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ABSTRACT
Conventional suspension cultures have been used in Acute Myeloid Leukemia 

(AML) research to study its biology as well as to screen any drug molecules, since 
its inception. Co-culture models of AML cells and other stromal cells as well as 3 
dimensional (3D) culture models have gained much attention recently. These culture 
models try to recapitulate the tumour microenvironment and are found to be more 
suitable than suspension cultures. Though animal models are being used, they require 
more time, effort and facilities and hence, it is essential to develop cell culture models 
for high-throughput screening of drugs. Here, we discuss a new co-culture model 
developed by our research group involving acute myeloid leukemia (AML) cells and 
stimulated macrophages. Other studies on co-culture systems and relevance of 
3D culture in leukemic research in understanding the pathology and treatment of 
leukemia are also reviewed.

INTRODUCTION 

Immune therapy has been a focus of research for 
past few decades [1, 2]. There are various strategies to 
modulate the immune response – functional monoclonal 
antibodies as immune checkpoint inhibitors, cell based 
therapies such as chimeric antigen receptor (CAR)-T cell 
therapy, inhibition of immunosuppressive mechanisms 
and vaccines to improve antigen presentation [3–7]. 
These approaches are being used in the treatment of 
hematological malignancies [8, 9]. Conventional 2D 
culture of leukemia cells involve only tumour cells in 
suspension and they are not in communication with 
other stromal cells or immune cells, unlike in a tumour 
microenvironment [10]. They also lack cell-extra cellular 
matrix (ECM) interactions [11]. Xenograft in vivo models 
are considered to be the gold standard in cancer research, 
however, it requires more time, effort and facilities and 
therefore more expensive [12, 13]. Hence, in vitro models 
need to be modified, which include the tumour – immune 
cell interactions.

In a tumour microenvironment, malignant cells are 
in contact with different types of cells like non-malignant 
stromal cells, macrophages and T lymphocytes [14–16]. 
They are continuously engaged in cytokine, chemokine 

and other growth factor signaling cascades, which helps in 
their proliferation, migration and invasion [17, 18]. Hence 
it is difficult to exactly recapitulate the in vivo tumour 
microenvironment in vitro. The difference in signaling 
mechanisms contributing for leukemic cell proliferation 
in both in vitro and in vivo models has been reviewed very 
recently [19]. These differences should be considered to 
develop more reliable in vitro models. 

Co-culture models have been gaining much attention 
in cancer research due to their recapitulation of the tumour 
microenvironment. Co-culture models are broadly of 
2 types: 1) Direct and 2) Indirect [20, 21]. In direct co-
culture, two types of cells, for example; tumour cells and 
stromal cells, are physically in contact with each other 
and communicate through paracrine signaling. However, 
in an indirect co-culture, tumour cells and stromal cells are 
cultured in separate compartments or conditioned medium 
of one cell type is supplied to the other cell type. This 
allows the sharing of biomolecules through a permeable 
membrane, which segregates the two types of cells [20, 
22]. From our perspective, direct co-culture seems to be 
better as it mimics the conditions in an in vivo tumour. In 
a tumour microenvironment, cancer cells are surrounded 
by stromal cells and cancer-stromal cell interactions are 
crucial for tumorigenesis and metastasis. Direct co-culture 
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would be satisfying the above in vivo conditions, hence it 
may be better than indirect co-culture models. Co-culture 
models with tumour cells and stromal cells are considered 
to be better to evaluate therapeutic drugs like monoclonal 
antibodies, small molecule inhibitors and nano-drug 
carriers [23]. Some of the highlights and complications 
of these co-culture approaches are summarized in Table 1.

Co-culture model with AML cells and 
macrophages

Our research group has recently demonstrated the 
use of a co-culture model with Acute Myeloid Leukemia 
(AML) cells and stimulated macrophages in vitro [24]. 
This study demonstrated that AML cells, when in co-
culture with stimulated macrophages, were eliminated 
and their expression of the “don’t eat me signal”, CD47 
[25–28] was down-regulated. 

This study showed that CD47 inhibition was 
successful and selective in AML but not normal cells [24]. 
Expression levels of another protein, Calreticulin (CRT), 
“eat me signal” were up-regulated in the AML cells co-
cultured with stimulated macrophages. Interestingly, 
significant down-regulation of CD47 and up-regulation of 
CRT expression was observed in AML cells, only when 
they are co-cultured with stimulated macrophages and not 
under any other culture conditions. Activated macrophages 
were shown to secrete high levels of cytokines such as 
IL-12p70, IL-6 and TNF-α. This co-culture model can 
be used to screen the efficacy of new drugs in AML 
treatment. It also demonstrates the possibility of using 
human macrophages for the treatment of AML [24]. 
There are only a few reports focusing on restoring immune 
surveillance in AML cells. Some of the studies were either 
focused on inhibition of CD47 or on up-regulation of CRT 
[29–31]. The co-culture model developed by our group, 
demonstrated that stimulated macrophages help both 
phenomenon to occur simultaneously [24].

Various strategies have been used to target 
CD47, as it serves as the “don’t eat me signal”, and 
inhibit phagocytosis by macrophages, thereby reducing 
the immune surveillance. Immunotherapy targeting 
CD47-SIRP-α are under clinical investigation, mainly 
monoclonal antibodies [32–34]. One of the monoclonal 
antibodies, 5F9, has been showing promising results in a 
phase 1b clinical trial and currently, Hu5F9/magrolimab 
combined with azacitidine (placebo as control) is in phase 
III trial [35]. Small molecule inhibitors and tyrosine kinase 
inhibitors were shown to target CD47-SIRP-α signaling in 
leukemia, lymphoma and melanoma cells [36, 37]. Other 
molecules such as Pep20, D4-2, RRx-001, metformin were 
reported to block this signaling axis in colon carcinoma, 
lymphoma, melanoma, non-small cell lung cancer and 
breast cancer [37]. The co-culture model developed with 
AML cells and macrophages is a good platform to test 
these monoclonal antibodies (mAbs) and small molecule 

inhibitors. By adding different concentrations of mAbs or 
small molecule inhibitors to the tumour cells in co-culture 
with macrophages, the expression of CD47 and CRT can 
be evaluated by flow cytometry. We can also evaluate 
if these drugs promotes the elimination of tumour cells 
by apoptosis or viability assays such as Alamar blue 
assays. The synergistic effect of stimulated macrophages 
and the drug molecules can be evaluated using this co-
culture model. The successful co-culture studies could be 
extended to in vivo mouse models.

Drug screening using two dimensional (2D) co-
culture models of leukemia

Co-culture studies with leukemic cells and stromal 
cells or immune cells led to the identification of many 
drug targets [38]. The first study to report the co-culture 
of leukemia cells and bone marrow derived stromal cells 
demonstrated that purified chronic lymphocytic leukemia 
(CLL) cells grown on stromal cells had a prolonged 
survival [38, 39]. It was also demonstrated that CLL –
marrow stromal cell co-culture offer a more reliable and 
relevant model to study the marrow stromal cell – CLL cell 
interactions, when compared to suspension cultures [40]. 
In another report, HS-5 stromal cells were pre-treated with 
anti-cancer drugs like Ara-C, doxorubicin, daunorubicin 
and then, co-cultured with K562 cells. In co-culture, K562 
cells proliferated rapidly and hence, it can be inferred that 
leukemia patients when undergoing chemotherapy have 
deficient stromal cells resulting in a cytokine-deficient 
microenvironment. These aspects should be considered 
during chemotherapeutic failure [41]. 

Another preclinical study demonstrated the potential 
of CD4CAR-expressing T cells in eliminating malignant 
CD4+ cells. It was shown that CD4-specific chimeric 
antigen receptor (CAR)-engineered T cells (CD4CAR T 
cells), when in co-culture with CD4+ T cell leukemic cell 
lines (KARPAS 299 cells, primary leukemia cells from a 
patient), eliminated CD4+ T leukemic cells [42]. Another 
report showed that on co-culture with bone marrow 
stromal cells, MS-5 (pre-treated with chemo drugs like 
ARA, doxorubicin, etoposide or vincristine), AML cells 
showed an increase of mitochondrial content by 14% 
and resulted in a higher survival of leukemic blasts and 
leukemia initiating cells [43].

THP-1 cells were known to supress T cells and 
this suppressive ability of THP-1 cells was reversed by 
blocking LILRB4 signaling by monoclonal antibody, 
h128-3. This has been elucidated by a co-culture model 
of THP-1 cells and T cells. In addition to this, co-culture 
of peripheral blood mononuclear cells (PBMCs) and 
THP-1 cells in presence of h128-3, led to the increased 
secretion of cytokines such as IL2, IL7, CXCL9 and 
CXCL11, which help in the proliferation and activation 
of T cells [44]. LILRB4, is an immunoreceptor tyrosine-
based inhibition motif containing receptor and a marker 
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of monocytic leukemia. It has been shown by co-culture 
studies with AML cells and T cells that blocking or 
deletion of LILRB4 signaling inhibited AML growth. 
LILRB4 helps in tumour cell invasion of AML with the 
help of an immunosuppressive microenvironment and 
therefore, it is a powerful target for AML treatment [45]. 

A protocol was developed by co-culturing T cells 
and drug treated GFP-labeled AML suspension cells. The 
effect of drugs (targeting Fat mass and obesity-associated 
protein (FTO), which is an oncogene) were studied by 
flow cytometry using absolute counting beads. This 
co-culture assay allows us to test the effects of various 
drug combinations and study the innate mechanisms, 
which influence the immune response. Moreover, it 
could also help in understanding the combined effect 
of immunotherapy and chemotherapy [46]. The same 
research group reported that AML cells when pre-treated 
with FTO inhibitors, CS1 or CS2 and co-cultured with 
activated T cells, resulted in the increased killing of AML 
cells along with decreased expression of LILRB4 [47].  
Acute myeloid leukemia initiating cells (LICs) are known 
to be responsible for the initiation and relapse of AML. 
It has been reported that LICs can be maintained around 

3 weeks, by modeling the tumour niche, using stromal 
feeder layers and hypoxic conditions. This model offers 
a reliable, easy, and reproducible niche-based culture 
system suitable to study chemoresistance of LICs and 
to screen new therapeutic drugs specifically against 
LICs [48].

Significance of 3D culture and 3D co-culture 
models

Although 2D co-culture models are being used 
in research, 3D models are much more appropriate and 
are close to the in vivo tumour microenvironment [38]. 
Tumour-stromal cell interactions play a major role in 
tumour development and progression. Stromal cells such 
as endothelial cells and immunocompetent cells contribute 
to tumour angiogenesis and invasion [49]. It is important 
to recapitulate the tumour microenvironment in vitro to 
study the biology of tumour as well as to screen various 
therapeutic drug molecules. This is why researchers have 
developed 3D culture of cancer cells and they are an 
excellent model compared to the conventional monolayer 
culture of tumour cell lines [50–52]. 

Table 1: 2D and 3D co-culture methods for the leukemia research
Method Analysis Type Highlights Complications Examples

2D culture Cells are grown as 
suspension cells

Easy and cheap compared 
to 3D culture methods

Lack cell-cell junctions, 
sensitive to all drugs, gene 
and protein expression levels 
are different to that of in vivo 
tumours

AML [77, 78]

3D culture Cells are grown as 
spherical-like structures on 
different matrices/scaffolds 
and have multiple layers

Close to the in vivo tumour 
microenvironment, and 
cells are resistant to drugs 
and hence physiologically 
relevant

Cell-extra cellular 
matrix interactions can 
be studied

Expensive

Time consuming

Needs optimization

AML [61, 79, 80]

Co-culture

Direct 
co-culture

Two types of cells – 
Tumour and stromal; 

Both tumour and stromal 
cells are physically in 
contact with each other

Can study the effect of 
stromal cells on tumour 
cells and vice-versa 

Unable to do downstream 
assays separately for each 
type of cell

AML and mesenchymal 
stromal cells [81]

Mesenchymal stem and 
AML cells [61]

Indirect 
co-culture

In separate compartments;
Medium from one cell type 
is supplied to the other cell 
type 

Sharing of biomolecules 
through a permeable 
membrane

Better evaluate 
therapeutic drugs than 
a 2D culture

Permeable membrane inserts 
are expensive and these 
models do not exactly mimic 
the conditions in a tumour 
microenvironment

AML cells and 
macrophages [24]

3D co-culture

Leukemia cells are grown 
as 3D structures and grown 
with stromal/immune cells

Mimic more closely 
the histologic conditions 
compared to 2D co-culture 

It can be an intermediate 
platform between 2D and 
xenografts

Expensive and need to 
optimize the matrices/
scaffolds for both tumour and 
stromal cells

AML and bone marrow 
mononuclear cells [79] 

Human bone marrow 
mesenchymal stem and 
AML cells [61]
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Molecular mechanisms of leukemogenesis have 
been elucidated to a certain extent with the help of 2D 
culture and animal models. However, the cellular and 
microenvironmental components, which help in leukemia 
cell proliferation and resistance of leukemic stem cells from 
conventional chemo-radiation therapies, are still difficult 
to be studied [53, 54]. Three major challenges to study 
AML are 1) current 2D culture requires growth factors 
and stromal cells, for the prolonged survival of tumour 
cells 2) 2D culture cannot offer the natural haematopoietic 
microenvironment, which is also responsible for the 
drug resistance of leukemic stem cells and 3) in vivo 
animal models are not exactly like the human tumour 
microenvironment and are expensive and time consuming. 
Hence, development of an ex vivo 3D model could mimic 
the tumour microenvironment to study AML [55–57]. 

Three dimensional cell culture offers several 
advantages over conventional 2D culture [58, 59]. The 
alterations in cell morphology and their adaptive responses, 
expression of genes and metabolism are similar to that of in 
vivo tumour microenvironment [60]. Cells in 3D culture are 
more resistant to drugs and therefore, they are physiologically 
relevant and can better show the drug effects [61, 62]. The 
cells in the inside core of the tumour are in hypoxic conditions 
and this holds true with 3D cell culture as well [63]. In 2D 
culture, proliferation rates, gene and protein expression levels 
are different from that of the original tumour [64] whereas 
they are similar to the in vivo tumours in 3D culture models 
[60, 65]. Hence, 3D models would be ideal to study various 
attributes of tumour such as angiogenesis, metastasis, and 
invasion, and also in identification of specific biomarkers 
and screening of drug targets [52, 66]. A schematic of direct 
3D co-culture model with AML cells and stromal cells is 
illustrated in Figure 1 and highlighted in Table 1.

In order to mimic the histological conditions of 
a tumour tissue, it is necessary to simultaneously grow 
tumour and stromal cells with cell-cell interactions and 
signaling cascades through various growth factors [67]. 
The presence of an extracellular matrix and interstitial 
fluid with essential nutrients and growth supplements are 
required for differentiation and maturation [60, 68, 69]. 
Three dimensional co-culture models with tumour cells 
and other stromal cells fulfill these requirements and hence 
are suitable preclinical tumour models [70, 71]. There are 
reports on 3D co-culture models to be more efficient to 
screen drugs. Schematics of indirect 3D co-culture models 
are illustrated in Figure 2.

Methods for 3D culture

Broadly, the 3D culture can be divided into two 
types – 1) Anchorage independent (scaffold free) and 2) 
Anchorage dependent (scaffold based) [72].

Anchorage independent cultures include methods 
like hanging drop, ultra-low attachment plate and magnetic 
levitation. Cells are seeded as small droplets in specialized 
plates with open, bottom-less wells. Cells in the droplet 
aggregate and form spherical – like structures. They can 
be transferred to scaffold or ECM for further prolonged 
culture [73]. Ultra-low attachment plates are designed such 
that cells do not attach on their surface and they tend to 
form aggregates [74]. Magnetic levitation is the technique 
by which cells are preloaded with magnetic nanoparticles 
and in the presence of an external magnetic field, cells 
are floated toward air/liquid interface, thereby cell-cell 
aggregation occurs to form spherical-like structures [72] .

Anchorage dependent culture mainly includes 
scaffold-based culture systems. It can be of physical 

Figure 1: Schematic of a direct 3 Dimensional (3D) co-culture model of acute myeloid leukemia (AML) cells and 
stromal cells. Small molecule inhibitors or functional monoclonal antibodies targeting tumour specific molecule can be tested for their 
efficacy using this culture model.
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support, ranging from simple mechanical structures to 
ECM-like matrices. Cells can aggregate, proliferate and 
migrate on these matrices. Cells would be embedded in 
the matrix so that they are physically and chemically 
interacting with the scaffold material.  Scaffold can be of 
synthetic (polyethylene glycol (PEG), polylactic acid (PA) 
and polyglycolic acid (PGA) or biological origin (alginate 
and matrigel) [72, 75].

Challenges in 3D culture 

Although 3D culture mimics the in vivo tumour 
conditions, they are quite expensive and time consuming 
than 2D culture. They are more complex structures and 
hence downstream applications on these spheroids would 
need more optimization. Extracting cells from the 3D 
culture is difficult and sometimes it may change their 
morphology and original characteristics.

Sometimes, the matrices used in 3D culture would 
influence the behavior of the cells in 3D culture. It is still 
challenging to find a matrix or scaffold which exactly 
matches to that of the in vivo tumours. Due to these 
reasons, it remains challenging to use this model for pre-
screening drugs in clinical use.

FUTURE PERSPECTIVES 

Tumour-stromal cell interaction can be studied using 
3D co-culture models and these findings can be verified in 
clinical specimens. Three dimensional culture models in 
both solid tumours and hematological malignancies, have 
been a fascinating area of cancer research for more than 
two decades now and helped in improving our knowledge 
about the biology of tumours [70]. 

Some of the current limitations of 2D culture could 
be overcome by 3D culture and hence novel in vitro 
leukemic models need to be developed. The 3D tumour 
microenvironment includes different types of cell-cell 
interactions, cell-extracellular matrix interactions and 
these factors should be taken into consideration while 
developing new models [19]. The main objective is to 
develop a standardized culture model for in vitro studies 
to study the biology of the tumour as well as to test newly 
developed drug molecules [19]. A recent study reported 
the use of 3D ex vivo culture of CLL cells and showed a 
substantial increase in proliferative response compared to 
2D suspension cultures [76]. This suggests that 3D culture 
models are more valuable and have more relevance to 
pathophysiological conditions.

Figure 2: Schematic of two types of indirect 3 Dimensional (3D) co-culture model of acute myeloid leukemia (AML) 
cells and stromal cells. (A) A transmembrane separates the two types of cells and can be collected separately from each compartment 
and the assays can be done for each type of cells. (B) This model can be used for testing different drugs on AML (3D) cells and also the 3D 
cells can be recovered after the culture. There will be no contamination of stromal/immune cells which is helpful for further down-stream 
applications.
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The significance and necessity of co-culture models 
and 3D co-culture models is very obvious and this area 
of research needs to be more investigated. Developing 
ex vivo models, which closely mimic the in vivo tumour 
microenvironment should be the major focus. Three 
dimensional co-culture models with leukemic cells and 
stromal or immune cells would help to understand the 
pathogenesis. These models could be relevant in screening 
various drug targets as well as studying the leukemia 
initiating cells, which are responsible for the emergence 
and chemo-resistance of the tumour. Thus, 3D co-culture 
models could be used as the initial template to screen any 
drug prior to testing them in an in vivo model. 
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