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Abstract: In recent years, the potential of non-invasive brain stimulation (NIBS) for the therapeutic
effect of post-stroke spasticity has been explored. There are various NIBS methods depending
on the stimulation modality, site and parameters. The purpose of this study is to evaluate the
efficacy of NIBS on spasticity in patients after stroke. This systematic review and meta-analysis
was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) guidelines. PUBMED (MEDLINE), Web of Science, Cochrane Library and Excerpta
Medica Database (EMBASE) were searched for all randomized controlled trials (RCTs) published
before December 2021. Two independent researchers screened relevant articles and extracted data.
This meta-analysis included 14 articles, and all included articles included 18 RCT datasets. The
results showed that repetitive transcranial magnetic stimulation (rTMS) (MD = −0.40, [95% CI]:
−0.56 to −0.25, p < 0.01) had a significant effect on improving spasticity, in which low-frequency
rTMS (LF-rTMS) (MD = −0.51, [95% CI]: −0.78 to −0.24, p < 0.01) and stimulation of the unaffected
hemisphere (MD = −0.58, [95% CI]: −0.80 to −0.36, p < 0.01) were beneficial on Modified Ashworth
Scale (MAS) in patients with post-stroke spasticity. Transcranial direct current stimulation (tDCS)
(MD = −0.65, [95% CI]: −1.07 to −0.22, p < 0.01) also had a significant impact on post-stroke
rehabilitation, with anodal stimulation (MD = −0.74, [95% CI]: −1.35 to −0.13, p < 0.05) being
more effective in improving spasticity in patients. This meta-analysis revealed moderate evidence
that NIBS reduces spasticity after stroke and may promote recovery in stroke survivors. Future
studies investigating the mechanisms of NIBS in addressing spasticity are warranted to further
support the clinical application of NIBS in post-stroke spasticity.

Keywords: non-invasive brain stimulation; stroke; spasticity; meta-analysis

1. Introduction

Post-stroke spasticity, as a neurological manifestation with a typical syndrome of
increased muscle tone, was reported to have a prevalence rate of up to 25% in stroke
survivors [1]. Spasticity leads to complications such as pain, muscle spasticity, abnormal
joint positions and anchylosis, which further decrease the motor function of patients after
stroke and bring great challenges to their daily activities [2]. Therefore, effective inter-
ventions for post-stroke spasticity are very important. Current management regimens for
post-stroke spasticity include electrical stimulation of muscles, botulinum toxin injections,
oral anti-spasticity drugs and wearable exoskeletons devices, etc. [3,4]. However, common
side effects of drugs and the invasiveness of local treatment are undesirable, which limits
their effectiveness.
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In recent years, non-invasive brain stimulation (NIBS) has been actively explored in
various diseases of the nervous system. Among various NIBS techniques, transcranial
magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are most
often used to treat patients with post-stroke spasticity [5,6]. Spasticity usually occurs
within one to six weeks after stroke and is caused by abnormal or hyperexcitable spinal
reflexes [7,8]. NIBS induces excitatory changes in the underlying cerebral cortex in a non-
invasive manner and lasting changes in neuroplasticity [9]. NIBS works by altering the
excitability of the cerebral motor cortex and indirectly reducing the excitability of motor
neurons in the spinal cord through the H-reflex [10].

Currently, the effects of NIBS on post-stroke spasticity are contradictory. Although
some studies have reported a beneficial effect of NIBS in the treatment of post-stroke
spasticity [11–13], other studies have shown no significant benefit of NIBS in reducing
muscle spasticity. A meta-analysis published in 2020 showed no significant effect of rTMS
in spasticity management. However, it included only five RCTs [14]. Results from two
published meta-analyses of tDCS for post-stroke spasticity also showed some variability
without uniform criteria [15,16]. Therefore, the aim of this study is to conduct a systematic
review and meta-analysis of the effectiveness of NIBS in the management of spasticity in
patients after stroke.

2. Methods
2.1. Literature Search Strategy

This meta-analysis was performed in accordance with the PRISMA guidelines for
systematic reviews and meta-analysis [17]. The PICO principles consist of four parts: popu-
lation, interventions, control and outcome and all articles included in systematic reviews
and meta-analyses are retrieved according to the PICO principles [18]. The inclusion criteria
for articles are (1) Population: patients who have been diagnosed as stroke patients by
clinical examinations and have post-stroke spasticity; (2) Interventions: NIBS; (3) Control:
sham stimulation; (4) Outcome: MAS; and (5) Research type: RCT. The research language
is limited to English. Two authors independently searched electronic databases, including
PUBMED (MEDLINE), Web of Science, Cochrane Library and EMBASE. We searched the
database for related articles published as of December 2021 by using MeSH terms including
“Stroke”, “Non-invasive Brain Stimulation” and “spasticity”. If there is a disagreement in
the article inclusion process, it will be discussed with the third author to determine the
eligibility for inclusion.

2.2. Study Selection

The article search strategy is shown in Figure 1. We retrieved a total of 2482 publica-
tions in our first search. The two authors screened titles and abstracts to determine relevant
research articles and then further reviewed the full text to finally determine the research
articles included in the meta-analysis. Any disagreements during the inclusion process
were discussed and resolved by the third author.

2.3. Quality Assessment

All included RCTs were independently evaluated by two authors using the Cochrane risk
of bias assessment tool [19]. It included six items: selection bias: random sequence generation
and allocation concealment; performance bias: blinding of participants and personnel; detec-
tion bias: blinding of outcome assessment; attrition bias: incomplete outcome data; reporting
bias: selective reporting; and other biases [20]. If there was a disagreement in the evaluation,
it would be resolved through a discussion with the third author.
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2.4. Data Extraction

For each study that met the inclusion criteria, relevant information about experimental
design and result analysis was extracted. All extracted information included research
characteristics (author, publication year and sample size), treatment parameters (stimu-
lation method, stimulation parameters, stimulation time and control group) and main
measurement results (MAS).
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2.5. Statistical Analysis

A meta-analysis of the extracted studies was performed. Meta-analyses are useful
for assessing the strength of evidence for treatment from multiple studies. The aim is to
determine whether there is an effect, either positive or negative, and to obtain a single
pooled estimate of effect rather than a single estimate of individual studies. In this meta-
analysis, for each outcome related to continuous data, we calculated a pooled estimate and
95% confidence interval (CI) of the mean difference (MD) between the experimental and
control groups after the intervention.

This meta-analysis used RevMan 5.4 (The Nordic Cochrane Centre, The Cochrane
Collaboration, Copenhagen, Denmark) for statistical analysis. This was performed by
entering the mean and standard deviation of all continuous data in each study into the
software and calculating the mean difference (MD) of the 95% confidence interval (CI) to
analyze the results. Cochran’s Q test and the I2 index were used to assess the heterogeneity
of all studies included in the meta-analysis. Statistical heterogeneity between these studies
was calculated using Cochran’s Q test and the I2 index. An I2 index > 50% and p < 0.10
of the Cochran’s Q test indicated high heterogeneity, and the random-effects model was
used; otherwise, the fixed-effects model was used. The results of all data analyses in this
meta-analysis were shown by forest plots.

Funnel plots and Egger’s test to assess potential publication bias were applied. Still,
because the number of studies included in each meta-analysis was less than 10, the funnel
plot and Egger’s test could produce misleading results in this case [21]. Therefore, the
funnel plot and Egger’s test were not used in this meta-analysis to assess publication bias.

3. Results
3.1. Study Identification and Selection

A total of 2482 publications were retrieved from two authors independently by search-
ing the database. The search results are shown in Figure 1. Of these, 1673 duplicate
publications were firstly deleted, then 489 publications were screened based on titles, and
then 287 publications were based on abstracts, and finally, 33 full-text articles were re-
trieved. Through the final full-text review, 14 articles were ultimately included for this
review. This study included eight research articles [22–29] on rTMS, one of which included
three data sets, one article included two data sets and the other articles each had one data
set. A total of 128 patients received rTMS in all studies, and 104 patients served as the
control group. At the same time, this study included six research articles [13,30–34] on
tDCS. One article included two data sets, and the other articles had one data set. A total
of 199 patients in all studies received tDCS, and 146 patients served as the control group.
The information extracted from all research related to rTMS is shown in Table 1, and the
information extracted from all studies related to tDCS is shown in Table 2.

Details of each study are provided in Tables 1 and 2. In rTMS, the pooled sample size
was 135 individuals receiving rTMS, with sample sizes ranging from 7 to 22 participants
per group. In terms of study design, all articles in this review were RCTs. In tDCS, the
pooled sample size was 196 individuals receiving tDCS, with sample sizes ranging from
10 to 45 participants per group. In terms of study design, all articles in this review
were RCTs.
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Table 1. Research Characteristics of rTMS.

Study

Participant Mean Severity (SD)

Intervention Control Outcomes MuscleIntervention Control Intervention Control
Mean Age

(SD)
N

(Male/Female)
Mean Age

(SD)
N

(Male/Female) MAS

Askı et al. (2017) 56.75 (11.46) 20 (14/6) 58.80 (12.02) 20 (15/5) 3.2 (0.75) 2.8 (0.75)
LF-rTMS + PT

1200 pulses, 1 Hz, 90%
RMT

Sham rTMS + PT MAS upper limb

Barros Galvao et al. (2014) 57.4 (12.0) 10 (6/4) 64.6 (6.8) 10 (7/3) 2.5 (0.5) 2.4 (0.5)
LF-rTMS + PT

1500 pulses, 1 Hz; 90%
RMT

Sham rTMS +PT MAS wrist

Chen et al. (2019) 52.9 (11.1) 11 (7/4) 52.6 (8.3) 11 (7/4) 3.90 (2.10) 4.05 (1.56)
iTBS

50 Hz
80% AMT

Sham iTBS MAS upper limb

Chen et al. (2021) 54.36 (10.56) 12 (8/4) 48.95 (9.63) 11 (10/1) 0.87 (0.54) 0.94 (0.69)
iTBS + VCT

50 Hz
80% AMT

Sham iTBS + VCT MAS upper limb

Chervyakov et al. (2018a) 54.2 (11.1) 11 (5/6) 61.4 (11.4) 10 (5/5) 1.2 (0.9) 1.4 (1.0)
LF-rTMS

1200 pulses, 1 Hz, 100%
RMT

Sham rTMS MAS arm

Chervyakov et al. (2018b) 58.6 (10.4) 13 (10/3) 61.4 (11.4) 10 (5/5) 1.84 (0.8) 1.4 (1.0)
HF-rTMS

200 pulses, 10-Hz, 80%
RMT

Sham rTMS MAS arm

Chervyakov et al. (2018c) 60.7 (9.6) 8 (6/2) 61.4 (11.4) 10 (5/5) 1.5 (0.9) 1.4 (1.0)

LF-rTMS
1 Hz

100% RMT
HF-rTMS

10 Hz
80% RMT

Sham rTMS MAS arm

Gottlieb et al. (2021)] 63.93 (10.91) 14 (9/5) 62.43 (11.46) 14 (3/11) 1.86 (1.35) 1.71 (1.27) LF-rTMS
1200 pulses, 1 Hz Sham-rTMS MAS upper limb

Kuzu et al. (2021a) 56.3 (11.5) 7 (4/3) 65.0 (4.6) 6 (2/4) 1.8 (0.4) 2.3 (0.6) LF-rTMS
1200 pulses, 1 Hz Sham rTMS MAS upper limb

Kuzu et al. (2021b) 61.3 (9.8) 7 (6/1) 65.0 (4.6) 6 (2/4) 2.1 (0.6) 2.3 (0.6) cTBS
50 Hz Sham cTBS MAS upper limb

Xu et al. (2021) 79.50 (1.49) 22 (17/5) 68.86 (3.09) 22 (15/7) 2.32 (0.48) 2.41 (0.50)
LF-rTMS + CRT
550 pulses, 1 Hz

90% RMT
Sham rTMS + CRT MAS upper limb

HF-rTMS: high-frequency repetitive transcranial magnetic stimulation; LF-rTMS: low-frequency repetitive transcranial magnetic stimulation; cTBS: continuous theta-burst repetitive
transcranial magnetic stimulation; iTBS: intermittent theta-burst repetitive transcranial magnetic stimulation; AMT: active motor threshold; RMT: resting motor threshold; MAS: modified
Ashworth scale; PT: physical therapy; VCT: virtual reality-based cycling training; CRT: conventional rehabilitation treatment.
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Table 2. Research Characteristics of tDCS.

Study

Participant Mean Severity (SD)

Intervention Control Outcomes MuscleIntervention Control Intervention Control
Mean Age

(SD)
N

(Male/Female)
Mean Age

(SD)
N

(Male/Female) MAS

Andrade et al. (2017) 54.08 (3.72) 40 (22/18) 54.76 (4.28) 20 (12/8) 3.3 (0.36) 3.6 (0.5) tDCS (Anodal) + CIMT
0.7 mA, 10 sessions

Sham-tDCS +
CIMT MAS upper limb

Hesse et al. (2012a) 63.9 (10.5) 32 (20/12) 65.6 (10.3) 32 (21/11) 1.6 (2.9) 1.4 (2.7) tDCS (Anodal)
2.0 mA, 30 sessions Sham-tDCS MAS upper limb

Hesse et al. (2012b) 65.4 (8.6) 32 (18/14) 65.6 (10.3) 32 (21/11) 1.0 (1.8) 1.4 (2.7) tDCS (Cathodal)
2.0 mA, 30 sessions Sham-tDCS MAS upper limb

Lee and Chun (2014) 63.1 (10.3) 20 (12/8) 60.6 (14.1) 20 (9/11) 0.4 (0.5) 0.5 (0.4) tDCS (Cathodal) + VRT
2.0 mA, 15 sessions Sham-tDCS + VRT MAS upper limb

Mazzoleni et al. (2019) 67.50
(16.30) 20 (8/12) 68.74

(15.83) 19 (7/12) 1.1 (1.86) 1.58
(2.34)

tDCS (Anodal) + wrist
robot-assisted
rehabilitation

2.0 mA, 30 sessions

Sham-tDCS +
wrist

robot-assisted
rehabilitation

MAS wrist

Viana et al. (2014) 56.0 (10.2) 10 (9/1) 55.0 (12.2) 10 (7/3) 1.5 (0.7) 1.5 (0.52) tDCS (Anodal) + VRT
2.0 mA, 15 sessions Sham-tDCS + VRT MAS upper limb

Wu et al. (2013) 45.9 (11.2) 45 (34/11) 49.3 (12.6) 45 (35/10) 2.0 (0.75) 2.0 (0.5) tDCS (Cathodal) + PT
1.2 mA, 20 sessions Sham-tDCS + PT MAS elbow, wrist

tDCS: transcranial direct current stimulation; MAS: modified Ashworth scale; CIMT: constraint-induced movement therapy; VRT: virtual reality therapy; PT: physical therapy.
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3.2. Effects of rTMS

A total of 11 RCTs on the effect of rTMS on post-stroke spasticity were included in the
study, and the outcome measure of all the studies was MAS. The meta-analysis showed
that compared with the control group, rTMS had significant benefits for patients with post-
stroke spasticity, and the MAS was significantly reduced (MD: −0.40, 95% CI: −0.56 to −0.25,
p < 0.01). The meta-analysis showed that there was no significant heterogeneity between the
various studies (p = 0.42, I2 = 3%) (Figure 2A).
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The different stimulation methods of rTMS were divided into different subgroups. Six
of all studies used LF-rTMS, two studies used intermittent theta-burst rTMS (iTBS), and
high-frequency rTMS (HF-rTMS), LF-rTMS combined with HF-rTMS and continuous theta-
burst rTMS (cTBS) each had one study. The meta-analysis showed that compared with the
control group, LF-rTMS had significant benefits for post-stroke spasticity, and the MAS was
significantly reduced (MD: −0.51, 95% CI: −0.78 to −0.24, p < 0.01). However, although other
studies had shown certain benefits, they did not reach statistical differences (Figure 2B).

The different stimulation sites of rTMS were divided into different subgroups. Six of
the studies included the unaffected hemispheres of patients with post-stroke spasticity, and
the other four studies included the affected hemispheres of patients. The meta-analysis
showed that compared with the control group, rTMS applied to stimulate the unaffected
hemispheres of patients with post-stroke spasticity had significant benefits, and the MAS
was significantly reduced (MD: −0.58, 95% CI: −0.80 to −0.36, p < 0.01). However, stim-
ulation of the affected hemispheres also had certain benefits but did not reach statistical
differences (Figure 2C).

3.3. Effects of tDCS

A total of seven RCTs on the effects of tDCS on post-stroke spasticity were included
in the study, and the measurement outcome for all studies was the MAS. The meta-
analysis showed that compared with the control group, tDCS had significant benefits
for patients with post-stroke spasticity, and the MAS was significantly reduced (MD: −0.65,
95% CI: −1.07 to −0.22, p < 0.01). This meta-analysis showed that there was heterogeneity
between different studies (p < 0.01, I2 = 78%) (Figure 3A).

The stimulation types of tDCS were divided into different subgroups. Four studies
used anodal stimulation, and three studies used cathodal stimulation. The meta-analysis
showed that compared with the control group, anodal stimulation had significant benefits
for patients with post-stroke spasticity (MD: −0.74, 95% CI: −1.35 to −0.13, p < 0.05);
however, although cathode stimulation also had certain benefits, it did not reach a statistical
difference (MD: −0.51, 95% CI: −1.31 to 0.29, p = 0.22) (Figure 3B).

The stimulation intensities of tDCS were divided into different subgroups. There
were five studies with a stimulation intensity of 2.0 mA and the other two studies with a
stimulation intensity of 0.7 mA and 1.2 mA, respectively. The meta-analysis showed that
compared with the control group, the stimulation intensity of tDCS of 0.7 mA (MD: −1.20,
95% CI: −1.40 to −1.00, p < 0.01) and 1.2 mA (MD: −1.00, 95% CI: −1.26 to −0.74, p < 0.01)
had significant effect on patients with post-stroke spasticity. However, the measurement
results of other studies had changed but did not reach statistical differences (Figure 3C).

3.4. Risk of Bias and Sensitivity Analysis

In this meta-analysis, three of the included articles [26,28,31] designed different ex-
perimental groups based on the stimulation method. There was no mutual interference
between the different experimental groups, so each study was treated as an RCT. Finally,
a total of 18 studies were obtained from 14 articles in the meta-analysis. Two authors
independently assessed the risk of bias assessment of 18 included studies. The results of
the risk of bias for all studies are shown in Figure 4. The risk of bias was assessed using the
Cochrane Collaboration recommendations, and the sensitivity results indicated that the
results of our meta-analysis appeared to be stable [20].
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4. Discussion

In this current study, a meta-analysis of the effect of NIBS on spasticity for post-stroke
populations was performed. It included 18 RCTs, with the most relevant RCTs to date
based on stringent inclusion and exclusion criteria. The results of the meta-analysis proved
that NIBS has a positive effect on post-stroke spasticity. In addition, the sub-group analysis
of NIBS (i.e., tDCS and TMS) on post-stroke spasticity was also conducted.

In terms of rTMS, the results of different subgroup analyses showed that LF-rTMS had
a significant benefit in the unaffected hemispheres of patients with post-stroke spasticity
(Figure 2B,C). This finding is in line with clinical evidence-based guidelines, which have
shown that LF-rTMS acts on the unaffected hemisphere to promote post-stroke motor
function recovery [35]. rTMS uses magnetic signals of different frequencies to stimulate the



Brain Sci. 2022, 12, 836 11 of 14

central nervous system in the corresponding parts and relieve limb spasticity in patients
after stroke, and induce brain plasticity and brain network reorganization, promote the
rehabilitation of the primary and secondary motor cortex [36]. Studies have shown that
joint application of LF-rTMS acting on the unaffected hemisphere and HF-rTMS acting on
the affected hemisphere can achieve better therapeutic effects by regulating the excitability
of bilateral hemispheres [37]. However, there is no consistent standard for different stim-
ulation methods. The possible mechanism of LF-rTMS for addressing spasticity may be
related to the changes in the excitability of the cerebral motor cortex, thereby reducing the
excitability of spinal motor neurons [13].

For the stimulation types of tDCS, anodal stimulation has significant benefits for
spasticity treatment in post-stroke patients (Figure 3B). In terms of the stimulation strength,
tDCS at current strengths of 0.7 mA or 1.2 mA significantly reduced spasticity, but the
current strength of 2.0 mA showed no significant effect on post-stroke spasticity (Figure 3C).
tDCS uses a low-intensity current to act on the target brain area to change the charge
distribution of neuron membrane potential, resulting in depolarization or hyperpolariza-
tion, thereby changing the excitability of the cerebral cortex [38]. The anodal of tDCS is
placed on the affected side to increase the excitability of the target brain area, and the
cathodic is placed on the unaffected side to suppress the excitability of the target brain area.
Studies have shown that anodal stimulation on the affected side can reduce limb spasticity
symptoms in stroke survivors more than cathodal stimulation on the unaffected side [39].
The results of this meta-analysis are consistent with previous studies, which also showed a
better effect of anodal tDCS on post-stroke spasticity. However, the mechanism of action of
tDCS on post-stroke rehabilitation remains to be further investigated.

In the studies included in this meta-analysis, most of the brain regions stimulated by
NIBS were the primary motor cortex [22,27,28,30], and a few studies were stimulated in the
premotor cortex [23,30] and cerebellum [40]. The premotor cortex plays an important role
in motor control and is another stimulation target besides the primary motor cortex [41,42].
The cerebellum works in concert with the cerebral cortex, is involved in motor control and
has a role in the regulation of muscle tone [43]. The cerebellum may become a new target
for NIBS in future studies. Although NIBS on different brain regions has rehabilitation
effects on post-stroke spasticity, the interaction mechanism between different targets is still
unclear. The mechanism of action between different targets needs to be further investigated
in future studies.

There are several different scales for assessing spasticity in post-stroke patients in
rehabilitation studies. Currently, the MAS is used in most studies, and its main purpose
is to evaluate abnormal muscle tone, while a small number of studies use the Modified
Tardieu Scale (MTS) as a spasticity assessment tool [44]. As the number of other scale
studies (i.e., MTS) was too small, all studies included in this meta-analysis used MAS.
However, both the MAS and MTS are subject to a certain degree of subjectivity, and more
objective assessment methods need to be used in future research [45].

In patients after stroke, the balance between the two hemispheres of the brain is
disrupted, resulting in hyperexcitability of the unaffected hemisphere and increased inhibi-
tion of the affected hemisphere [46]. Most of the reported findings showed that LF-rTMS
had a positive effect on post-stroke spasticity [47–49]. Li et al. [50] showed that cTBS of
the cerebellum reduced symptoms in patients with post-stroke spasticity. In addition,
concomitant use of LF-rTMS and cTBS in post-stroke spastic patients resulted in better
outcomes in rehabilitation. Different research results showed that different stimulation
types of tDCS had certain therapeutic effects on patients with post-stroke spasticity [51–54].
The results of this meta-analysis are consistent with those of previous studies. Overall,
NIBS for post-stroke spasticity is still mainly focused on the research of rTMS and tDCS,
and the causal mechanisms underlying NIBS remain elusive. More comprehensive research
is needed in the future.

Based on this meta-analysis, the results of non-randomized controlled trials of NIBS
for post-stroke spasticity were also discussed. At this stage, no other NIBS have been found
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in RCTs of patients with post-stroke spasticity, and new techniques still need to be explored
in future studies.

5. Conclusions

The results of the current meta-analysis are encouraging as they suggest that NIBS
can promote rehabilitation in patients with post-stroke spasticity. At present, the NIBS
applied to the field of post-stroke spasticity rehabilitation are mainly rTMS and tDCS. Other
techniques, including transcranial alternating current stimulation (tACS) and transcra-
nial ultrasound stimulation (TUS), still have limited evidence of significant variability in
stimulation targets and stimulation parameters. Therefore, further in-depth study on the
mechanism of action in the rehabilitation of post-stroke spastic patients is required. We
hope that in the future, NIBS can be optimized and applied safely and efficiently to the
rehabilitation of post-stroke spasticity.
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