS (data not shown). (c) Monomeric and dimeric ACOX1 present different susceptibilities to proteinase
K. 35S-mACOX1 and 35S-dACOX1 isolated from a sucrose gradient were treated with increasing concentrations of proteinase K (PK) for 40 min on ice. After protease
inactivation, samples were analysed by SDS-PAGE/autoradiography. Numbers to the left indicate the molecular weights of protein standards. Arrow heads indicate
proteolysis fragments of ACOX1 (see main text). (d ) Dimeric 35S-ACOX1 and native/peroxisomal ACOX1 display the same proteolysis profile. 35S-dACOX1 isolated from
a sucrose gradient and native ACOX1 (from mouse liver purified peroxisomes) were subjected to protease treatment in the presence of Triton X-100 and subjected to
SDS-PAGE/autoradiography (left panel) or western blotting using antibodies directed to the 53-kDa ACOX1 polypeptide (central panel). The same blot was reprobed
with an antibody directed to the 21-kDa polypeptide of ACOX1 (right panel). F, front of the gel.
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does not increase over time, in contrast to mACOX1 import

(figure 2b).

Taken together, the results of these in vitro import exper-

iments, although of qualitative nature, strongly indicate that

mACOX1 is a far better substrate for the PIM than dACOX1.
3.3. Urate oxidase behaves similarly to ACOX1 in the
in vitro homo-oligomerization and import assays

Aiming at extending the findings obtained with ACOX1

to another peroxisomal protein, we tested UOX in some of

the assays described above. UOX, an abundant protein compris-

ing 15% of the total protein molecules found in rat/mouse

liver peroxisomes, is a homo-tetramer of 35 kDa subunits in

its native state [63,64]. We first asked whether UOX can homo-

oligomerize in the rabbit reticulocyte lysate and, if so, whether

this process is inhibited by PEX5. The strategy used was exactly

the one described above for ACOX1 (figure 1a). As shown

in figure 3a, untagged UOX was co-immunoprecipitated with

2HA-UOX only when the two proteins were co-synthesized

in the absence of PEX5 (lane 7). Thus, PEX5 blocks UOX

oligomerization.
35S-UOX synthesized for just 45 min and 35S-UOX

subjected to a 4-h chase incubation were also analysed by

sucrose gradient centrifugation. As shown in figure 3b, the

first protein (hereafter referred to as monomeric UOX;

mUOX) sedimented slightly above ovalbumin, a 45 kDa mono-

meric globular protein (panel I, lanes 4 and 5), whereas a

fraction of the protein that was allowed to oligomerize (referred

to as tetrameric UOX; tUOX) sedimented as authentic native/

tetrameric mouse liver UOX (panel II, lane 9; compare with

panel V in figure 1b). The two species of UOX display quite

different behaviours upon proteinase K treatment: mUOX is

readily degraded by the protease, whereas tUOX is largely

resistant yielding a diffuse doublet that runs slightly below

undigested UOX upon SDS-PAGE (figure 3c, left and right

panels, respectively).

Finally, 35S-mUOX and 35S-tUOX obtained from a sucrose

gradient were tested in in vitro import assays. The criteria to
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(BSA) and immunoglobulins (IgGs) are also shown. (c) Monomeric and tetrameric UOX display different susceptibilities to protease treatment. 35S-mUOX and
35S-tUOX isolated from a sucrose gradient were subjected to proteinase K (PK) treatment (400 mg ml21, final concentration) and aliquots were withdrawn at
the indicated time points. Samples were processed as described in figure 1c. (d ) mUOX is a better substrate for the peroxisomal protein import machinery
than tUOX. 35S-mUOX and 35S-tUOX isolated from a sucrose gradient were subjected to in vitro import assays in the presence (þ) or absence (2) of the indicated
recombinant proteins. After incubation, one-half of each sample was treated with proteinase K, as indicated. Isolated organelles were processed and analysed
by SDS-PAGE/autoradiography. The autoradiograph (upper panel) and the corresponding Ponceau S-stained membrane (lower panel) are shown. I1, I2—5% of
35S-mUOX and 35S-tUOX, respectively, used in the assays. The arrow heads indicate protease-resistant fragments of 35S-tUOX.
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define bona fide peroxisomal import were the ones used above

for ACOX1, i.e. acquisition of a protease-protected, organelle-

associated status in a TPRs-inhibitable manner. As shown in

figure 3d, a small amount of mUOX was imported into peroxi-

somes (cf. lanes 4 and 6 with 5). By contrast, we were unable to
detect specific peroxisomal import of tUOX. Indeed, the radio-

labelled protein appearing in the organelle pellets is insensitive

to the presence of TPRs in the assays (cf. lanes 10 and 11) and

runs as a diffuse doublet upon SDS-PAGE, indicating that it

is protease-accessible.
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3.4. ACOX1 lacking peroxisomal targeting information
can be imported into peroxisomes piggybacked
with ACOX1 containing the PTS1, but this pathway
is inefficient

The in vitro import assays described above suggest that

mACOX1 is a much better substrate for the PIM than
dACOX1. An important question is whether this preference is

maintained under in vivo conditions. To address this issue,

we (co-)transfected COS-7 cells with plasmids encoding

two epitope-tagged versions of ACOX1, one containing a func-

tional PTS1 (2HA-ACOX1; see above) and the other lacking it

(ACOX1-Flag). Next, we investigated whether the first protein

can carry the second one to the peroxisome, and if so, with

what efficiency. Control experiments (figure 4a), in which



Figure 4. (Overleaf.) ACOX1 lacking a peroxisomal targeting signal is inefficiently imported into peroxisomes when co-expressed with ACOX1 containing a PTS1.
(a) COS-7 cells were transfected with plasmids encoding HA-tagged ACOX1 (2HA-ACOX1; panel I), a C-terminally Flag-tagged ACOX1 (ACOX1-Flag; panels II and III), or
a HA-tagged ACOX1 containing a nuclear targeting sequence (2HA-ACOX1 – 3NLS; panel IV). Two days post-transfection the cells were fixed, counterstained with
DAPI, and processed for immunofluorescence using an anti-PEX14 antibody (to label peroxisomes) and an anti-HA ( panels I and IV) or anti-Flag antibody ( panels II
and III). Profile plots of fluorescence intensity (in percentage of pixel intensity) along the white arrows shown in the merged panels are also provided: blue line,
DAPI staining; green line, anti-PEX14 fluorescence; red line, anti-HA or anti-Flag fluorescence. Scale bar, 10 mm. (b) Expression levels of tagged ACOX1 proteins in
COS-7 cells. Untransfected cells (lanes ‘—’) or cells transfected with individual plasmids encoding ACOX1-Flag, 2HA-ACOX1 or 2HA-ACOX1 – 3NLS were analysed by
western blot using an antibody against the 53 kDa polypeptide of ACOX1. The arrow heads indicate the tagged ACOX1 proteins. (c) COS-7 cells were transfected with
mixtures of the plasmids encoding ACOX1-Flag and 2HA-ACOX1 at ratios of 1 : 10 and 1 : 30. Note that, as the total amount of plasmid in each of these mixtures was
adjusted to 1 mg, ‘1’ corresponds to 10% and 3.3%, respectively, of the amount of plasmid DNA used in (a) and (b). The subcellular localization of each protein was
then analysed by immunofluorescence 1, 2 and 3 days post-transfection (dpt). Cells in which ACOX1-Flag displays an exclusive cytosolic localization (Cyt; see upper
panel for a representative example), a dual peroxisomal/cytosolic localization (PO/Cyt; middle panel), or an exclusive peroxisomal localization (PO; lower panel) were
counted and expressed as percentage of ACOX1-Flag-expressing cells in the bar graph. (d ) Exactly the same co-transfection strategy was used with plasmids encod-
ing 2HA-ACOX1 – 3NLS and ACOX1-Flag. Cells in which ACOX1-Flag displays an exclusive cytosolic localization (Cyt; see upper panel for a representative example), a
dual nuclear/cytosolic localization (Nuc/Cyt; middle panel) or an exclusive nuclear localization (Nuc; lower panel) were counted and expressed as percentage of
ACOX1-Flag-expressing cells in the bar graph. Note that at least 200 cells were analysed per condition. Scale bar, 10 mm.
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each of these plasmids was transfected alone, revealed a perox-

isomal (panel I) and cytosolic (panel II) staining pattern for

2HA-ACOX1 and ACOX1-Flag, respectively. Interestingly, in

a small number of cells (less than 5%), expression of ACOX1-

Flag also resulted in a staining pattern that partially, but very

weakly, overlapped with that of the peroxisomal marker

protein PEX14 (figure 4a, panel III), suggesting that a minor

amount of ACOX1-Flag was imported into peroxisomes piggy-

backed with endogenous ACOX1 (see below). In agreement

with the peroxisomal localization observed for 2HA-ACOX1,

western blot analyses of total cell extracts using an antibody

directed to the 53 kDa polypeptide of ACOX1 revealed that

the majority of this protein ran below the intact 74 kDa

endogenous ACOX1 and immediately above its 53 kDa frag-

ment, indicating that it was cleaved in the peroxisomal matrix

(figure 4b). We next co-transfected cells with mixtures of the

two plasmids, and determined the subcellular localization of

each ACOX1 species by immunofluorescence at 1, 2 and 3

days post-transfection. To ensure that most ACOX1-Flag

produced in these cells had the possibility to interact with

newly synthesized 2HA-ACOX1, and thus to be imported

into peroxisomes, a 1 : 10 mixture of the expression plasmids

encoding ACOX1-Flag and 2HA-ACOX1, respectively, was

used. Under these conditions, an exclusive peroxisomal localiz-

ation was found for 2HA-ACOX1 regardless of the time point

at which the immunofluorescence analyses were performed.

By contrast, ACOX1-Flag displayed a cytosolic localization in

more than 90% of the cells analysed at 1 day post-transfection

(figure 4c, bar graph at the left-hand side). Interestingly, how-

ever, a small percentage of cells displayed a dual cytosolic and

peroxisomal localization for ACOX1-Flag at this time point.

The fraction of cells displaying such a distribution pattern

increased over the next 2 days, but an exclusive peroxisomal

localization for ACOX1-Flag could never be observed.

We were able to increase significantly the percentage of

cells presenting a peroxisomal localization for ACOX1-

Flag by transfecting cells with a 1 : 30 mixture of the plasmids

encoding ACOX1-Flag and 2HA-ACOX1, respectively. As

shown in figure 4c (bar graph at the right-hand side), an exclu-

sive peroxisomal localization for ACOX1-Flag was found in

approximately 5% of cells already at 1 day post-transfection.

Similarly to the results above, the fraction of cells presenting this

labelling pattern increased slowly during the two subsequent

days. Together, these experiments strongly indicate that

ACOX1-Flag can interact with 2HA-ACOX1 in the cytosol
and use its PTS1 to reach the peroxisome. Thus, dimeric

ACOX1 is also a substrate for the PIM. However, it is also

evident from these data that targeting of ACOX1-Flag to

the peroxisome, in contrast to that of 2HA-ACOX1, is a

low-efficiency process occurring over a timescale of days.

The reason why ACOX1-Flag is poorly imported into the

organelle could reflect difficulties of the Flag-tagged protein

in interacting with 2HA-ACOX1. Although the in vitro oligo-

merization assay shown in figure 1a already suggests that

this is not the case, an in vivo approach was used to test this

possibility. Specifically, we co-expressed ACOX1-Flag with a

2HA-ACOX1 species containing three copies of a nuclear-

localization signal (NLS) at its C-terminus (thus blocking its

PTS1; see figure 4a, panel IV) in COS-7 cells and asked whether

the nuclear targeted protein (2HA-ACOX1–3NLS) could trans-

port ACOX1-Flag to the nucleus. Similarly to the experiment

above, we used a 1 : 10 mixture of the plasmids encoding

ACOX1-Flag and 2HA-ACOX1–3NLS, respectively. As

shown in figure 4d, almost all ACOX1-Flag was found in the

nucleus, thus suggesting that the Flag epitope does not interfere

with the dimerization of ACOX1.
4. Discussion
The idea that most newly synthesized peroxisomal proteins are

imported into the organelle after oligomerization in the cytosol

has remained widely accepted during the last two decades.

Besides all the studies referred to above that were used to

develop and support this concept (see Introduction section),

other arguments were frequently used to strengthen it. An

important one, which is nowadays questionable [70,71], was

that peroxisomes seemed to lack a protein-folding machinery

[45,48,55]. Thus, newly synthesized peroxisomal matrix pro-

teins should undergo folding and oligomerization in the

cytosol, where such a machinery exists. Data on human

alanine-glyoxylate amino transferase, a peroxisomal homo-

dimeric enzyme, seemed to provide the proof-of-concept for

this idea. Indeed, some mutations in the enzyme found in

hyperoxaluria type-1 patients lead to the mistargeting of a frac-

tion of the protein to the mitochondria. Since these mutations

also affect dimerization of the enzyme, it was thus concluded

that only the dimeric enzyme is competent for peroxiso-

mal import (reviewed in [72,73]). However, an identical

mistargeting phenomenon was recently described for human
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2-enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase

(EHHADH), one of the few monomeric proteins of the peroxi-

somal matrix [74]. Indeed, studies in a family affected with

inherited renal Fanconi’s syndrome revealed that a single

missense mutation near the N-terminus of this enzyme was

sufficient to create a mitochondrial targeting sequence thus

resulting in its mitochondrial mistargeting [75]. Clearly,

there is no need to invoke a defect in the oligomerization of a

peroxisomal matrix protein to explain its mistargeting to mito-

chondria (see also [76] for a discussion on this issue). Rather, the

fact that a fraction of both mutant enzymes is missorted to mito-

chondria suggests that the mutations they harbour not only

create mitochondrial targeting information but also interfere

with their expedite folding, because only unfolded proteins

are accepted by the mitochondrial import machinery [77].

The data presented in this work add to a number of obser-

vations suggesting that several newly synthesized peroxisomal

matrix proteins arrive at the peroxisomal membrane still as

monomers. A particularly interesting finding of our work is

that both ACOX1 and UOX, similarly to catalase and sterol

carrier protein x [23,61], can be easily obtained in a soluble,

monomeric state. The solubility of all these proteins, together

with the fact that their hydrodynamic properties are compatible

with a globular conformation, suggests that they are already

partially folded. With the exception of sterol carrier protein x,

for which no evidence for in vitro homo-dimerization could

be obtained thus far [23], monomeric ACOX1, UOX and cata-

lase can all be converted into the corresponding oligomers in
vitro. These findings suggest, on one hand, that these proteins

are bona fide assembly intermediates, and, on the other hand,

that (partial) folding and oligomerization of these monomeric

proteins are not obligatory coupled events. Importantly, the
data presented here show that the previously reported capacity

of PEX5 to bind monomeric catalase, blocking its oligomeriza-

tion [61], is also valid for ACOX1 and UOX, two proteins which

together with catalase comprise one-third of the total matrix

proteins found in rat/mouse liver peroxisomes [62,64].

Interestingly, in vitro import assays revealed that mono-

meric ACOX1 and UOX are more efficiently imported into

peroxisomes than the corresponding oligomeric versions.

The results of the co-transfection experiments presented in

figure 4, showing that HA-ACOX1 acquires a peroxisomal

localization in a much more efficient manner than ACOX1-

Flag, are also compatible with this interpretation. While

these findings suggest that the PIM displays a preference

for monomeric proteins, they do not unveil the mechanistic

reasons for such preference. Our in vivo data suggesting

that import of dimeric ACOX1 is a low-efficiency process

could be explained by simply assuming that interaction of

monomeric ACOX1 with PEX5 is a much faster event than

the dimerization of the enzyme in the cytosol. However,

the in vitro import assays presented here suggest that the pre-

ference of the PIM for monomeric proteins may also have

other reasons. For instance, it is possible that PEX5 binds

monomeric proteins in a faster/stronger manner than it

binds the corresponding oligomeric versions. Some data

suggesting that this may be the case for catalase have been

presented before [61]. Alternatively, the preference of the

PIM for monomeric proteins might be exerted by the DTM

itself. In this hypothetical scenario, the DTM would accept

monomeric proteins having a near-native (more flexible) con-

formation more efficiently than already oligomerized (rigid)

proteins. Discriminating between these possibilities will be

a difficult task, requiring much more than the presently
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available qualitative data on the protein–protein interactions

that govern the peroxisomal protein import pathway.

Although there is still much to be learned on how newly

synthesized peroxisomal proteins are transported to the orga-

nelle matrix, the data presented here together with a number

of previous findings (see Introduction section) support a

model in which: (i) many newly synthesized peroxisomal

proteins are folded by cytosolic chaperones and released as

soluble monomers; (ii) these monomers are then bound by

cytosolic PEX5, which blocks their oligomerization; and

finally, (iii) these monomeric cargoes are translocated by a

single PEX5 molecule into the matrix of the organelle where

oligomerization occurs (figure 5).
Biol.5:140236
5. Material and methods
5.1. Plasmids and recombinant proteins
The cDNAs encoding mouse ACOX1 (clone ID 5704873, Open

Biosystems) and UOX (clone ID 5136328, Open Biosystems)

were amplified by PCR using the primers 50-GCTAATTCTA

GAGCCACCATGAATCCCGATCTG-30 and 50-CGCCGTGGT

ACCTAGCATCAAAGCTTCGACTG-30, and 50-GCAGCATC

TAGAGCCACCATGGCCCATTACC-30 and 50-CGCGCGGG

TACCTTTCACAGCCTGGAAGGCA-30, respectively, and

cloned into a XbaI/KpnI digested pGEM4w vector (Promega).

To generate the plasmid pGEM4–2HA-UOX, primers 50-AG

CTTACCATGGGCTACCCCTATGATGTGCCCGATTACGCC

TACCCATACGACGTCCCAGACTACGCTT-30 and 50-CTAG

AAGCGTAGTCTGGGACGTCGTATGGGTAGGCGTAATCG

GGCACATCATAGGGGTAGCCCATGGTA-30, encoding two

copies of the haemagglutinin (HA) tag, were annealed and

cloned into a HindIII/XbaI digested pGEM4w vector (Promega),

originating pGEM4–2HA. Subsequently, the UOX cDNA

amplified using the primers 50-GCGCCGTCTAGAGCCCAT

TACCATGACAACT-30 and 50-CGCGCGGGTACC TTTCACA

GCCTGGAAGGCA-30 was inserted into the XbaI/KpnI sites

of the pGEM4–2HA. To generate the pGEM4–2HA-ACOX1

plasmid (pMF1636), the cDNA encoding mouse ACOX1 was

amplified by PCR (template: pGEM4–ACOX1; primers: 50-GG

AGGGTACCCATACGACGTCCCAGACTACGCTAATCCCG

ATCTGCGCAAG-30 and 50-GGGGAATTCAGCATCAAAGC

TTCGACTGCAGGGGC-30), digested with KpnI/EcoRI, and

co-ligated with a HindIII/KpnI site-containing linker (prepared

from the annealed oligonucleotides 50-AGCTTACCATGGG

CTACCCCTATGATGTGCCCGATTACGCCGGAGGGTAC-30

and 50-CCTCCGGCGTAATCGGGCACATCATAGGGGTAGC

CCATGGTA-30) into HindIII/EcoRI-restricted pGEM4. To gen-

erate the mammalian expression vector encoding 2HA-ACOX

(pMF1808), the corresponding cDNA was amplified by PCR

(template: pMF1636; primers: 50-GGGGAATTCACCATGGGC

TACCCCTATGATG-30 and 50-GGGGCGGCCGCTCAAAGCT

TCGACTGCAGGGGC-30), digested with EcoRI/NotI and

ligated into EcoRI/NotI-restricted pEGFP-N1 (Clontech).

To construct the mammalian expression vector encoding

ACOX1-Flag (pMF1809), the cDNA encoding ACOX1 was

amplified by PCR (template: pGEM4–ACOX1; primers: 50-G

GGGGCGGCCGCGCCACCATGGATCCCGATCTGCGCAA

GGAG-30 and 50-GGGGAATTCAGCATCAAAGCTTCGACT

GCAGGGGC-30), digested with NotI/HindIII and ligated

into pCMV-Tag4A (Stratagene). The mammalian expression

vector encoding 2HA-ACOX1–3NLS (pOI16) was generated
in two steps: first, a plasmid encoding myc-ACOX1–3NLS

(pCL5) was constructed by ligating an EcoRI/BglII-restricted

PCR fragment (template: pMF1636; primers: 50-GGGAATT

CGGATGGACCCCGATCTGCGCAAGG-30 and 50-GGAGAT

CTTCGACTGCAGGGGCTTCAAGTGC-30) into EcoRI/BglII-

restricted CL-Myc-DAO-3NLS (this plasmid was kindly

provided by Dr Y. M. Go (Tuffs University, MA, USA)); next,

the SalI/NotI fragment of pMF1808 was replaced by the SalI/

NotI fragment of pCL5. To generate pGEM4–ACOX1-Flag,

the corresponding cDNA was amplified by PCR (template:

pMF1809; primers: 50-GCTAATTCTAGAGCCACCATGAAT

CCCGATCTG-30 and 50-GCCGCGGGTACCAACTACTTATC

GTCGTCATCC-30) and subsequently cloned into the XbaI/

KpnI-restricted pGEM4w vector. The correctness of all plas-

mids was confirmed by DNA sequence analysis (LGC

Genomics). The recombinant large isoform of mouse PEX5

[61], a protein comprising amino acid residues 315–639 of

PEX5 (TPRs [78]), and TPRs containing the missense mutation

N526K (TPRs (N526K), numbering of full-length PEX5 [79])

were obtained as previously described.

5.2. Synthesis of radiolabelled proteins
35S-labelled proteins were synthesized using the TnT T7

QuickCoupled transcription/translation kit (Promega) in

the presence of 35S-methionine (specific activity . 1000

Ci mmol21; PerkinElmer Life Sciences). Protein synthesis

was allowed to proceed for the specified periods of time.

Cycloheximide was used at 0.5 mM, final concentration.

Chase incubations were performed at 308C, as specified.

5.3. Immunoprecipitations
Radiolabelled proteins synthesized in the presence of 1 mM

recombinant PEX5 were diluted to 500 ml with buffer A

(50 mM Tris–HCl, pH 8.0, 150 mM NaCl, 1 mM EDTA–

NaOH, pH 8.0, 10% (w/v) glycerol, 0.1% (w/v) Triton X-100)

supplemented with 0.025% of bovine serum albumin (BSA)

and 1 : 500 (v/v) mammalian protease inhibitor mixture

(Sigma). The composition of translation product mixtures,

prepared in the presence and absence of PEX5, was made identi-

cal by adding recombinant PEX5. Immunoprecipitation was

done using 30 ml of anti-HA antibody agarose beads (Sigma)

for 3 h at 48C. Beads were washed four times with 150 ml

of buffer A. Immunoprecipitated proteins were analysed by

SDS-PAGE/autoradiography.

5.4. Sucrose gradients
Radiolabelled proteins were incubated for 5 min at room

temperature in the presence or absence of 1 mM of either

PEX5 or a control protein (soybean trypsin inhibitor), in

200 ml of buffer B (50 mM Tris–HCl, pH 7.5, 150 mM NaCl,

1 mM EDTA–NaOH, pH 8.0 and 1 mM DTT). The mixtures

were then loaded onto the top of a continuous 5–30%

(w/v) sucrose gradient in the same buffer (generated using

a 107ip GRADIENT MASTERTM; BioComp, Canada) and

centrifuged at 39 000 r.p.m. for 29 h at 48C in a SW-41

Rotor (Beckman). Where indicated, 1 mM of either PEX5

or soybean trypsin inhibitor was included in the gradient

solutions. Ovalbumin (3.6 S), BSA (4.3 S) and bovine immu-

noglobulins (6.9 S) were used as sedimentation coefficient

standards. Fractionation of gradients, SDS-PAGE and
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autoradiography analyses were done as described [36].

Mouse liver peroxisomal matrix proteins were obtained by

sonicating purified organelles (800 mg of protein) in buffer

B supplemented with 1 : 500 (v/v) mammalian protease

inhibitor mixture (Sigma) followed by centrifugation for

30 min at 100 000g. The supernatant was loaded onto the

top of a sucrose gradient and centrifuged, as above.

5.5. In vitro import reactions
Rat liver PNS was prepared as described before [22]. In vitro
import assays containing 500 mg of PNS and the radio-

labelled protein were incubated for 45 min at 378C, in

100 ml of import buffer (0.25 M sucrose, 20 mM MOPS-

KOH, pH 7.4, 50 mM KCl, 3 mM MgCl2, 20 mM methionine,

2 mg ml21 N-(trans-epoxysuccinyl)-L-leucine 4-guanidinobu-

tylamide) containing 3 mM ATP, 2 mM glutathione, and

recombinant PEX5 (1.5 nM for ACOX1 and 7.5 nM for

UOX). Where indicated, TPRs or TPRs(N526K) (0.3 mM

final concentration) was also added to assays. Note that incu-

bation of radiolabelled ACOX1 and UOX with recombinant

PEX5 before proceeding with the import assay, a strategy

used before for sterol carrier protein x [23], resulted in only

a modest increase in the import yields of ACOX1 and UOX

(approx. 1.5-fold increase in 45 min import reactions). Thus,

for practical reasons, this step was not included in the exper-

iments described here. It is likely that the half-lives of the

PEX5–ACOX1 and PEX5–UOX protein complexes are too

short to benefit from this step, although further data are

necessary to confirm this possibility. Protease treatment of

import reactions was done using 400 mg ml21 of proteinase

K (final concentration) for 40 min, on ice. After protease inac-

tivation with phenylmethylsulfonyl fluoride (500 mg ml21,

final concentration) for 2 min on ice, organelles were isolated

by centrifugation and analysed as described before [28].

5.6. Cell culture, transfections and immunofluorescence
microscopy

COS-7 cells (kindly provided by Dr M. Schrader (University of

Exeter, UK)) were cultured at 378C in a humidified 5% CO2

incubator in minimum essential medium Eagle a (Lonza) sup-

plemented with 10% (v/v) fetal bovine serum superior

(Biochrom AG), 2 mM Ultraglutamine-1 (Lonza) and 0.2%

(v/v) Mycozap (Lonza). Cells were transfected using Invitro-

gen’s Neon Transfection System (1050 V, 30 ms pulse width, 1

pulse). Samples for immunofluorescence microscopy were

fixed and processed as described before [80]. The rabbit poly-

clonal antiserum against human PEX14 has been described
elsewhere [81]. DAPI (Roche), the mouse anti-HA (Sigma)

and anti-FLAG (Stratagene) antibodies, and the Alexa Fluor

488- (Invitrogen) or Texas Red- (Calbiochem) conjugated sec-

ondary antibodies were commercially obtained. Fluorescence

was evaluated on a motorized inverted IX-81 microscope

(Olympus) controlled by Cell-M software (Olympus). The tech-

nical specifications of the objectives, excitation and emission

filters, and digital camera have been described elsewhere [82].

Fluorescence intensity versus distance plots (line scans) were

generated using IMAGEJ software.
5.7. Miscellaneous
Isolation of highly pure peroxisomes from mouse liver by

differential centrifugation and Nycodenz gradient purification

was performed as described [83,84]. The antibodies directed to

the 21 kDa and 53 kDa fragments of ACOX1 have been

described before [85]. For the protease susceptibility assays,
35S-labelled proteins isolated from a sucrose gradient and

native ACOX1 (from mouse liver purified peroxisomes) were

diluted in import buffer and subjected to proteinase K diges-

tion (10–400 mg ml21, final concentration) in the presence or

absence of 1% (w/v) Triton X-100, as specified, and incubated

for 40 min on ice. After protease inactivation with phenyl-

methylsulfonyl fluoride, proteins were precipitated with

trichloroacetic acid and processed as previously described [22].
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