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polyposis[1]. Although the outcomes of CRC patients have 
been improved with advanced technologies and therapies, 
the estimated death rate of CRC patients is still increasing 
year by year[3, 4].

The major contributor to the high mortality rate of CRC 
is distant metastasis. Approximately 25% of patients pres-
ent with metastases at initial diagnosis, and almost 50% of 
patients with CRC ultimately develop metastases[5], which 
drove us to assess the mechanism contributing to CRC 
metastasis to prevent it from occurring. Tumor metastasis is 
a multistep process that presents as an invasion-metastasis 
cascade, including local invasion, intravasation and sur-
vival in the circulation, arrest at distant organs and extrava-
sation into the parenchyma of distant tissues, formation of 
micrometastases and restart of the proliferative program[6]. 
Several biological processes contribute to CRC metastasis. 
Epithelial-to-mesenchymal transition (EMT), a major meta-
static contributor, is a biological process in which epithelial 
cells transform into cells with a mesenchymal phenotype 
through specific procedures. EMT increases the metastatic 
potential of carcinoma cells by increasing their migra-
tory and invasive capacities, which facilitates their move-
ment out of primary tumor sites and into the circulation[7]. 
Cancer stem cells (CSCs), a small subset of cells with 
self-renewal and tumor-initiating ability within tumors, 
have also been proven to play an important role in CRC 
metastasis. Compared to non-CSCs, CSCs exhibit enhanced 

Introduction

Colorectal cancer (CRC) is the world’s fourth most deadly 
cancer, and the disease-specific mortality rate is nearly 33% 
in the developed world[1, 2]. According to statistics pro-
vided by the National Cancer Center of China, it accounted 
for approximately 319,486 new cancer cases and 164,959 
cancer-related deaths in males and 235,991 new cases and 
121,203 deaths in females in 2020[3]. Many risk factors con-
tribute to CRC, including increasing age, male sex, previous 
colonic polyps or previous CRC, unhealthy lifestyle or eat-
ing habits, inflammatory bowel disease and hereditary syn-
dromes such as Lynch syndrome and familial adenomatous 
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Abstract
Distant metastasis is the major contributor to the high mortality rate of colorectal cancer (CRC). To overcome the poor 
prognosis caused by distant metastasis, the mechanisms of CRC metastasis should be further explored. Epigenetic events 
are the main mediators of gene regulation and further affect tumor progression. Recent studies have found that some epi-
genetic enzymes are often dysregulated or mutated in multiple tumor types, which prompted us to study the roles of these 
enzymes in CRC metastasis. In this review, we summarized the alteration of enzymes related to various modifications, 
including histone modification, nonhistone modification, DNA methylation, and RNA methylation, and their epigenetic 
mechanisms during the progression of CRC metastasis. Existing data suggest that targeting epigenetic enzymes is a prom-
ising strategy for the treatment of CRC metastasis.
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arginine are the most common modification sites, and these 
modifications are catalyzed by acetylases and methylases. 
Simply, lysine and arginine residues on the N-terminal tails 
of histones are subject to methylation and acetylation, and 
these alternations further regulate the chromatin structure, 
thus affecting gene transcription. For nonhistone proteins, 
acetylation and methylation may regulate protein stability 
and further affect protein activity and function.

Acetylation and Deacetylation

CREB-binding protein (CBP)/p300

CBP and its homolog p300 are two acetyltransferase 
enzymes in humans and most higher eukaryotes[14]. CPB/
p300 are multifunctional proteins that can acetylate diverse 
signaling effectors, enhancer-associated regulators and all 
four core histones[15]. Approximately 21,000 acetylation 
sites on 5,300 proteins can be acetylated by CBP/p300, 
and CBP/p300-regulated sites are significantly enriched for 
transcription and chromatin regulation[15].

To date, several studies have reported that CBP/p300 
participates in the mechanism of CRC metastasis. LncRNA 
SATB2-AS1 recruits p300 and accelerates the p300-medi-
ated acetylation of H3K27 and H3K9 at the SATB2 pro-
moter to upregulate SATB2, which inhibits the invasion 
and migration of CRC cells[16]. CREPT, a tumor-related 
gene significantly associates with the poor overall survival 
(OS) of CRC, promotes the CRC metastasis by recruit-
ing p300 and enhancing the acetylation of H3K27 and H4 
in the c-myc promoter region to directly control its tran-
scriptional efficacy[17, 18]. In addition to promoting his-
tone acetylation, CBP/p300 also promotes the acetylation 
of nonhistone proteins to participate in the process of CRC 
metastasis. CREPT, as described above, can also enhance 
the interaction between p300 and β-catenin to promote 
p300-mediated acetylation and stability of β-catenin[18]. 
DOT1L is a new substrate of CBP, whose acetylation at 
K358 protects DOT1L from degradation to promote CRC 
metastasis[19]. ArhGAP30, a Rho GTPase-activating pro-
tein, promotes CRC cell migration in a p53-dependent 
manner, which upregulates p53 activity by enhancing the 
acetylation of p53 at the Lys382 site in the presence of 
p300[20]. A recent study found that CRC tumor-initiating 
cells (TICs) expressing CD110, a thrombopoietin (TPO)-
responsive homodimeric receptor, mediated liver metasta-
sis[21]. TPO expression strengthens the interaction between 
p300 and LRP6, which accelerates acetylation of LRP6 at 
the K802 site to activate LRP6 and further stimulate self-
renewal of CD110 + TICs, thus promoting CRC metasta-
sis[22]. Although these results indicate that CBP/p300 has 

metastasis-related traits, such as motility, invasiveness and 
resistance to apoptosis[8]. Researchers found that colon 
cancer stem cells (CCSCs) are critical for the formation 
and maintenance of liver metastasis[9]. However, there is 
also a different view that CCSCs are indispensable for the 
outgrowth, but not the establishment, of metastases[10]. In 
addition to the above processes, the roles of the activation 
of multiple signaling pathways, metabolic reprogramming 
and immune escape in CRC metastasis cannot be ignored.

Wisniewski and coworkers compared the proteomes of 
formalin-fixed, paraffin-embedded (FFPE) samples con-
taining colonic mucosa, primary colon tumors and nodal 
metastatic compartments. Although dramatic changes in 
the proteome were noted in the primary tumors compared 
to their matched normal tissues, the differences between the 
tumors and the metastases were much subtler[11]. Dynamic 
epigenetic modifications may be able to account for the 
mechanisms of CRC metastasis that cannot be explained 
simply by proteomic changes. At present, studies related 
to epigenetic modifications in the context of metastasis 
mainly focus on the following aspects: (a) epigenetic modi-
fication of EMT-inducing transcription factors (EMT-TFs), 
such as Snail and Slug, and their downstream effectors; (b) 
epigenetic modification of components of key CSC path-
ways that can also regulate the EMT process, such as the 
Wnt/β-catenin, Hedgehog, and Notch signaling pathways. 
(c) epigenetic modification of key effectors or metabolic 
enzymes in metabolic pathways and epigenetic modification 
of molecules that are crucial to recruit immunosuppressive 
cells. A large number of studies have shown that epigen-
etic enzymes are often dysregulated or mutated in cancer, 
and the subsequent changes in epigenetic modifications 
can further change gene transcription and protein stability 
to promote metastasis[12, 13]. In this review, we summa-
rized several major epigenetic enzymes and their modifica-
tions and discussed their molecular mechanisms and clinical 
applications in the process of CRC metastasis.

Posttranslational modification in CRC 
metastasis

Posttranslational modifications include histone modifica-
tions and nonhistone modifications, which play a pivotal 
role in the development and progression of CRC. According 
to the different functional groups added, posttranslational 
modifications can be classified as acetylation, methylation, 
phosphorylation, ubiquitination, sumoylation, succinyl-
ation, ADP ribosylation, lactylation, isonicotinylation and 
so forth. In the next part of this review, more attention will 
be given to enzymes that mediate methylation and acetyla-
tion and their roles in CRC metastasis (Table 1). Lysine and 
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of PCAF promoted cell differentiation and inhibited cell 
migration and tumor growth in vivo[38].

The histone deacetylase (HDAC) family

HDACs are a family of proteases that can be divided into four 
classes. HDACs deacetylate histones and lead to chromatin 
condensation, which might cause decreased or increased 
gene transcription. Several researchers have reported the 
clinical significance of HDAC family in CRC. They found 
that the positive rates of HDAC1, HDAC2, and HDAC3 
expression were 36.4%, 57.9%, and 72.9%, respectively, in 
CRC tissues, and elevated HDAC levels significantly cor-
related with reduced patient survival[39, 40]. Furthermore, 
they also reported that the expression of all three HDAC 
isoforms was higher in the tumors with distant metas-
tasis (HDAC1, P = 0.037; HDAC2, P = 0.045; HDAC3, 
P = 0.062), suggesting that they can play a prometastatic 
role in CRC[39]. An in vivo tumor xenograft assay showed 
that the HDAC inhibitor JNJ-26,481,585 strongly induced 
pan-H3 acetylation in tumor tissues and fully inhibited the 
growth of C170HM2 colorectal liver metastases[41]. These 
results indicated the prognostic impact of these HDACs and 
the treatment value of HDAC inhibitors. HDACs modulate 
CRC metastasis through various mechanisms. MMP3 and 
Claudin-1, proteins mainly associated with the invasion 
potential of cancer cells, can be epigenetically or nonepige-
netically regulated by HDACs[42, 43]. It has been reported 
that HDACs can also reprogram the tumor immune micro-
environment to modulate the metastatic process (Fig. 1). 
HDAC3 inhibitor treatment increases the Ac-H3 level at 
B7x promoter and promotes the interaction of C/EBP-α 
with the B7x promoter to upregulate the expression of B7x, 
an immune checkpoint molecule crucial to the immune 
escape of tumors, which contributes to HDAC inhibitor 
resistance in CRC[44]. Combined treatment with an HDAC 
inhibitor and B7x neutralizing antibody increased the infil-
tration of CD8 + and CD4 + T cells in CRC tissue from 
metastatic tumor xenografts and reduced the lung metasta-
sis of the CRC model[44]. Nair and coworkers compared 
the RNA-sequencing data between CRC tissue-derived and 
normal tissue-derived immature myeloid-derived suppres-
sor cells (I-MDSCs), a class of immune suppressive cells 
crucial to tumor metastasis, and found that 148 of the upreg-
ulated genes in tumor-infiltrating I-MDSCs were involved 
in HDAC activation and that HDAC inhibitors significantly 
reduced MDSC function and the expression of recruitment-
associated genes ARG1, CCR2, and ITGAL[45]. All these 
results suggested that HDAC-mediated deacetylation might 
be involved in the mechanism of CRC metastasis and indi-
cated the possibility of HDACs as targets of immune envi-
ronment regulators in CRC.

an essential role in the mechanism of CRC metastasis, the 
relationship between CBP/p300 and some clinical features, 
such as tumor-node-metastasis (TNM) stage, survival rate 
and metastasis rate, is inconsistent[23–25]. These results 
indicate that CBP/p300 prefers to act as a downstream effec-
tor to assist the function of some important proteins rather 
than as a metastasis-initiating protein.

P300/CBP associated factor (PCAF)

PCAF, an acetyltransferase of the GNAT family, was first 
described by its competition with adenoviral oncoprotein 
E1A for binding to CBP/p300[26]. PCAF controls gene 
transcription by promoting the acetylation of H3K9[27], 
H3K14[28], and H4[29]; moreover, PCAF accelerates the 
acetylation of some nonhistone proteins, such as EZH2[30], 
PGK1[31], p53[32], and PTEN[33], to take part in the 
process of tumor progression. Previously, several studies 
reported that CXCL12 was involved in the metastasis of 
CRC[34, 35]. Romain and coworkers identified that both 
PCAF and CXCL12 were downregulated in colorectal 
tumor samples and found that a PCAF expression plasmid 
could significantly increase the CXCL12 gene expression 
level, which drove them to speculate that acetylation of 
the CXCL12 promoter may explain this phenomenon[36]. 
β-Catenin also plays a key role in CRC metastasis[37]. PCAF 
increases the transcriptional activity and nuclear accumula-
tion of β-catenin, and this process greatly depends on the 
HAT2 domain of PCAF[38]. A pull-down assay revealed 
that PCAF not only coimmunoprecipitated with β-catenin 
but also promoted the acetylation of the K19 and K49 sites 
of β-catenin[38]. Encouraged by this result, researchers 
manipulated PCAF expression in CRC cells. The results 
were consistent with what they expected: knockdown 

Fig. 1 HDAC inhibition represses tumor metastasis by reprogramming 
the tumor immune microenvironment
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response, and inhibiting JAK2/STAT3 and PTEN/AKT sig-
naling[54–57], but their roles in CRC metastasis were not 
discussed in these articles.

SIRT2 and SIRT4 seem to play metastasis-inhibiting 
roles in CRC. Recently, IDH1 has received great attention 
because of its effect on cancer metabolism[58]. Research-
ers found that IDH1 k224 acetylation tightly controls enzy-
matic activity through the HIF1a-SRC axis and promotes 
the liver metastasis of CRC and that SIRT2 can be a poten-
tial strategy for preventing CRC liver metastasis because of 
its role in inhibiting the acetylation and enzymatic activity 
of IDH[59]. Through the immunohistochemical analysis of 
SIRT2 protein expression in colorectal tissue specimens, 
they also confirmed that SIRT2 expression was significantly 
decreased in CRC tissues or liver metastases compared with 
corresponding colorectal normal tissues[59]. Similarly, 
SIRT4 expression was found to be negatively associated 
with lymph node metastasis, lymphatic invasion, and dis-
tant metastasis[60]. Consistent with its associated clinico-
pathological features, SIRT4 overexpression decreased the 
invasion and migration ability of CRC cells by suppressing 
miR-200c to further affect E-cadherin expression[60]. From 
these articles, we can easily conclude that the roles of the 
SIRT family in CRC metastasis are diverse. In addition to 
using different kinds of CRC models, integrated analysis 
of multiple SIRT members and assessment of the role of 
the same SIRT member in different stages of CRC devel-
opment, such as pre- and post-metastasis, also need to be 
performed.

Methylation and demethylation

Enhancer of zeste homolog 2 (EZH2)

The EZH2 gene encodes histone lysine N-methyltransferase, 
a catalytic member of the PRC2 complex, which methyl-
ates H3K9 and H3K27 at the posttranslational level, lead-
ing to the transcriptional repression of target genes. EED 
and SUZ12, two other subunits of PRC2, are indispensable 
for the enzymatic activity of EZH2[61]. Additionally, it was 
reported that EZH2 can also methylate H3K4 in a PRC2-
independent manner to play a gene activation role[62].

Many studies have demonstrated that the mRNA and 
protein expression of EZH2 is significantly increased in 
CRC tissues compared with adjacent noncancerous tis-
sues, and that EZH2 overexpression is closely associated 
with reduced OS and disease-free survival (DFS)[63, 64]. 
In addition, the high level of EZH2 expression has been 
strongly linked to both regional lymph node (p < 0.001) 
and distant metastasis (p = 0.004) [63, 64]. Moreover, one 
allelic variant (rs3757441 C/C) of EZH2 is significantly 

HDAC3 inhibition enhances B7x expression, and com-
bined treatment with an HDAC inhibitor and a B7x neu-
tralizing antibody increases the infiltration of CD8 + and 
CD4 + T cells. HDAC2 and HDAC3 inhibition can decrease 
the activity and recruitment of I-MDSCs in the tumor micro-
environment, which further suppresses the metastatic ability 
of CRC cells.

The mammalian sirtuin (SIRT) family

The SIRT family contains seven members (SIRT1–7), 
which are evolutionarily conserved NAD+-dependent his-
tone deacetylases or ADP-ribosyltransferases belonging 
to the class III HDAC family. Members of the SIRT fam-
ily localize to different sites of the cell and are involved 
in many cellular processes, such as DNA repair, cell cycle 
regulation and cell metabolism, and the protection of cells 
from oxidative stress[46].

Many assays performed on patient tissues have shown 
that the SIRT family members are differentially expressed 
in CRC cancer tissues compared to adjacent normal tissues. 
For example, SIRT1, SIRT6 and SIRT7 are overexpressed in 
CRC tissues, and their upregulation is significantly associ-
ated with advanced tumor-node-metastasis (TNM) stage, a 
poor prognosis, decreased overall survival and disease-free 
survival in CRC patients[47–50]. Furthermore, the overex-
pression of SIRT1, SIRT6 and SIRT7 is positively corre-
lated with lymph node or liver metastases[47, 48, 50]. Many 
articles have confirmed the prometastatic role of SIRT1. It 
was reported that Fra-1 is a component of AP-1 complex 
that can promote tumor-associtated EMT by directly regu-
lating EMT-TFs, and SIRT1 enhances the EMT process in 
a Fra-1-dependent manner[49, 51]. However, the acetyla-
tion level of Fra-1 was not discussed in this article. Because 
of the crucial role of CSCs in CRC metastasis, Wang et 
al. found that SIRT1 could decrease H3K9ac enrichment 
on the promoter of miR-1185-1 and thus cause chromatin 
remodeling to repress miR-1185-1 expression, which fur-
ther upregulated the CD24 level to promote the stemness 
and migration of CRC cells[52]. Some noncoding RNAs 
have been found to be associated with SIRT1 expression 
and to further contribute to the metastasis process of CRC. 
An in vitro assay proved that SIRT1 was a direct target of 
microRNA-199b and that SIRT1 further affects the acetyla-
tion level of CREB to upregulate the transcriptional activity 
of CREB[53]. In addition, SIRT6 promotes the EMT pro-
cess of CRC cells in two different ways: it acts as a reader of 
snail and also suppresses TET1 transcription by modulating 
H3K9 deacetylation[50]. Controversially, many research-
ers have pointed out that SIRT6 and SIRT7 play a tumor 
inhibitory role via a variety of mechanisms, such as antago-
nizing the c-myc oncogene, regulating the DNA damage 
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well as the migration and invasion abilities of CRC cells, 
and this effect was eliminated when the SUV39H1-C326A 
mutant, which lacks enzymatic activity, was introduced[89]. 
Although the functional genes enriched by H3K9me3 were 
not discussed in this article, these results indicated the 
potential relation of SUV39H1 with the metastasis process 
of CRC. Similar to SUV39H1, it was reported that high 
SUV39H2 expression is strongly associated with distant 
metastasis and TNM stage and predicts shorter OS and PFS 
for CRC patients[81]. SUV39H2 enhances CRC metasta-
sis by directly binding to the SLIT1 promoter and catalyzes 
H3K9me3 to suppress SLIT1 expression[81]. A small mol-
ecule inhibitor of SUV39H1 has been developed, and it can 
suppress human colon tumor xenograft growth in vivo[88], 
which confirmed the therapeutic value of SUV39H1 in 
CRC. Therefore, the metastasis inhibition ability of this 
SUV39H1 inhibitor needs to be further tested.

Protein arginine methyltransferases (PRMTs)

PRMT1 and PRMT5 are the major members of type I and 
type II PRMT families that catalyze asymmetric dimethylar-
ginine (ADMA) and symmetric dimethylarginine (SDMA) 
deposition on proteins. They have been reported to regu-
late multiple cellular processes, including transcriptional 
activation and repression, RNA splicing, protein synthe-
sis, DNA damage response, signal transduction and liq-
uid–liquid phase separation[90]. A type I PRMT inhibitor 
(GSK3368715) has already been shown to inhibit prolifera-
tion in patient-derived DLBCL models and several cell lines 
that represent the majority of tumor types. A synergistic can-
cer cell growth inhibition effect was observed when PRMT5 
was inhibited with GSK3368715, which further indicated 
the therapeutic value of type I and type II PRMTs[91].

In CRC, PRMT1 promotes cell migration and invasion 
through histone arginine methylation and nonhistone argi-
nine methylation. PRMT1-mediated H4R3me2a directly 
recruits SMARCA4 to promote the migration of CRC cells 
by further activating TNS4 and EGFR[92]. For nonhistone 
arginine methylation, PRMT1 induces asymmetric demeth-
ylation of the R251 site of NONO, and compared to NONO 
WT cells, NONO R251K mutant-expressing CRC cells 
show reduced migration and invasion. Pharmacological 
inhibition of PRMT1 significantly reduces the ADMA level 
of NONO and abrogates the malignant phenotype asso-
ciated with NONO R251 ADMA in both KRAS WT and 
KRAS mutant CRC cells[93].

PRMT5 modulates CRC cell migration ability through 
multiple pathways, including NF-kB/p65 signaling and 
EGFR/Akt/GSK3β signaling[94, 95]. However, the modifi-
cation sites mediated by PRMT5 are not discussed in these 
articles. PRMT5 also has a synergistic effect with different 

associated with shorter progression-free survival (PFS) and 
OS in metastatic CRC patients[65]. Such findings indicated 
the prognostic and therapeutic value of EZH2 for advanced 
CRC patients.

Many studies have verified that EZH2 plays a promet-
astatic role in various cancer types, and that the pharma-
cological inhibition of EZH2 can significantly repress the 
migration and invasion of the cancer cells[66, 67]. Simi-
larly, in CRC, EZH2 can act as a downstream regulator of 
some important signaling pathways and noncoding RNAs, 
thus promoting CRC metastasis. TGF-β-MTA1-SOX4 sig-
naling drives the EMT process to promote CRC metastasis. 
In this signaling axis, EZH2 acts as a downstream regulator 
of EMT-associated factors such as E-cadherin, ZO-1, snail, 
and slug[68]. Activation of the Erk/Akt signaling pathway 
induces EZH2 overexpression to repress the transcription 
of ITGα2 and E-cadherin by affecting the enrichment level 
of H3K27me3 on their promoters[69]. In addition, EZH2 
acts as a downstream regulator of lncRNAs/miRNAs to 
promote CRC metastasis[70–75]. For example, lncRNA 
MALAT1and lncRNA SNHG14 can regulate EZH2 to fur-
ther affect H3K27me3 recruitment on the E-cadherin and 
EPHA7 promoters, respectively[71, 74]. MiR-101 inhibits 
the invasion and migration of CRC cells[76]. The downreg-
ulation of miR-101 enhances the stability of EZH2 by regu-
lating O-GlcNAcylation on EZH2, which, in turn, further 
reduces miR-101 expression by recruiting H3K27me3 to 
its promoter[76]. Although many other articles have proven 
that EZH2 is a downstream target of many lncRNAs/miR-
NAs, it has not been discussed whether EZH2 exerts its 
prometastatic function through histone modification[70, 72, 
73, 75]. Therefore, intensive studies of the mechanism are 
urgently needed.

Suppressor of variegation 3–9 homolog 1 and 
suppressor of variegation 3–9 homolog 2 (SUV39H1 
and SUV39H2)

Suv39h1 and Suv39h2 are H3K9 selective histone meth-
yltransferases that were first isolated and characterized in 
mice and identified as modulating chromatin dynamics in 
somatic cells[77, 78]. They epigenetically modulate func-
tional proteins to control telomere length[79], heterochro-
matin organization, chromosome segregation, and mitotic 
progression[78, 80]. In recent years, many studies have 
proven that SUV39H1 and SUV39H2 play an important 
role in various cancer types, such as CRC[81, 82], mela-
noma[83], breast cancer[84], cervical cancer[85] and hema-
tologic malignancies[86, 87].

In CRC, SUV39H1 is significantly upregulated in tumor 
tissues compared to normal colon tissues[88]. Overexpres-
sion of wild-type SUV39H1 increased H3K9me3 levels as 
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Jumonji domain-containing proteins (JMJD)

JMJD proteins are a family of histone demethylases con-
taining the JMJC catalytic domain. Most of these fam-
ily members are identified to mainly demethylate H3K4, 
H3K9, H3K27, H3K36 and H4K20, and a small group of 
JMJD proteins can also demethylate H3R2 and H4R3[98]. 
Several studies have shown that JMJD proteins affect the 
development of many cancer types[98, 109]. In CRC, the 
JMJD-driven mechanisms of metastasis have also been 
described in many articles.

A previous study reported that the levels of KDM4C 
mRNA (encoding JMJD2C protein) were significantly cor-
related with TNM stage, distant metastasis, OS and tumor 
recurrence in CRC[110]. In this study, JMJD2C increased 
the migration rate of CRC cells in vitro and promoted lung 
metastasis in vivo. JMJD2C is mainly located in the nuclei 
of CRC cell lines and decreases the levels of H3K9me3 and 
H3K36me3 on the MALAT1 promoter to enhance the tran-
scriptional level of MALAT1, which promotes tumor growth 
and metastasis in CRC[110]. JMJD2D, another member 
of the JMJD family, is significantly upregulated in human 
colorectal tumor tissues versus control normal tissues and 
correlates with the level of proliferating cell nuclear anti-
gen[111]. JMJD2D promotes CRC metastasis via multiple 
pathways, such as the Wnt/β-catenin signaling pathway, 
hedgehog signaling pathway and glycolysis[111–113]. In 
these pathways, JMJD2D demethylates the methyl groups 
of H3K9me3 at the promoters of β-catenin and its’ target 
genes (Myc, MMP9), Gli2, mTOR, HIF1 β, and PGK1 to 
increase their transcription and exert its prometastatic func-
tion[111–113]. JMJD1A was discovered to be an indepen-
dent prognostic marker of CRC, and its expression levels 
were also significantly associated with lymph node metas-
tasis, lymphatic invasion, venous invasion, and the depth of 
tumor invasion[114]. These signatures prompted research-
ers to explore the mechanism by which JMJD1A promotes 
CRC metastasis. They found that the demethylase activity of 
JMJD1A was required for CRC metastasis that it decreased 
H3K9me2 levels at the promoters of β-catenin, c-myc and 
MMP9 genes to activate Wnt/β-catenin signaling [115].

DNA modification

DNA methyltransferases (DNMTs)

DNA methylation is an epigenetic process in which a methyl 
group transfers onto the C5 position of the cytosine to form 
5-methylcytosine (5mC) under the action of DNMTs. DNA 
methylation mainly occurs on CpG islands. In mamma-
lian genomes, it has been reported that approximately 60 

kinds of modifications to promote CRC metastasis. SIRT7-
mediated K3 and K243 deacetylation of WDR77 reduces 
WDR77 interaction with PRMT5 and further affects the 
transmethylase activity of the WDR77/PRMT5 complex, 
resulting in a reduction in H4R3me2 modification, which is 
related to the migration ability of CRC cells[96]. Although 
PRMT5 has been reported to methylate H3R8, H3R2, and 
H4R3 to facilitate transcriptional activation or regression in 
cancer[97], there are few studies related to the exact site 
methylated by PRMT5 in the process of CRC metastasis. 
Therefore, further studies are urgently needed.

Lysine-specific demethylase 1 (LSD1)

LSD1 was the first-discovered histone demethylase, and 
it mainly demethylates mono- or dimethylated H3K4 and 
K3K9[98]. In addition, it has also been proven to demethyl-
ate some nonhistone functional proteins, such as p53, E2F1, 
and DNMT1[98]. The catalytic activity of LSD1 resides in 
the AO domain and is dependent on its cofactor flavin-ade-
nine dinucleotide (FAD)[99].

Several studies have shown that LSD1 is aberrantly 
expressed in multiple cancer types and has great significance 
in the process of cancer metastasis[100–102]. In CRC, the 
role of the LSD1 is controversial. Some studies reported 
that a higher level of LSD1 predicted a better outcome, and 
a lack of LSD1 significantly correlated with lymph node 
metastasis or advanced tumor stage[103, 104]. However, 
many studies have shown that LSD1 plays a prometastatic 
role in CRC. LSD1 induces demethylation of H3K4me2 at 
the CDH1 promoter, downregulates CDH1 expression, and 
consequently accelerates the EMT process[100]. TSPAN8 
is a metastasis-promoting tetraspanin that coordinates with 
CD151 to promote cancer metastasis by recruiting MMP9 
and MMP13[105]. LSD1 upregulates TSPAN8 expression 
by reducing H3K9me2 enrichment at the TSPAN8 promoter 
and further promotes the EMT process[106]. In addition, 
it has been reported that LSD1 interacts with Slug (EMT-
related transcription factor) and represses the promoter 
activity of E-cadherin to promote invasion and migration 
of CRC cells, but whether this function depends on LSD1-
mediated histone demethylation was not discussed in this 
paper[107]. LSD1 not only increases histone demethyl-
ation but also enhances the demethylation of nonhistone 
proteins to promote CRC metastasis. RIOK1 is an atypical 
serine/threonine kinase. RIOK1 increases the invasion and 
migration of CRC cells and promotes lung metastasis in 
vivo[108]. LSD1 demethylates RIOK1 to reverse SETD7-
mediated RIOK1 methylation-dependent degradation, thus 
increasing its stability[108].
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Upstream 
regulator

Epigenetic 
enzymes

Targets Biological outcomes Refer-
ences

Acetylation LncRNA 
SATB2-AS1

p300 Histone 
H3K27 and 
H3K9

Upregulates the expression of SATB2 [16]

CREPT p300 Histone 
H3K27 and 
H4

Binds to the c-myc promoter to directly control its transcription 
efficacy

[18]

CREPT p300 β-catenin Induces the acetylation of β-catenin and increases its stability [18]
ArhGAP30 p300 K382 of P53 Upregulates p53 activity [20]
TPO p300 K802 of 

LRP6
Triggers the tyrosine phosphorylation of LRP6 to activate Wnt 
signaling

[22]

- CBP K358 of 
DOT1L

Protects DOT1L from degradation [19]

- PCAF CXCL12 Upregulates the expression of CXCL12 [36]
- PCAF K19, K49 of 

β-catenin
Increases the transcriptional activity and nuclear accumulation of 
β-catenin

[38]

Deacetylation - HDAC3 H3 Increases the Ac-H3 level on the B7x promoter and promotes the 
interaction of C/EBP-α with the promoter region of the B7x gene 
to upregulate the expression of B7x

[44]

- HDAC2 
and 
HDAC3

- Correlates with the MDSC function and the expression of recruit-
ment-associated genes ARG1, CCR2, and ITGAL

[45]

- SIRT1 Fra-1 (acety-
lation status 
was not 
discussed)

Regulates the expression of
Fra-1

[49]

- SIRT1 miR-1185-1 Decreases H3K9ac enrichment on the promoter of miR-1185-1 [52]
miR-199b SIRT1 CREB Upregulates transcriptional activity of CREB [53]
- SIRT6 snail, H3K9 Directly interacts with snail and works as a reader; suppresses 

TET1 transcription by modulating H3K9 deacetylation
[50]

- SIRT2 K224 of 
IDH1

Inhibits the enzymatic activity of IDH1 [59]

- SIRT4 miR-200c Affects the expression fo E-cadherin [60]
methylation TGF- β-MTA1-

SOX4 
signaling

EZH2 - Regulates the expression of EMT-associated factors such as 
E-cadherin, ZO-1, snail, slug

[68]

Erk/Akt 
signaling

EZH2 H3K27me3 Mediates the transcription repression of ITGα2 and E-cadherin [69]

LncRNA 
SNHG14/
LncRNA 
MALAT1

EZH2 H3K27me3 Impairs EPHA7/E-cadherin expression through regulating 
H3K27me3 on EPHA7/E-cadherin promoter

[71, 74]

miR-101 EZH2 H3K27me3 Recruits H3K27me3 to miR-101 promoter to further repress the 
expression of miR-101

[76]

- SUV39H1 H3K9me3 Not discussed [89]
- SUV39H2 H3K9me3 Directly binds to the SLIT1 promoter and catalyzes H3K9me3 to 

suppress SLIT1 expression
[81]

- PRMT1 H4R3me2 Recruits SMARCA4 to further activate TNS4 and EGFR 
transcription

[92]

- PRMT1 R251 of 
NONO

Does not affect NONO expression but does affect its oncogenic 
function

[93]

- PRMT5 - Activates EGFR/Akt/GSK3β signaling and NF-kB/p65 signaling [94, 95]
SIRT7 PRMT5 H4R3me2 Not discussed [96]

demethylation - LSD1 H3K4m2 Downregulates CDH1 expression [100]
- LSD1 H3K9me2 Upregulates TSPAN8 expression [106]
- LSD1 Slug Represses E-cadherin promoter activity in a Slug-dependent 

manner
[107]

- LSD1 RIOK1 Reverses SETD7-mediated RIOK1 methylation-dependent degra-
dation, thus increasing its stability

[108]

Table 1 Enzymes related to posttranslational modification and their mechanisms in CRC metastasis
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as colorectal carcinoma-derived cell lines. Double knock-
out of DNMT1 and DNMT3b restored CXCL12 expres-
sion. Finally, the authors confirmed that stable expression 
of CXCL12 in CRC cell lines can significantly reduce 
metastatic tumor formation. These results further indicated 
the importance of DNA methylation in the process of CRC 
metastasis.

Ten-eleven translocation (TET) family

TET family contains TET1, TET2 and TET3 proteins, which 
catalyze the successive oxidation of 5mC to 5-hydroxy-
methylcytosine (5hmC), 5-formylcytosine (5fC), and 5-car-
boxylcytosine (5caC)[124]. TET proteins have been widely 
studied in hematological malignancies. Somatic alteration 
of TET2, TET1/TET2 deficiency (TET1/2 double knock-
out), and TET2/TET3 disruption (TET2/3 double knockout) 
can lead to a wide range of myeloid and lymphoid malig-
nancies, late-onset B-cell lymphoma, and rapid and fully 
penetrant myeloid leukemia[124].

In contrast to the frequent mutation of TET proteins in 
blood cancers, TET proteins are always downregulated 
in many cancer types, such as melanoma[125], glioblas-
toma[126], breast cancer[127] and prostate cancer[128]. 
In CRC, loss of TET3 expression can coexist with TET3 
frameshift mutation, which may be related to the develop-
ment of CRC with high microsatellite instability (MSI-H)
[129]. In addition, TET1 and TET2 are downregulated in 
BRAFV600E-mutated colon cancers. Overexpression of 
BRAFV600E in BRAF wild-type CRC cell lines can sig-
nificantly repress TET1/TET2 expression, which leads to 
the hypermethylation of CIMP genes to promote the devel-
opment of CpG island methylator phenotype colon cancer 
(CIMP-CC)[130]. Ma et al[131] found that the downregu-
lation of TET1 inhibited the migration of CRC cells; they 
further found that TET1 regulates hypoxia-responsive genes 
such as VEGF, Glut1, and EPO by mediating the binding of 
HIF-1α to hypoxia-response element (HREs) of these genes 
by changing their CpG methylation levels (Table 2).

− 70% of CpG islands can be methylated[116]. The function 
of DNA methylation is closely related to maintaining the 
stability of genetic information, transcriptional inhibition 
and activation, X chromosome inactivation, reprogramming 
mammalian development and some diseases, such as neu-
rological disorders and immunodeficiency[117]. Aberrant 
DNA methylation frequently occurs in cancer and is asso-
ciated with tumor suppressor gene silencing and prevents 
their activation.

DNMT1, DNMT3A and DNMT3B are the most fre-
quently studied DNMTs in CRC, and they contribute to 
CRC metastasis through various mechanisms (Table 2). To 
date, several studies have focused on the interaction between 
noncoding RNA and DNA methylation in the development 
of CRC. The human 14q32 locus encodes metastasis-sup-
pressive miRNAs that suppress the adhesion, invasion, and 
migration properties of tumor cells and metastatic coloniza-
tion of distant sites[118]. Oshima and his coworkers found 
that 14q32 locus-encoded miRNAs were overexpressed in a 
DNMT1/DNMT3B−/− DKO cell model and that the hypo-
methylation of MEG3-DMR, which acts as a cis-regulatory 
element for 14q32 miRNA expression, exhibited constitu-
tive expression of 14q32 miRNAs[119]. Pharmacologic 
inhibition of DNA methylation by 5-Aza-dC, an inhibitor 
of DNA methyltransferases, induces 14q32 miRNA expres-
sion and restricts CRC liver metastasis[119]. In addition, 
DNMT1 and DNMT3B can be targeted by some miRNAs, 
such as miR-342, miR-124, and miR-506, thereby reducing 
the global DNA methylation level to restore the expression 
of tumor suppressive genes, such as E-cadherin, MGMT, 
P16, ADAM23, Hint1, RASSF1A, and RECK, thus further 
inhibiting the metastatic potential of CRC[120, 121]. Some 
cytokines, such as interleukins and chemokines, have also 
been reported to be involved in CRC metastasis. It has been 
reported that IL-23 selectively promotes the migration and 
invasion ability of SW620 cells compared with SW480, 
HT29, and HCT116 cells[122]. Socs3, an inhibitor of IL-23/
stat signaling, was found to be differentially methylated in 
these cell lines, and this effect was DNMT1 dependent[122]. 
Wendt el al[123] found that CXCL12 was silenced by DNA 
hypermethylation in primary colorectal carcinomas as well 

Upstream 
regulator

Epigenetic 
enzymes

Targets Biological outcomes Refer-
ences

- JMJD2C H3K9me3
and 
H3K36me3

Increases the transcript level of MALAT1 [110]

- JMJD2D H3K9me3 Promotes the transcription of β-catenin target genes, Gli2, mTOR, 
HIF1 β, and PGK1

[111–
113]

- JMJD1A H3K9me2 Decreases the H3K9me2 level at the promoters of the β-catenin, 
c-myc and MMP9 genes to activate Wnt/β-catenin signaling

[115]

Table 1 (continued) 
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downregulating lncRNA XIST. METTL14 forms a complex 
with WTAP and induces the m6A process to suppress XIST 
expression through YTHDF2-dependent RNA degrada-
tion[141]. METTL14 also inhibits CRC metastasis via the 
miR-375/SP1 pathway[143]. METTL14-dependent m6A 
methylation enhances pre-miR-375 binding to DGCR8, 
thereby promoting the DGCR8-mediated maturation of pre-
miR-375, which further targets SP1 to accelerate cell inva-
sion and migration[143].

METTL3 is likely to be upregulated in CRC. High 
METTL3 expression correlates with lymph node invasion 
and distant metastasis. METTL3 enhances the metastatic 
potential of CRC cells by promoting m6A modification on 
pri-miR-1246 to upregulate the level of mature miR-1246, 
thereby affecting the function of its target gene SPRED2 
and the activity of the MAPK pathway[133, 144]. Zhou 
et al[145] found that METTL3/YTHDF2-mediated m6A 
modification suppressed YPEL5 expression, which fur-
ther regulated the PCNA and CCNB1 levels. LINC00460 
enhances the interactions between DHX9 or IGF2BP2 and 
HMGA1, which leads to the upregulation of HMGA1 and 
promotes CRC growth and metastasis. Interestingly, this 
process depends on METTL3-mediated m6A modification 
of HMGA1 mRNA[146]. Chen and his coworkers identified 
circNSUN2 for the first time and found that it was positively 
associated with lymph node metastasis and liver metasta-
sis in a cohort of clinical samples and that knockdown of 
circNSUN2 in patient-derived xenograft (PDX) CRC mod-
els significantly inhibited liver and lung metastasis[133]. 
YTHDC1, an m6A reader that identifies m6A-methylated 

N6-methyladenosine (m6A) modification

m6A is the most prevalent internal modification in mRNAs 
and noncoding RNAs (ncRNAs) in higher eukaryotes 
and is highly conserved in eukaryotes[132]. Several lines 
of evidence indicate that m6A modification is present on 
lncRNAs, circRNAs[133], and pre-miRNAs[134] and sug-
gest the importance and potential therapeutic value of m6A 
modification. In CRC, it was reported that m6A modification 
accelerates CRC progression by facilitating the glycolytic 
process of cancer cells[135, 136], inhibiting the immune 
response of the tumor microenvironment[137], maintaining 
tumor stem cells and promoting chemoresistance[138–140].

Methyltransferase-like3 (METTL3) and methyltransfer-
ase-like 14 (METTL14) are the most widely studied m6A 
writers in recent years. In CRC, METTL14 is remarkably 
downregulated in cancerous compared to paired normal 
samples. Decreased expression of METTL14 is positively 
correlated with larger tumor size, lymphatic invasion, and 
remote metastasis and implicates worse RFS[133, 141]. 
Furthermore, data from The Cancer Genome Atlas (TCGA) 
showed that METTL14 was positively correlated with OS 
and was an independent risk factor[141]. These results sug-
gest that METTL14 is a reliable prognostic marker of CRC 
patients. METTL14 inhibits CRC metastasis by regulating 
multiple targets (Fig. 2). SOX4 is a downstream target of 
METTL14. METTL14 knockdown enhances SOX4 mRNA 
stability in an m6A-YTHDF2-dependent manner and further 
promotes the EMT process and PI3K/Akt signaling[142]. In 
addition, METTL14 inhibits CRC growth and metastasis by 

Methylase/ 
demethylase

Downstream 
targets

Functions Refer-
ences

DNA methylation DNMT1 ADAM23, Hint1, 
RASSF1A, and 
RECK

Affects the proliferation, G0/
G1 cell cycle arrest and inva-
sion of CRC cells

[121]

Socs3 Affects the migration and 
invasion of SW620 cells 
induced by IL-23

[122]

DNMT1 and 
DNMT3b

MEG3-DMR DNMT1/DNMT3b double 
knockout increases 14q32 
miRNAs expression and 
inhibits CRC liver metastasis

[119]

E-cadherin, 
MGMT and P16

Affects the proliferation, 
migrative and invasive abil-
ity and chemosensitivity of 
CRC cells

[120]

CXCL12 Ablation of both DNMT1 
and DNMT3b restores 
CXCL12 expression and 
further reduces metastatic 
tumor formation in mice

[123]

DNA 
demethylation

TET1 VEGF, Glut1, EPO Mediates the binding of 
HIF-1α to HREs of these 
target genes and increases the 
migration ability of CRC cells

[131]

Table 2 Enzymes related to DNA modifica-
tion and their functions
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paired primary and metastatic CRC samples. Thirteen of the 
MDMs had high accuracy in detecting primary CRC at all 
stages, and the sensitivity of the 13 MDMs increased with 
increasing CRC stage (64% for stage I CRC; 62% and 65% 
for stage II CRC; 79% and 71% for stage III CRC, and 100% 
for stage IV CRC)[148]. Moreover, they observed that the 
trained model of MDMs with or without CEA distinguished 
patients with recurrent CRC from patients with no radio-
graphic evidence of disease (NED) at the immediate previ-
ous follow-up with 80% (44–97%) sensitivity and detected 
metastatic CRC in patients actively undergoing palliative 
treatment with 93% (78–99%) sensitivity. The panel of 
MDMs with or without CEA detected recurrent CRC liver 
metastases with 100% (86–100%) sensitivity, lung metasta-
ses with 89% (52–100%) sensitivity, and peritoneal/nodal 
metastases with 57% (18–90%) sensitivity. Lesions with 
RECIST sum > 4 cm and ≤ 4 cm were detected with 100% 
(81–100%) and 83% (59–96%) sensitivity, respectively. 
The panel of MDMs with or without CEA detected recurrent 
rectal cancer with 92% (62–100%) sensitivity, left-sided 
colon cancer with 95% (75–100%) sensitivity, and right-
sided colon cancer with 75% (35–97%) sensitivity[148]. 
This study indicated that the MDMs model was a highly 
sensitive, reliable, and stable model for detecting early- and 
late-stage CRC and a promising model for detecting CRC 
recurrence and metastasis, which strongly proved the clini-
cal application of MDMs in CRC.

Some clinical trials related to epigenetic modifiers for 
advanced CRC have been tested to observe their efficacy 
(Table 3). In this review, we mainly focus on DNMT inhibi-
tors, HDAC inhibitors and EZH2 inhibitors. Azacitidine, 
decitabine and guadecitabine are inhibitors of DNMT that 
have shown clinical efficacy in the treatment of hemato-
logic malignancies[149, 150]. In CRC, the combined use 
of DNMT inhibitors and other therapies can be more effec-
tive. In a phase I/II study in refractory CIMP-high meta-
static colorectal cancer (mCRC), azacitidine combined with 
capecitabine and oxaliplatin was well tolerated with high 
rates of stable disease (SD), although no objective responses 
were reported[151]. Another phase I study combining gua-
decitabine (SGI-110) with irinotecan in mCRC patients 
previously exposed to irinotecan reported that treatment 
with guadecitabine 45 mg/m2 and irinotecan 125 mg/m2 
with growth factor support (GFS) was safe and tolerable in 
patients with mCRC, and 12/17 evaluable patients had SD 
as the best response, while one had a partial response (PR)
[152]. DNMT inhibitors also showed efficacy when com-
bined with targeted therapy. A phase I/II study of decitabine 
in combination with panitumumab showed good tolerance 
and activity (10% patients had PR and 50% had SD) in 
patients with KRAS wild-type mCRC previously treated 
with cetuximab[153]. Additionally, some researchers have 

circNSUN2, facilitates circNSUN2 export from the nucleus 
to the cytoplasm in an m6A-dependent manner. Conse-
quently, circNSUN2 interacts with IGF2BP2 to stabilize 
HMGA2 mRNA. They also found that METTL3 plays 
an important role in this process, affecting the activity of 
circNSUN2. Once they mutated the m6A modification site 
(GAACU) in the circNUSN2-overexpressing construct, 
the m6A modification level of circNUSN2 was downregu-
lated, and the invasion ability of CRC cells was attenuated. 
Additionally, METTL3 has also been found to mediate the 
m6A modification of lncRNA RP11 to trigger the dissemi-
nation of CRC cells via upregulation of Zeb1[147]. Taken 
together, these results reveal the diversity of m6A modifica-
tion targets and suggest that interfering with the interaction 
between m6A modification and target RNAs is an important 
way to inhibit colon cancer metastasis.

METTL14 and METTL3 participate in CRC metasta-
sis by inducing the m6A modification of multiple targets, 
including mRNAs, pre-miRNAs, miRNAs, lncRNAs, and 
circRNAs.

Potential clinical application and targeted 
therapy for CRC metastasis

Due to the lethality of CRC distant metastasis, some pre-
dictive markers with low-cost, rapid, high-accuracy and 
noninvasive characteristics need to be urgently discovered. 
Alterations in DNA methylation is a hallmark of CRC. A 
recent study from the Mayo clinic compared 14 methylated 
DNA markers (MDMs) in primary and metastatic CRC for 
feasibility in the detection of distantly recurrent/metastatic 
CRC in plasma[148]. They found that the levels of 14 selected 
MDMs (VAV3, CHST2, OPLAH, QKI, PPP2R5C, ARH-
GEF4, PDGFD, ZNF625, SFMBT2, LRRC4, DOCK10, 
IKZF1, NDRG4, BMP3) were remarkably similar between 

Fig. 2 METTL14- and METTL3-mediated m6A modification pro-
motes CRC cell metastasis via various targets and mechanisms
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years, many EZH2 inhibitors have been developed and 
are undergoing clinical trials[161]. Among them, GSK126 
(GSK2816126) and tazemetostat have been clinically tested 
in advanced CRC. GSK126 is a highly selective, S-ade-
nosyl-methionine-competitive inhibitor of EZH2 that can 
decrease global H3K27me3 levels and reactivate silenced 
PRC2 target genes[162]. A phase I study reported that the 
maximum-tolerated dose (MTD) of GSK126 was 2,400 mg, 
and modest anticancer activity was observed at tolerable 
doses in patients with advanced solid tumors (including 
CRC) or B-cell lymphomas[163]. This finding supports the 
potential use of EZH2 inhibitors in advanced CRC patients. 
In January 2020, tazemetostat was approved by the FDA 
for the treatment of adults and adolescents aged ≥ 16 years 
with locally advanced or metastatic epithelioid sarcoma not 
eligible for complete resection[164]. Subsequently, several 
clinical trials conducted in non-Hodgkin lymphoma showed 
clinically meaningful and durable responses[165, 166]. 
However, there are few clinical studies of tazemetostat 
in solid tumors. A phase I study conducted in B-cell non-
Hodgkin lymphoma and advanced solid tumors showed a 
38% durable objective response rate in B-cell non-Hodgkin 
lymphoma but only a 5% durable objective response rate in 
solid tumors with tazemetostat treatment[167]. This result 
indicates the limited efficacy of monotherapy with EZH2 
inhibitors in advanced solid tumors, and more clinical trials 
on the combined use of chemotherapy or other targeted ther-
apies with EZH2 inhibitors should be carried out in mCRC.

tried to modulate the CRC immune microenvironment 
through epigenetic treatment. Unfortunately, the combina-
tion of guadecitabine with the GVAX colon vaccine was 
tolerable but showed no significant immunologic activity in 
mCRC[154].

HDAC inhibitors have shown clinical efficacy and have 
been approved for the treatment of hematologic malignan-
cies[155]. Among various HDAC inhibitors, varinostat (a 
small molecule inhibitor of class I and II HDAC enzymes) 
has been the most studied in advanced solid tumors and 
mCRC. A phase I study evaluated the safety and efficacy 
of varinostat in gastrointestinal (GI) cancer. A total of 16 
patients received either vorinostat 300 mg bid for 3 consec-
utive days followed by 4 rest days per cycle (n = 10) or vori-
nostat 400 mg qd for 21 consecutive days per cycle (n = 6). 
They reported that vorinostat 300 mg bid for 3 consecutive 
days followed by 4 days of rest was better tolerated, and 50% 
of patients achieved SD[156]. This study indicated that vori-
nostat may be an active agent in the treatment of GI cancer. 
However, the efficacy of vorinostat combined with 5-fluoro-
uracil (5-FU)-based chemotherapy seems to be limited[157, 
158]. This may be due to 5-FU resistance and dose-limiting 
toxicity (DLT) in selected patients. Fu and coworkers con-
ducted two phase I studies in solid tumors and found that 
combined treatment with vorinostat and pazopanib yielded 
significantly longer PFS and OS in patients with metastatic 
TP53 mutant solid tumors, especially in those with meta-
static sarcoma or mCRC[159, 160]. This finding supports 
the combined use of vorinostat and antiangiogenic targeted 
therapy in TP53-mutant mCRC.

EZH2 inhibitors have shown great therapeutic potency 
in preclinical models of several cancer types. In recent 

Table 3 Clinical results of epigenetic modifier-targeting treatments in advanced CRC
Tumor type Epigenetic 

modifier
Combined regimen Total evalu-

able patients
Result Phase NCT number

Refractory CIMP high mCRC Azacitidine Capecitabine/oxaliplatin 26 SD: 17 I/II NCT01193517
mCRC Guadecitabine Irinotecan 17 PR: 1, SD: 12 I NCT01896856
KRAS-wild type mCRC Decitabine Panitumumab 20 PR: 2, SD: 10 I/II NCT00879385
mCRC Guadecitabine GVAX 15 SD: 2, PD: 13 - NCT01966289
Gastrointestinal cancer
mCRC

Vorinostat -- 16 SD: 8 I -

mCRC Vorinostat 5-FU/LV 5 SD: 2, PD: 3 I/II NCT00336141
mCRC Vorinostat 5-FU 43 PR: 1, SD: 22 II NCT00942266
Advanced solid tumors Vorinostat Pazopanib 78 PR:4, SD: 11 I NCT01339871
TP53-mutant advanced solid 
tumors

Vorinostat Ixazomib 44 SD: 10, PD: 34 I NCT02042989

Advanced hematologic and solid 
tumors (including CRC)

GSK2816126 - Lymphoma: 
17
Solid tumors: 
19

Lymphoma PR: 
1, SD: 6, PD: 10 
Solid tumors SD: 
8, PD: 11

I NCT02082977

Refractory B-cell non-Hodgkin 
lymphoma and advanced solid 
tumors (including CRC)

Tazemetostat - Lymphoma: 21
Solid tumors: 43

Lymphoma CR: 3, 
PR:5 Solid tumors 
CR:1, PR: 1, SD: 3

I NCT01897571
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