
Forum

282   BioScience • March 2017 / Vol. 67 No. 3	 http://bioscience.oxfordjournals.org

BioScience 67: 282–289. © The Author(s) 2017. Published by Oxford University Press on behalf of the American Institute of Biological Sciences. This is an 
Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For 
commercial re-use, please contact journals.permissions@oup.com  
doi:10.1093/biosci/biw159� Advance Access publication 13 January 2017

Metaresearch for Evaluating 
Reproducibility in Ecology  
and Evolution

FIONA FIDLER, YUNG EN CHEE, BONNIE C. WINTLE, MARK A. BURGMAN, MICHAEL A. MCCARTHY AND  
ASCELIN GORDON

Recent replication projects in other disciplines have uncovered disturbingly low levels of reproducibility, suggesting that those research literatures 
may contain unverifiable claims. The conditions contributing to irreproducibility in other disciplines are also present in ecology. These include a 
large discrepancy between the proportion of “positive” or “significant” results and the average statistical power of empirical research, incomplete 
reporting of sampling stopping rules and results, journal policies that discourage replication studies, and a prevailing publish-or-perish research 
culture that encourages questionable research practices. We argue that these conditions constitute sufficient reason to systematically evaluate the 
reproducibility of the evidence base in ecology and evolution. In some cases, the direct replication of ecological research is difficult because of 
strong temporal and spatial dependencies, so here, we propose metaresearch projects that will provide proxy measures of reproducibility. 
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Evaluating the reproducibility of scientific results
Reproducibility is a broad term used to describe the ability 
to replicate an experiment or study and/or its outcomes 
(see box  1). Most philosophies of science agree that it is a 
core component of scientific theory testing (Schmidt 2009). 
Although concern over the reproducibility of scientific 
results is not itself new, large-scale metaresearch projects 
aimed at directly evaluating the reproducibility of entire 
fields of research are a relatively new and growing phenom-
enon. So far, the results of such projects in other disciplines 
have amplified anxiety over the state of the scientific evi-
dence base.

For example, the Open Science Collaboration (2015) 
recently conducted a large metaresearch project in 
psychology that directly replicated published studies. Only 
39% of replications reproduced the results of the original 
studies, with replication effect sizes averaging only half 
those of the originals. Similar metaresearch evaluations 
of biomedical research have produced a range of equally 
discouraging reproducibility estimates, from approximately 
11% (Begley and Ellis 2012) to 49% (Freedman et al. 2015). 

To date, there have been no equivalent metaresearch 
projects in ecology and evolution. However, as ecological 
analyses are increasingly complex in their statistical 
approaches, there have been several calls for greater 

methodological transparency over at least a decade 
(e.g., Ellison 2006, 2010, Parker and Nakagawa 2014). A 
strong case has been made for the existence of related 
problems in the discipline (Parker et  al. 2016b), and 
in 2016, a disciplinary specific set of transparency and 
openness promotion (TOP) guidelines, known as tools 
for transparency in ecology and evolution (TTEE; https://
osf.io/g65cb), were compiled. Editorials promoting these 
guidelines have now appeared in seven journals in the 
discipline, including Ecology Letters (Parker et  al. 2016a) 
and Conservation Biology (Parker et  al. 2016c). This 
growing interest and awareness suggests that the discipline 
is now ready to meet metaresearch challenges.

In some areas of ecology, the feasibility of direct replication 
projects that have characterized metaresearch in other 
disciplines is severely limited (Schnitzer and Carson 2016). 
Ecological processes often operate and vary over large 
spatial scales and long time horizons, and temporal and 
spatial dependencies can make re-collecting appropriate 
data difficult—and in some cases impossible. However, there 
are compelling arguments that in some subfields, such as 
behavioral ecology, direct or at least close partial replications 
are feasible (Nakagawa and Parker 2015), and their absence 
in the published literature is problematic (Kelly 2006). We 
agree and suggest that it is time for the discipline to assess 
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the reproducibility of its published literature wherever 
possible. The use of “direct replication” (box 1) is not the 
only means of evaluation, and in the remainder of this 
article, we describe other ways to take stock of the problem. 

Why would ecology and evolution have a 
reproducibility problem?
Outright fraud and fake data obviously result in repro-
ducibility problems, and there is some evidence that the 
frequency of such cases is increasing in other disciplines, 
such as biomedicine (Fang et al. 2013). Fang and colleagues 
(2013) estimated that that 43.4% of retracted articles are 
withdrawn because of fraud. However, roughly half a million 
biomedical articles are published annually, and only about 
400 per year are retracted (Oranksy 2015), so this amounts 
to a very small proportion of (approximately 0.1%) of the lit-
erature. In short, fraud is not the main source of irreproduc-
ibility in those disciplines, nor is it likely to be in ecology. So 
what else contributes to irreproducibility, and why suspect 
those factors exist in ecology and evolution? 

Freedman and colleagues’ (2015) analysis of biomedical 
research estimated that around half (51%) of the 
irreproducible findings in the literature are the result 
of poor study design and inadequate data analysis and 
reporting. Other commentators have suggested that the 
contribution of inadequate data reporting to irreproducible 
results may be even higher than this (Ioannidis interviewed 
in Baker 2015). Reproducibility problems are most likely 
to emerge where institutionalized publication bias toward 
“significant” results is combined with a publish-or-perish 
research culture (Ioannidis 2005, Fanelli 2010a, Necker 
2014). These conditions characterize ecology as much as 
they do biomedical and psychological research. Along with 

these other sciences, ecology also suffers from incomplete 
reporting of methods and results, and insufficient 
incentives to share materials, code, and data. Although this 
alone is not evidence of low reproducibility of ecological 
research (or a “reproducibility crisis” as the problem 
has been labeled in other disciplines), we believe it does 
constitute evidence that the discipline is at risk and that a 
systematic evaluation of the evidence base is worthwhile. 
In the following sections, we discuss the existing evidence 
that conditions of (a) publication bias, (b) questionable 
research practices in a publish-or-perish research culture, 
(c) incomplete reporting of methods and results, and (d) 
insufficient incentives for sharing materials, code, and 
data are all present in ecology, and we examine how they 
contribute to irreproducibility.

Publication bias.  Over a decade ago, Jennions and Møller 
(2002) warned of widespread publication bias in ecology. 
Applying trim and fill assessments on 40 meta-analyses, 
they found that 38% of data sets (15 of 40) showed evidence 
of “missing” nonsignificant studies. Although 95% of meta-
analyses showed statistically significant outcomes (38 of 
40), after correcting for publication bias 15%–21% of those 
meta-analyses that originally showed statistically significant 
outcomes were no longer significant. Publications bias has 
been discussed by ecologists since then (e.g., Lortie et  al. 
2007), but more comprehensive and recent measures of the 
extent of the problem are needed. 

In an unbiased literature, the proportion of significant 
studies should roughly match the average statistical power 
of the published research. When the proportion of sig-
nificant studies in the literature exceeds the average power, 
bias is probably in play. Publication bias can result in a 

Box 1. Defining replication and reproducibility.

It is by replicating a study that we determine whether or not its results are reproducible. A range of concepts and definitions relating to 
replication and reproducibility already exist (e.g., Cassey and Blackburn 2006), as do more finely grained typologies (e.g., Nagakawa 
and Parker 2015). Here, we focus on two broad categories, which include direct and conceptual replication, in line with Schmidt (2009).

Direct replication adheres as closely as possible to original study. The Reproducibility Project Psychology is an example; the Open 
Science Collaboartion (2015) repeated the full experimental procedure of 100 published studies, including data collection and analysis, 
using the same (or similar) protocols as the original study. Direct replication projects pose the greatest challenge for ecology, espe-
cially in subfields in which temporal and spatial dependencies are strong. Direct re-analysis projects involve identical (or very close) 
repetition of the analytic procedure, starting from the same raw data as the original. Related to this, direct computational reproducibility 
refers to the ability to reproduce particular analysis outcomes from the same data set using the same code and software. 

Conceptual replication repeats a test of theory or hypothesis made in past research but does so using different methods. Conceptual 
replications aim to test the underlying concepts or hypotheses as the original study but may operationalize concepts differently and 
use different measurements, statistical techniques, interventions, and/or instruments to see whether they lead to the same conclusion. 
Conceptual re-analysis involves analysis of the same raw data set but permits the use of justified alternative approaches, methods, and 
models (see, e.g., Silberzahn and Uhlmann 2015). 

Both direct and conceptual replications help establish the generalizability of facts, but they fulfill different scientific functions. Direct 
replications control for sampling error, artifacts, and fraud, providing crucial information about the reliability and validity of prior 
empirical work. Conceptual replications help corroborate the underlying theory or substantive (as opposed to statistical) hypothesis 
in question and contribute to our understanding of concepts and mechanisms.



Forum

284   BioScience • March 2017 / Vol. 67 No. 3	 http://bioscience.oxfordjournals.org

false positive error rate for the literature well beyond what 
is expected from the disclosed, accepted false positive rate 
(typically 5% in standard statistical tests), and it can result in 
the overestimation of effect sizes (Ioannidis 2005). 

Fanelli (2010b, 2012) estimated that the proportion of 
“positive” results in the published environment or ecology 
literature was 74%. In the related field of plant and animal 
sciences, the estimated proportion was similar (78%). Both 
are well above the expected average statistical power of 
these fields, which the available evidence suggests is at best 
40%–47% for medium effects (see table 1). This suggests an 
excess of statistical significance and therefore a higher-than-
expected false-positive rate in the literature.

“Registered reports” offer an alternative to the traditional 
peer-review process, in which journals commit to a policy 
of undertaking peer review and making manuscript publica-
tion decisions on the basis of the introduction, method, and 
planned analysis sections alone, with actual results submit-
ted later. Under this policy, reviewers and editors cannot be 
swayed by the significance or otherwise of results and must 
make their decisions on the basis of the study’s rationale (i.e., 
how important is it to know the answer to this question?) 
and methods (i.e., is the proposed research design and analy-
sis capable of answering the question?). Over 30 journals 
in different disciplines have now implemented registered 
reports in some form (https://osf.io/8mpji/wiki/home). 

Questionable research practices in a “publish or perish” research 
culture.  Statistically nonsignificant or “failed” studies used to 
be merely relegated to the file drawer (Rosenthal 1979). But 
in a publish-or-perish culture, these same studies are often 
resuscitated back to statistical significance through exercising 
“researcher degrees of freedom” (Simmons et  al. 2011), also 
known as “Questionable Research Practices” (QRPs, see table 
2; John et al. 2012). QRPs refer to activities such as p-hacking, 
cherry-picking, and hypothesizing after results are known 
(HARKing), which are well documented in fields such as psy-
chology and medicine. Using computer simulations of experi-
mental psychology data, Simmons and colleagues (2011) 
demonstrated how four common forms of undisclosed flex-
ibility in choosing among dependent or response variables, 
sampling stopping rules, and reporting subsets of experimen-
tal conditions, can systematically inflate the false positive rate.

In a survey of over 2000 psychologists, 63% of the control 
group admitted that they have failed to report statistically 

nonsignificant dependent or response variables in their 
manuscripts, and 56% said they had checked the statistical 
significance of their results before deciding whether to collect 
more data (John et al. 2012). These percentages rose to 66% 
and 58%, respectively, in a group who were given incentives 
for honest reporting (John et  al. 2012). In a survey of 426 
economists, 38% admitted stopping a statistical analysis when 
they obtained a desired result, 36% admitted searching for 
control variables until they got the desired results, and 32% 
admitted presenting empirical findings selectively to confirm 
an argument (Necker 2014). Much smaller percentages of 
the respondents admitted to excluding data (e.g., outliers) 
without reporting it and using other tricks to increase t-value, 
R2, or other statistics (3% and 7%, respectively). Evidence of 
widespread p-hacking in the medical literature has also been 
recently reported (Head et al. 2015). Fanelli (2012) reported a 
22 percentage-point increase in the proportion of significant 
results between 1990 and 2007, which arguably corresponds to 
an increase in external pressure to publish (for grants and other 
forms of remuneration) over that time, and increased QRPs. 

As the same hurdles and incentives based on publica-
tion and grant-funding track records exist in ecology and 
evolution as in other disciplines, there is every reason to 
expect that QRPs are widespread in this field too. Such 
biases may enter a research program insidiously, without any 
overt intent by the researcher to bias the outcomes. Some 
have even attained a general level of social acceptability 
among scientists, with, for example, many psychological 
researchers in John and colleagues’ (2012) survey openly 
endorsing them. Some QRPs pertain only to research 
based on Frequentist statistical significance testing, but 
counterparts in other paradigms may also exist (see box 2).

 Preregistration databases, which can perhaps be consid-
ered a precursor or alternative to registered reports, offer a 
repository in which researchers publicly commit to research 
questions, hypotheses or expectations, methods, and planned 
analysis prior to data collection and date-stamp this commit-
ment (https://cos.io/prereg). Preregistration protocols can be 
applied broadly to all kinds of studies, not just those reliant 
on hypothesis testing, and have been strongly advocated 
in other disciplines as a strategy for immediately curbing 
QRPs, especially HARKing.

Incomplete reporting of methods and analysis.  In addition 
to joint conditions of publication bias and publish or 

Table 1. Existing estimates of the statistical power of ecology research.
Power estimate for effect sizes (ES)

Source Research field Small ES Medium ES Large ES

Parris and McCarthy (2001) Effects of toe-clipping frogs
(<10 studies)

6%–10% 8%–21% 15%–60%

Jennions and Møller (2003) Behavioural Ecology 
(1362 tests from 697 articles in 10 journals)

13%–16% 40%–47% 65%–72%

Smith et al. (2011) Animal Behaviour
(278 tests in Animal Behaviour)

7%–8% 23%–26% –
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perish, ecological research often lacks sufficient transpar-
ency around methods. Incomplete reporting manifests in 
many forms, and some of the more important omissions 
include failure to disclose the sample sizes for all treatment 
conditions and how those sample sizes were determined, the 
methods used to choose the subjects or allocate the treat-
ments, whether blinding was used, the methods for handling 
missing data or censoring data, the full details of effect 
sizes or parameters and their corresponding measures of 
variation, and whether hypotheses were post hoc or a priori. 
Incomplete reporting poses a serious obstacle to reproduc-
ibility, limits the usefulness of data for meta-analysis, and 
can bias or weaken meta-analysis and systematic review 
processes (Koricheva et al. 2013). 

Unfortunately, existing evidence suggests incomplete 
reporting is very common. 

For example, less than 10% of articles in four leading 
ecology and conservation biology journals (see box 2 for 
more detail) report the statistical power or other sampling 
stopping rule of their research, despite the fact that close to 
90% rely primarily on some form of statistical significance 
testing (Fidler et al. 2006, survey updated in 2010; see also 
Low-Décarie et  al. 2014). Many articles also fail to report 
effect sizes or appropriate error bars (Anderson et al. 2001, 
Fidler et al. 2006). Data provided in supplemental materials 
or online repositories are often incorrectly or insufficiently 
described by the authors, with Gilbert and colleagues (2012) 
finding this to be the case in 35% of the 60 molecular ecol-
ogy data sets they examined, making re-analysis difficult. 
Together, this evidence suggests that current journal guide-
lines, standards of enforcement, and incentives are insuf-
ficient for complete and transparent reporting of methods 
and analysis. The Tools for Transparency in Ecology and 
Evolution (TTEE) mentioned earlier, aim to support good 
practice by providing a checklist journals can provide to 
authors, reviewers and editors to facilitate compliance with 
transparent reporting. Simmons and colleagues (2012) sug-
gested that a simple solution would be to require all methods 
sections to include and satisfy the following declaration: “We 
report how we determined our sample size, all data exclu-
sions (if any), all manipulations, and all measures in the 
study.” However, we also acknowledge that some surveys of 
published research reported here are now several years old, 

and there may have been subsequent changes in practice. 
More recent surveys are therefore needed.

Insufficient incentives to share materials, data and, code.  It is now 
widely acknowledged that lack of access to data, research 
materials (e.g., surveys containing the complete wording of 
questions and response scales), source code, or software is 
a fundamental obstacle to reproducing research and also to 
building on research in the future (Ince et al. 2012, Costello 
et al. 2013). Funding agencies such as the National Science 
Foundation (NSF) now require all submitted research pro-
posals to include data-management plans that describe how 
research results and data will be disseminated and shared 
(www.nsf.gov/bfa/dias/policy/dmp.jsp). New data journals 
are emerging, such as Nature’s Scientific Data (http://nature.
com/sdata), and services such as DataCite (http://datacite.
org), figshare (http://figshare.com), the Dataverse Project 
(http://dataverse.org), and Dryad (http://datadryad.org) are 
making it easier to for researchers to archive, share and cite 
data sets. The growing popularity of code repositories such 
as GitHub (https://github.com) provides a powerful platform 
for researchers to efficiently collaborate, version and provide 
open access to their source code. When combined with digi-
tal repositories such as figshare and Zenodo (https://zenodo.
org), data and code can be archived and assigned a license 
and a persistent digital object identifier (DOI), making it 
citeable, discoverable, and reuseable indefinitely (Mislan 
et al. 2016).

Many scientists who use computational methods 
are self-taught and often unaware of tools and best 
programming practices for writing versioned, reliable, 
efficient and maintainable code (Wilson et  al. 2014) that 
aids reproducibility. This gap is being addressed by guidance 
on best practices in scientific computing, metadata are 
becoming more commonplace (e.g., Michener 2006, 2015, 
Sandve et al. 2013, Osborne et al. 2014, Wilson et al. 2014), 
and initiatives such as Software Carpentry (http://software-
carpentry.org) teach skills in scientific computing via online 
resources and in-person workshops. 

One indication of the future of this rapidly evolving area is 
the Open Science Framework (OSF; http://osf.io), maintained 
by the Center for Open Science (COS), which provides a 
platform to archive, share, preregister, and collaboratively 

Table 2. Questionable Research Practices (QRPs) that can inflate the false positive rate in the literature and result in 
less reproducible research (adapted from John et al. 2012).
p-hacking •	 Checking the statistical significance of results before deciding whether to collect more data

•	 Stopping data collection early because results reached statistical significance
•	 �Deciding whether to exclude data points (e.g., outliers) only after foreshadowing the impact on 

statistical significance and not reporting the impact of the data exclusion
Rounding off a p value to meet a statistical significance threshold (e.g., presenting 0.053 as p < .05)

Cherry-picking •	 �Failing to report dependent or response variables or relationships that did not reach statistical 
significance or other threshold

•	 �Failing to report conditions or treatments that did not reach statistical significance or other 
threshold

HARKing (hypothesizing after the 
results are known)

Presenting a post hoc finding as though it had been hypothesized all along
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undertake research projects, as well as integrating with many 
existing services such as figshare and GitHub. The COS also 
provides a free online consulting service to support scientists 
in the use of tools, workflows and statistical methods to 
increase the reproducibility of their work (see https://cos.io/
stats_consulting). 

A number of journals now recognize the importance of 
preserving data and making them available for future use 
and promote public data archiving (PDA) with explicit poli-
cies such as the Joint Data Archiving Policy (JDAP; http://
datadryad.org/pages/jdap). Journals that adopt this policy 
require as a condition for publication that the data, code, 
and other material used in a study be archived in an appro-
priate public repository, such as Dryad, figshare, GitHub, 
TreeBASE, GenBank, or the Open Science Framework (OSF). 

However, although most journals now offer the option 
to upload supplemental material (which may include raw 
data, details of measurement materials and instruments, and 
source code or software), the uptake by authors is uneven. 
A survey of environmental biology publications produced 
from NSF-funded projects in the United States found that 
public data sharing was highest for genetic data (43% of pub-
lications) but very low (only 8%) for nongenetic ecological 
data (Hampton et al. 2013). This was attributed to different 
norms around PDA in fields that produce genetic data com-
pared with fields that don’t (Hampton et al. 2013). 

In ecology and evolution, many data sets are collected at 
great effort over multiple locations and over a long period of 
time. Such data sets may have a “long shelf life” and may be 
used to test multiple hypotheses (Roche et al. 2014, p. 1). Data 
sharing and PDA provide many substantial benefits to the 
research and broader community (e.g., enabling data reuse, 
which improves the return per research dollar, and enabling 
errors to be detected and corrected) for just the modest cost 
of maintaining public repositories (Roche et al. 2014). 

Although the benefits accrue to the community, the costs 
are seen to be borne by individual researchers: first in the 
loss of exclusive, priority access to data sets (which may be 
perceived as a loss of competitive advantage) and second in 
the significant additional effort required to archive data in a 
way that makes them properly reusable—that is to say com-
plete, accompanied by adequate metadata, and preferably in 
both human- and machine-readable file formats (see, e.g., 
Michener 2006, 2015, Gilbert et al. 2012, Roche et al. 2015, 
Stodden 2015). This asymmetry in real or perceived costs 
and benefits to the community versus individual research-
ers creates understandable tensions regarding data sharing 
and PDA. 

However, there is good evidence that mandating data 
archiving, such as requiring an explicit data-availability 
statement, vastly improves data availability almost 1000-fold 
compared with having no journal policy (Vines et al. 2013). 
Even voluntary “opt-in” incentives such as the Centre for 
Open Science’s Open Data badge have resulted in a large 
increase of data availability in journals that have adopted 
this scheme (Kidwell et al. 2016). 

Metaresearch projects for ecology and evolution
The primary goal of our article is to promote metaresearch 
in ecology and evolution, to systematically evaluate the 
evidence base of our discipline. Here, we propose four cat-
egories of metaresearch projects designed to take indicator 
measures of the likely reproducibility of published ecology 
and evolution research. These will be especially applicable 
in areas where direct or close replication is not feasible and/
or which do not even necessarily rely on experimental data. 

Re-analysis projects.  When full direct replication is not 
possible (box 1), re-analysis often is. The simplest type 
of re-analysis is computational reproducibility, in which 

Box 2. Reproducibility beyond statistical significance testing.

Some of the problems we have discussed here are specific to null hypothesis significance testing (NHST)–based research, but we 
also stress that the reproducibility challenge applies more broadly. For example, some questionable research practices are specific to 
NHST research (e.g., p-hacking), but others are not (e.g., cherry picking and HARKing). Even in the former case, there may be paral-
lel offences in other frameworks. For example, some have argued that Bayesian methods are also sensitive to undisclosed stopping 
rules and show error-rate inflation as a result of checking the data for some particular outcome and stopping once it has been found 
(Sanborn et al 2014, Yu 2014). Others have contested these findings and argue that optional stopping poses no risk within a Bayesian 
framework (Rouder 2014). The matter is far from resolved, and we urge users of Bayesian methods and other alternative modeling 
methods to consider and document reproducibility issues relevant to them.

Outside the domain of hypothesis testing (in either its Bayesian or Frequentist form), there are other types of reproducibility issues 
to consider. Conservation science, for example, can involve elements of decision theory, cost-effectiveness analysis, optimization, and 
scientific computing methods. Computational reproducibility (see box 1; Stodden 2015) of such research is equally crucial for detect-
ing errors, testing software reliability, and verifying its fitness for reuse (Ince et al. 2012).

We have focused on highlighting reproducibility issues related to NHST in this article given its continued widespread use in ecology. 
In an unpublished update on our earlier survey (Fidler et al. 2006) of NHST use in the journals Ecology, Journal of Ecology, Biological 
Conservation, and Conservation Biology, we found little evidence of use waning. In 2005, 84% (n = 167 out of 200 articles) reported 
p values; in 2010, the corresponding figure was 90% (n = 153 out of 170 articles).
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author-supplied data, analysis code and full details of plat-
forms, required software versions, and auxiliary files are 
used to verify that results can be reproduced (Peng 2009, 
2011). Given that scientific practices are increasingly reli-
ant on computational software, tools (e.g., simulations and 
visualization techniques), and code, this basic form of re-
analysis is worthy of attention. As the following examples 
from two different disciplines show, the expected outcomes 
of this seemingly straightforward form of re-analysis cannot 
be taken for granted. 

In economics, Chang and Li (2015) attempted 
a computational re-analysis of 67 papers from 13 well-
regarded journals, using author-supplied data and code 
replication files. Without author assistance, they were able 
to computationally reproduce key results of only 33% of 
the papers (22 of 67), with the success rate rising to 43% 
(29 of 67) when author assistance was sought. Reasons for 
replication failure included missing or incorrect data and 
code, missing software, and proprietary data. 

Gilbert and colleagues (2012) re-analyzed data from 19 
molecular ecology papers (containing 30 analyses) using 
the same freely available and widely used software program 
(STRUCTURE) that had been used in the original studies to 
infer genetic clustering and found that 30% of results could 
not be reproduced. They attribute this to a combination of 
inadequate analysis and reporting and inherently stochastic 
statistical methods. In practice, those two factors are very 
difficult to disentangle. 

Conceptual re-analysis takes the same raw data as the 
starting point, but re-analysis may then employ a different 
statistical framework or different assumptions, methods, 
and models. An example of a conceptual re-analysis proj-
ect comes once again from psychology. Silberzahn and 
Uhlmann (2015) recruited 29 teams of skilled researchers 
to address the same simple research question, “Are soccer 
referees more likely to give red cards to dark-skinned play-
ers?” using the exact same large data set compiled by a sports 
statistics firm across four major soccer leagues. Teams made 
their own decision about how best to analyze the data and 
reported what variables and models they used and why. The 
result was independent and diverse choices about what each 
team considered to be appropriate analysis, such as Bayesian 
cluster analysis, logistic regression, and linear modeling. 
Twenty of the 29 teams found a statistically significant cor-
relation between skin color and red cards, but estimates of 
the effect ranged from a slight negative relationship to a very 
large positive relationship between the tendency for refer-
ees to give more red cards to dark-skinned players. When 
researchers were invited to critique the full results, some 
approaches were considered less defensible than others, but 
there was no consensus on what might constitute a single, 
best or correct approach. This study underlines the sensitiv-
ity of conclusions to subjective, but nevertheless justifiable, 
choices at the analysis stage of a study.

We suggest that many more re-analysis projects are 
needed in ecology, both direct re-analysis projects, which 

help highlight the impact of disclosed and undisclosed 
statistical assumptions and versions or editions of software 
among other things (see Peng 2011, White 2015), and con-
ceptual re-analysis such as Silberzahn and Ulhmann’s (2015) 
crowd-sourced approach, which provided the opportunity 
to assess the extent of variability among analytic approaches 
and choices. 

Computational reproducibility is a fixable problem, with 
a clear solution, and some journals have adopted policies 
to address it. In the journal Biostatistics, verification of the 
computational reproducibility of results by the associate 
editor for reproducibility (AER) is offered as an option for 
authors, and an article is kite-marked with an R if the AER 
is able to execute the code and data provided to produce 
the stated results that are claimed to be reproducible. The 
American Journal of Political Science applies a more stringent 
policy, requiring the submission of replication materials, 
with final acceptance of a manuscript contingent on success-
ful replication of the results. 

Conceptual re-analysis projects could be instigated and 
supported by journals, in which the highest-impact studies 
from the journal are selected for crowd-sourced re-analysis 
challenges. Re-analysis work could be done by interested 
volunteer researchers in exchange for publication of their 
results or as part of student group projects in methodology 
and statistics courses (Grahe et al 2014). This motivates 
researchers and students to conduct re-analysis studies and 
provides a published record of the results.

Quantifying publication bias.  In table 1, we quoted estimates of 
statistical power (e.g., Jennions and Møller 2003, Smith 2011) 
and compared them to general counts of positive results 
from Fanelli (2010b, 2012). A more direct and compelling 
measure of publication bias would show the average statisti-
cal power of a sample of published research (e.g., all articles 
published in specified journals over a 12-month period) and 
the proportion of statistically significant studies in that same 
sample. However, as we also mentioned above, less than 
10% published articles sampled in conservation biology and 
ecology journals report the statistical power of their own 
research (Fidler et  al. 2006, updated survey in 2010). This 
means that power calculations will need to be done “from 
scratch” (based on expected, not obtained, effect sizes and 
relevant details reported in the study, such as degrees of free-
dom). This is a tractable but labor-intensive statistical exer-
cise and will probably have more impact with endorsement 
from the editors of the journals being evaluated. 

Measuring questionable research practices in ecology and 
evolution.  As we discussed earlier, psychologists have 
developed methods to obtain honest survey responses to 
questions about undesirable activities, and these have suc-
cessfully been deployed to measure levels of Questionable 
Research practices in Psychology itself (John et  al. 2012). 
Similar surveys could be easily done in ecology and evolu-
tion. These measures would serve as indicators, because the 
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reproducibility of a discipline’s results will have an inverse 
relationship to the extent of QRPs among its researchers. 

Assessing the completeness and transparency of methodological and 
statistical reporting in journals.  We propose extensive journal 
surveys: systematically recording statistical practices and 
methodology descriptions in published journal articles (sub-
stantially extending and updating Fidler et al. 2006) and also 
documenting the sharing and reusability of materials, codes, 
and data. Incomplete reporting is a barrier not only to direct 
replication and meta-analysis but also to direct re-analysis 
projects (in which no new data are collected but a published 
study’s data are subjected to independent statistical analysis 
following original protocols). Some aspects of statistical 
reporting accuracy can now be checked using automated 
procedures, such as statcheck (Nuijten et  al. 2015). Such 
projects would help highlight the areas of journal’s statistical 
reporting policies that are most in need of attention.

Conclusions
Research expenditure on irreproducible studies in preclinical 
biomedicine was recently estimated to be $28 billion per year 
in the United States alone (Freedman et al. 2015). Although 
the reproducibility rates in ecology are not currently known, 
if they were to approximate the rates in biomedicine or psy-
chology, then we might expect that up to half of the current 
research expenditure in our own field has funded irreproduc-
ible research. The financial cost of these avoidable errors may 
be staggering, let alone the environmental costs. For these 
reasons, we believe the scientific community who undertake 
ecological research should urgently begin engaging in proj-
ects to evaluate the reproducibility of its evidence base.

In summary, we have argued that replication projects, 
such as the Reproducibility Project in Psychology, suit only 
some specific research areas of ecology. However, there are 
other tractable means of critically evaluating the remaining 
scientific base of the field. We have outlined four indicator 
measures of the likely reproducibility of results, and argued 
that such metaresearch projects will help us better under-
stand the quality of current scientific evidence base.
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