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Abstract. It has been reported that the viability and migration 
of vascular smooth muscle cells contributes to arteriovenous 
fistula stenosis. Hydroxysafflor Yellow A (HSYA) has been 
demonstrated to inhibit the viability and migration of VSMCs 
by regulating Akt signaling. The present study aimed to 
investigate the role of HSYA on the viability and migration 
of human umbilical vein smooth muscle cells (HUVSMCs) 
following stimulation using serum from rats with chronic 
renal failure (CRF), and to determine the effects of HSYA on 
PI3K/Akt signaling. Wistar rats were randomly divided into 
two groups, control and CRF groups. Serum from each group 
was collected to stimulate the HUVSMCs. Cell Counting 
Kit‑8 and wound healing assays were performed to assess cell 
viability and migration, respectively. Flow cytometry analysis 
was performed to assess apoptosis, and western blot analysis 
was performed to detect protein expression levels of PI3K and 
Akt. Nitric oxide (NO) production was measured using the 
Nitrate/Nitrite assay kit. The results demonstrated that serum 
from CRF rats significantly enhanced cell viability, migration 
and apoptosis, the effects of which were reversed following 
treatment with HSYA. In addition, CRF serum decreased NO 
and endothelial NO synthase expression, whilst increasing the 
protein expression levels of PI3K and phosphorylated‑Akt in 
HUVSMCs. Notably, treatment with HSYA markedly restored 
NO production and inactivated the PI3K/Akt signaling 
pathway. Furthermore, the PI3K/Akt inhibitor, AMG511, 
exerted similar effects to HSYA. Taken together, the results of 
the present study suggest that HSYA suppresses cell viability 

and migration in the presence of CRF serum by inactivating 
the PI3K/Akt signaling pathway.

Introduction

Hemodialysis is the primary renal replacement therapy for 
patients with end‑stage renal disease (ESRD), and is designed 
to perform some of the functions lost as a result of chronic renal 
failure (CRF), such as clearing metabolic wastes and regulating 
the balance of water, electrolytes and the acid‑base balance, 
which increases the survival of patients and improves the quality 
of life (1). Arteriovenous fistula (AVF) is the preferred mode of 
access for hemodialysis. The artery near the wrist of the forearm 
and the adjacent vein are sutured to allow arterial blood flow in 
the vein following anastomosis, which forms the AVF (2), the 
‘lifeline’ for patients with hemodialysis. However, the patency 
rate of AVF after 1 year is 70%, and 48% after 4 years (3). The 
failure of AVF can be attributed to venous stenosis, intimal 
hyperplasia, technical problems and inflow issues (4‑6).

The primary cause of AVF stenosis is venous stenosis 
caused by intimal hyperplasia at the anastomosis site of 
AVF (7). Previous studies have reported that intimal hyper‑
plasia is predominantly caused by the viability and migration 
of vascular smooth muscle cells (VSMCs) (8,9). Extensive 
neointimal hyperplasia composed of VSMCs has been 
observed at the anastomosis site of AVF (10). Thus, inhibiting 
the viability and migration of VSMCs may be an effective 
intervention of AVF stenosis. It has been confirmed that 
activation of the PI3K/Akt signaling pathway promotes aber‑
rant viability and migration of VSMCs (11,12). Park et al (13) 
demonstrated that inhibiting the PI3K/Akt signaling pathway 
disrupts the viability of rat aortic VSMCs. Conversely, 
activation of the PI3K/Akt signaling pathway induces the 
viability and migration of VSMCs (14). Therefore, therapies 
targeting the PI3K/Akt signaling pathway may be promising 
in inhibiting AVF stenosis.

Hydroxysafflor Yellow A (HSYA) is a water‑soluble 
chalcone glycoside extracted from Carthami Flos, the flower 
of safflower (Carthamus tinctorius L.), which is the primary 
active ingredient in the pharmacological action of Carthami 
Flos (15). HSYA exerts several pharmacological effects, such 
as cardiovascular effects (16), neuroprotective effects (17), 
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antitumor effects (18) and endothelium cell protection (19). 
Jiang et al (20) reported that HSYA suppresses the viability, 
migration and invasion of lipopolysaccharide‑induced 
non‑small cell lung cancer cells by suppressing the 
PI3K/AKT/mTOR signaling pathway. Previous studies have 
demonstrated that HSYA inhibits the viability and migration 
of VSMCs by regulating Akt signaling  (21,22). However, 
whether HSYA can modulate AVF stenosis in patients with 
CRF via inhibiting VSMC viability and migration remains 
largely unknown.

In the present study, VSMCs were induced using serum 
from CRF rats, and the aim was to assess the effects of HSYA 
on the viability and migration of VSMCs, as well as uncover 
the potential mechanisms.

Materials and methods

Animal model of CRF. Animal experiments were performed as 
previously described (23). A total of 40 male Wistar rats (age, 
6‑7 weeks; weight, 160‑180 g) were obtained from Nanjing 
Jiancheng Bioengineering Institute, and maintained in a 12 h 
light/dark cycle, with 50‑60% humidity at 22‑26˚C. All rats 
were provided ad libitum access to a standard diet and water. 
Rats were randomly divided into two groups; a control (n=20) 
and CRF (n=20) groups after 1 week of adaptive feeding. 
Adenine (2.5 g; Sigma‑Aldrich; Merck KGaA) was added to 
100 ml normal saline to prepare a 2.5% adenine suspension. 
Rats in the CRF group received 250 mg/kg adenine once a 
day via oral gavage for a total of 14 days, and adenine was 
administrated every other day for the next 14 days. Rats in the 
control group received the same amount of normal saline. All 
rats were fasted for 12 h prior to the last administration. Rats 
were anesthetized with 2% sodium pentobarbital (50 mg/kg) 
1 h after the final administration, and cervical dislocation of 
the spine was immediately performed following collection of 
4‑6 ml blood from the abdominal aorta. All animal experi‑
ments were approved by the Experimental Animal Center 
of Lianyungang Hospital of Traditional Chinese Medicine 
(Lianyungang, China; approval. no. IACUC‑20200312‑07).

Serum parameters. All experiments were performed as previ‑
ously described  (23‑26). Blood samples were centrifuged 
at 1,000 x g for 10 min to collect serum. The concentrations 
of serum creatinine (SCr) and blood urea nitrogen (BUN) 
were measured using commercial kits (cat. nos. C011‑2‑1 and 
C013‑2‑1, respectively; Nanjing Jiancheng Bioengineering 
Institute), and measured using a biochemical autoanalyzer 
(ROCHE Modular P800; Roche Diagnostics GmbH).

Cell culture and treatment. Human umbilical vein smooth 
muscle cells (HUVSMCs; cat. no. CP‑H084) were purchased 
from Procell Life Science & Technology Co., Ltd., with the 
approval of Ethics Committee of Lianyungang Hospital 
of Traditional Chinese Medicine (Lianyungang, China. 
Approval  no.  IACUC‑20200611‑03), and maintained in 
DMEM supplemented with 10% FBS (both purchased from 
Gibco; Thermo Fisher Scientific, Inc.), at 37˚C with 5% CO2.

The rat whole blood was collected from the control 
(control serum) and CRF (CRF serum) groups into coagula‑
tion tubes and allowed to clot on ice for 50 min. Subsequently, 

centrifugation at 1,000 x g for 15 min was used for separating 
serum. Rat serum was maintained in DMEM at 37˚C for 
48 h at dilutions of 2.5:100, 5:100 or 10:100. HUVSMCs were 
pretreated with 1, 5 or 25 µM HSYA (27‑30) (purity >98%; 
Beijing Solarbio Science & Technology Co., Ltd.) prior to 
stimulation of rat serum. AMG 511 (5 nM; MedChemExpress) 
was used to inhibit PI3K.

Cell viability assay. A Cell Counting Kit‑8 (CCK‑8) assay was 
performed to assess the effect of rat serum and/or HSYA on 
cell viability. HUVSMCs were seeded in 96‑well plates at a 
density of 5x103 cells/well and treated with rat serum and/or 
HSYA at 37˚C for 48 h. Cells were subsequently incubated 
with 10 µl CCK‑8 reagent (cat. no. C0037; Beyotime Institute 
of Biotechnology) for 1 h at 37˚C. Cell viability was analyzed at 
a wavelength of 450 nm, using a microplate spectrophotometer 
(BioTek Instruments, Inc.).

Wound healing assay. HUVSMCs were seeded into 6‑well 
plates at a density of 1x106 cells/well. Sterile 200 µl pipette 
tips were used to scratch the cell monolayers. Cell medium 
was replaced with fresh serum‑free DMEM. The migratory 
ability of cells characterized by wound width was observed at 
0 and 48 h under a light microscope (Olympus Corporation; 
magnification, x100).

Apoptosis analysis. HUVSMCs (5x105) were collected by 
centrifugation at 37˚C and 300 x g for 3 min and re‑suspended 
in 200  µl Annexin  V binding buffer (cat.  no.  C1062M; 
Beyotime Institute of Biotechnology). After resuspension, 
cells were incubated with 10 µl PI (cat. no. C1062M; Beyotime 
Institute of Biotechnology) for 15 min at room temperature in 
the dark. Apoptotic cells were subsequently analyzed using a 
flow cytometer (Beckman Coulter, Inc.).

Measurement of nitric oxide (NO). HUVSMCs were seeded 
in 12‑well plates at a density of 2x105 cells/well and treated 
with rat serum and/or HSYA. HUVSMCs were subsequently 
lysed using Lysis Buffer (cat. no. S3090; Beyotime Institute of 
Biotechnology). The Nitrate/Nitrite assay kit (cat. no. S0023; 
Beyotime Institute of Biotechnology) was used to determine 
NO concentration in HUVSMCs, according to the manu‑
facturer's protocol. NO concentration was measured at a 
wavelength of 540 nm, using a microplate spectrophotometer 
(BioTek Instruments, Inc.).

Western blotting. Total protein was extracted from HUVSMCs 
using RIPA lysis buffer (cat. no. P0013B; Beyotime Institute of 
Biotechnology). Cell supernatants were collected by centrifu‑
gation at 12,000 x g for 15 min at 4˚C. Total protein was 
quantified using the BCA protein assay kit (cat. no. P0012s; 
Beyotime Institute of Biotechnology) and 20 µg protein/lane 
was separated by 12% SDS‑PAGE. The separated proteins 
were subsequently transferred to PVDF membranes (EMD 
Millipore) and blocked with 5% skimmed milk for 2 h at room 
temperature. The membranes were incubated with primary 
antibodies against PI3K (1:1,000), Akt (1:1,000), phosphory‑
lated (p)‑Akt (cat. no. Ser473, 1:1,000), endothelial NO synthase 
(eNOS; 1:1,000), p‑eNOS (1:1,000) and GAPDH (1:10,000) 
overnight at 4˚C (all purchased from Affinity Biosciences). 
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Following the primary incubation, membranes were incubated 
with goat anti‑rabbit/mouse IgG (H+L) HRP‑conjugated 
secondary antibodies (1:10,000; Affinity Biosciences) for 2 h 
at room temperature. Protein bands were semi‑quantified using 
Image Lab  version 4.1 software (Bio‑Rad Laboratories, Inc.).

Statistical analysis. All experiments were performed in tripli‑
cate and data are presented as the mean ± standard deviation. A 
Student's t‑test was used to compare differences between two 
groups, and a one‑way ANOVA followed by a Tukey's post hoc 
test was used to compare differences between multiple groups 
in GraphPad Prism version 5.0 (GraphPad Software, Inc.). 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Serum from CRF rats promotes the viability and migration 
of HUVSMCs. Rat serum from the control and CRF groups 
was collected to assess changes in the parameters of renal 
function. As presented in Fig. 1A, the BUN concentration 
was significantly higher in the CRF group compared with the 
control group. Similarly, SCr concentration was higher in the 
CRF group compared with the control group (Fig. 1B). These 
results suggest that the renal failure model was established 
successfully (24‑26).

HUVSMCs were treated with rat serum to assess the 
effect of CRF serum on HUVSMCs. The results demonstrated 
that 10% CRF serum significantly promoted cell viability 
compared with 10% control serum, whereas low concentrations 
of CRF serum (2.5 and 5.0%) slightly enhanced cell viability 
(Fig. 1C). In addition, the migratory ability of HUVSMCs 
was inhibited following stimulation of CRF serum compared 
with the same concentration of control serum. Furthermore, 

the results of the wound healing assay demonstrated that CRF 
serum promoted cell migration in a concentration‑dependent 
manner, whereas control serum had little effect on cell migra‑
tion (Fig. 1D and E). Collectively, these results suggest that 
serum from CRF rats promotes the viability and migration of 
HUVSMCs.

Serum from CRF rats promotes the apoptosis of HUVSMCs. 
The results demonstrated that the apoptotic rate increased 
following treatment of HUVSMCs with rat serum. Notably, 
10% CRF serum markedly promoted cell apoptosis compared 
with 10% control serum (Fig. 2A). This may be explained by 
the presence of toxic substances in the serum of rats with CRF, 
which affects cell survival and promotes apoptosis.

HSYA inhibits cell viability, migration and apoptosis of 
HUVSMCs. HUVSMCs were treated with HSYA or AMG 511 
in the presence of 10% CRF serum. As presented in Fig. 3A, 
HSYA inhibited cell viability induced by 10% CRF serum 
in a concentration‑dependent manner. Similarly, AMG 511 
suppressed the viability of HUVSMCs. Notably, pretreatment 
with HSYA or AMG 511 alleviated 10% CRF serum‑induced 
cell migration (Fig. 3B), suggesting that HSYA reverses the 
effect of CRF serum on cell migration. In addition, HSYA 
partially alleviated 10% CRF serum‑induced apoptosis, the 
effects of which were reversed following pretreatment with 
AMG 511 (Fig. 3C). Taken together, these results suggest that 
HSYA counteracts the effects of CRF serum on the viability, 
migration and apoptosis of HUVSMCs.

HSYA inactivates the PI3K/Akt signaling pathway and 
promotes NO production. NO inhibits neointimal hyper‑
plasia  (31); thus, the NO concentration in HUVSMCs was 
detected. The NO concentration was notably decreased in 

Figure 1. Serum from CRF rats promotes viability and migration of HUVSMCs. (A and B) Concentrations of BUN and SCr in the rat serum of the control or 
CRF group. (C) HUVSMCs were stimulated with different concentrations of serum from the control or CRF group. The viability of HUVSMCs was evaluated 
via examining the absorbance at 450 nm. (D and E) Migratory capability of HUVSMCs was determined using a wound healing assay and the relative migra‑
tory rate was quantified. *P<0.05, **P<0.01 and ***P<0.001. SCr, serum creatinine; BUN, blood urea nitrogen; CRF, chronic renal failure; HUVSMCs, human 
umbilical vein smooth muscle cells; OD, optical density.
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the presence of 10% CRF serum compared with the control 
group; however, treatment with HSYA elevated NO levels in 
a concentration‑dependent manner. Similarly, treatment with 
AMG 511 promoted NO production (Fig. 4A).

Given that HSYA exhibited similar inhibitory effects 
to AMG 511 on the viability and migration of HUVSMCs, 
it was next investigated whether HSYA can exert these 
effects by inhibiting the PI3K/Akt pathway. As presented in 
Fig. 4B, 10% CRF serum upregulated PI3K expression and 
phosphorylation of Akt, suggesting that serum from CRF 
rats can activate PI3K/Akt signaling in HUVSMCs. Notably, 
the expression levels of PI3K and p‑Akt decreased following 
treatment with AMG 511. In addition, treatment with HSYA 
markedly decreased the protein expression levels of PI3K and 
p‑Akt. Treatment with both HSYA and AMG 511 upregulated 
p‑eNOS expression, respectively, which explains the increase 
in NO production (Fig. 4A).

Discussion

AVF stenosis caused by neointimal hyperplasia is frequently 
observed in patients (32), and can lead to the morbidity of 
patients with ESRD (33,34). However, the molecular mecha‑
nism underlying neointima formation in AVF remains unclear. 
It is well‑known that injury induced pathological viability and 
migration of VSMCs is a major cause of neointima forma‑
tion (35,36). In the present study, CRF rats were established and 
the serum from rats were prepared to stimulate HUVSMCs to 
determine whether HSYA could inhibit neointimal hyperplasia 
in vitro.

High concentrations of CRF serum significantly promoted 
the viability and migration of HUVSMCs, which is consistent 
with the pathological condition of AVF stenosis in patients 
with ESRD (37,38). However, high concentrations of CRF 

serum also increase cell apoptosis, which may be due to 
toxicants in the serum that disrupt cell survival. Activation 
of the PI3K/Akt signaling pathway is closely associated 
with aberrant viability and migration of VSMCs (11,12,39). 
In addition, activation of the PI3K/Akt signaling pathway 
has been observed in mice with renal dysfunction caused by 
ischemia/reperfusion‑injury  (40,41). Previous studies have 
reported that the PI3K/Akt signaling pathway is activated in 
kidney injury induced by cisplatin (42) and kidneys of rats 
with unilateral ureteral obstruction (43).

HSYA is an active ingredient isolated from Carthami 
Flos  (15). It has been reported that HSYA inhibits platelet 
derived growth factor BB‑induced activation of Akt 
signaling, which in‑turn disrupts the viability and migration 
of VSMCs (21). In addition, Yang et al  (22) demonstrated 
that HSYA suppresses the viability and migration of lipo‑
polysaccharide‑induced VSMCs by inhibiting the Toll‑like 
receptor 4/Rac1/Akt pathway. Thus, it was hypothesized that 
HSYA exerts antiproliferative and anti‑migratory effects on 
HUVSMCs via the PI3K/Akt signaling pathway.

The results of the present study demonstrated that HSYA 
suppressed CRF serum‑induced cell viability and migration, 
suggesting its role in HUVSMCs‑mediated intimal hyper‑
plasia. AMG 511, which is a potent and selective PI3K inhibitor 
that decreases the phosphorylation of Akt, exhibited similar 
effects to HSYA on the viability and migration of HUVSMCs. 
Notably, HSYA decreased cell apoptosis induced by CRF 
serum, whereas AMG 511 had little effect on the apoptosis 
of HUVSMCs. This may be explained by the hypothesis that 
HSYA ameliorates the toxic effects of toxicants in CRF serum 
on HUVSMCs.

In the present study, NO production and p‑eNOS expres‑
sion decreased in CRF serum‑induced HUVSMCs, whereas 
treatment with HSYA and AMG 511 enhanced the levels of 

Figure 2. Serum from CRF rats enhances apoptosis of HUVSMCs. HUVSMCs were stimulated with 2.5, 5 or 10% serum from the control or CRF group. 
(A) Apoptotic ratio of each group was detected via flow cytometry. (B) Quantitative analysis of flow cytometry. **P<0.01 and ***P<0.001. CRF, chronic renal 
failure; HUVSMCs, human umbilical vein smooth muscle cells.
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NO and p‑eNOS, respectively. Previous studies have demon‑
strated that NO‑based therapies can decrease neointimal 
hyperplasia  (44,45). NO production is regulated by NO 
synthases (NOSs), including eNOS. eNOS activity is mainly 
regulated through phosphorylation, which is primarily regu‑
lated by the PI3K/Akt/eNOS pathway. It has been reported that 
activation of PI3K/AKT/eNOS pathways serves an important 
role in regulating cell migration, migration, angiogenesis and 
apoptosis (46). The results of the present study showed that 
HSYA may rescue NO production in CRF serum‑treated cells 
via inhibiting PI3K/Akt activation.

To further investigate whether HSYA can regulate the 
PI3K/Akt signaling pathway, the protein expression levels of 

PI3K and p‑Akt were detected. The results demonstrated that 
HSYA affected PI3K expression and Akt phosphorylation. 
In addition, HSYA inhibited the viability and migration of 
HUVSMCs by regulating PI3K/Akt signaling, which suggests 
that HSYA may mediate intimal hyperplasia‑induced AVF 
stenosis. However, given that the present study only focused 
on HSYA‑mediated viability and migration of HUVSMCs, 
further studies are required to confirm the effects of HSYA 
in AVF stenosis in vivo. In addition, other alternative assays 
will be utilized to enrich the experimental content and further 
validate these findings. Finally, prospective studies should 
focus on investigating the involvement of other pathways on 
the effects of HSYA on AVF stenosis.

Figure 3. HSYA inhibits cell viability, migration and apoptosis. Solutions of 1, 5, 25 µM HSYA or 5 nM AMG 511 were prepared to treat HUVSMCs 30 min 
prior to stimulation with 10% CRF serum. (A) Viability of HUVSMCs was evaluated via examining the absorbance at 450 nm. (B and C) Migratory capability 
of HUVSMCs was determined using a wound healing assay and the relative migratory rate was quantified. (D and E) Apoptotic ratio of each group was 
detected via flow cytometry. *P<0.05, **P<0.01 and ***P<0.001. HSYA, Hydroxysafflor yellow A; CRF, chronic renal failure; HUVSMCs, human umbilical vein 
smooth muscle cells; OD, optical density.
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Taken together, the current study for the first time demon‑
strated the inhibitory effects of HSYA on HUVSMC viability 
and migration, as well as showing the underlying mechanism 
involved regulation of the PI3K/Akt signaling pathway. The 
results provide primary evidence for the therapeutic applica‑
tion of HSYA in intimal hyperplasia‑induced AVF stenosis.
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