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ABSTRACT 

Brain age is a powerful marker of general brain health. Furthermore, brain age models are 

trained on large datasets, thus giving them a potential advantage in predicting specific 

outcomes – much like the success of finetuning large language models for specific 

applications. However, it is also well-accepted in machine learning that models trained to 

directly predict specific outcomes (i.e., direct models) often perform better than those trained 

on surrogate outcomes. Therefore, despite their much larger training data, it is unclear 

whether brain age models outperform direct models in predicting specific brain health 

outcomes. Here, we compare large-scale brain age models and direct models for predicting 

specific health outcomes in the context of Alzheimer’s Disease (AD) dementia. Using 

anatomical T1 scans from three continents (N = 1,848), we find that direct models 

outperform brain age models without finetuning. Finetuned brain age models yielded similar 

performance as direct models, but importantly, did not outperform direct models although the 

brain age models were pretrained on 1000 times more data than the direct models: N = 

53,542 vs N = 50. Overall, our results do not discount brain age as a useful marker of general 

brain health. However,  in this era of large-scale brain age models, our results suggest that 

small-scale, targeted approaches for extracting specific brain health markers still hold 

significant value. 
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1. INTRODUCTION 

 There is significant interest in using biological age as a marker of disease risk and 

mortality (Belsky et al., 2015; Chen et al., 2016; Tian et al., 2023). In the case of brain age, 

this involves training a machine learning model to predict chronological age from brain 

imaging data of healthy individuals (Cole et al., 2017; Dosenbach et al., 2010; Franke et al., 

2010). The brain age gap (BAG) – the difference between predicted and chronological age –

serves as a marker of accelerated aging and development. A positive BAG is associated with 

worse cognitive performance in older adults (Cumplido-Mayoral et al., 2024; Wrigglesworth 

et al., 2022), better cognitive performance in healthy children (Cheng et al., 2024; Erus et al., 

2014), brain disorders (Constantinides et al., 2023; Han et al., 2021; Kaufmann et al., 2019), 

poor physical health (Cole, 2020; Franke et al., 2013; Ronan et al., 2016) and mortality (Cole 

et al., 2018; Paixao et al., 2020). Overall, these studies suggest the utility of BAG as a marker 

of general brain health. 

 In addition to associations at the group-level, BAG has been used to directly predict 

individual-level mortality (Cole et al., 2018), predict progression of mild cognitive 

impairment (MCI) to AD dementia (Choi et al., 2023; Gaser et al., 2013; Löwe et al., 2016) 

and classify psychiatric disorders (Koutsouleris et al., 2013; Leonardsen et al., 2022). 

However, summarizing a person’s brain health with a single number (BAG) might lose too 

much information. Therefore, some studies extract intermediate-level representations from 

pretrained brain age models, which are then used as input features for training new models to 

predict MCI progression (Gao et al., 2020), and classify neurological disorders (Leonardsen 

et al., 2022; Zheng, Pfahringer, & Mayo, 2022). Finally, when deep neural networks (DNNs) 

are used for brain age prediction, the resulting models can be finetuned to diagnose brain 

disorders (Bashyam et al., 2020; Lu et al., 2022). The fine-tuning process can improve 

prediction by enabling the pretrained model to adapt to the unique characteristics of the new 

dataset – such as demographics or MRI scanner specifications – which may differ 

significantly from the data used to train the brain age model. Overall, these studies have 

demonstrated the utility of brain age models to predict specific health outcomes.  

 However, it remains unclear whether brain age derived models are better than models 

directly trained to predict specific health outcomes, which we refer to as “direct models”. On 

the one hand, there are orders of magnitude more brain imaging data with age-only 

information, compared with brain imaging data with target outcomes. Therefore, similar to 

the success of finetuning large language models for specific tasks (Tinn et al., 2023; Yang et 

al., 2022), a brain age model trained on tens of thousands of participants might yield better 
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target prediction than direct models trained on hundreds of participants. On the other hand, a 

well-accepted machine learning principle is that training a model to directly predict a target 

variable of interest yields better prediction performance than training the model to predict a 

surrogate variable (that is only correlated with the target variable). Therefore, direct models 

might perform better than brain age derived models.  

 Motivated by this question, here we compare brain age derived models and direct 

models in two classification tasks. The first task is to predict whether a participant is 

cognitively normal (CN) or has AD dementia. We refer to this task as AD classification. The 

second task is to predict whether a participant with MCI would progress to AD dementia 

within 3 years. We refer to this task as MCI progression prediction. We chose these tasks 

because previous studies have suggested that brain age derived models can perform well in 

these tasks (Bashyam et al., 2020; Gaser et al., 2013; Lu et al., 2022). Furthermore, age is the 

largest risk factor for AD dementia (Daviglus et al., 2010; van der Flier & Scheltens, 2005), 

in contrast to other target outcomes of interest, such as psychiatric disorders, where other risk 

factors might be more prominent. Therefore, if brain age derived models cannot outperform 

direct models in these tasks, then it would seem unlikely that brain age derived models can 

outperform direct models in other tasks. 

 In this study, we consider the brain age model trained on one of the largest and most 

diverse datasets assembled (N = 53,542; Leonardsen et al., 2022). The brain age model 

utilizes the same convolutional neural network architecture as the winner of the Predictive 

Analysis Challenge for brain age prediction in 2019 (Gong et al., 2021; Peng et al., 2021). At 

the time of publication, the brain age model achieved state-of-the-art performance on data 

from unseen MRI scanners (Leonardsen et al., 2022). Intermediate representations from the 

pretrained model could also be used to classify various brain disorders via a transfer learning 

procedure (Leonardsen et al., 2022). As such, we believe the pretrained brain age model 

remains one of the best in the field. Evaluation was performed using anatomical T1 scans 

from three datasets (N = 1,848). We note that the evaluation datasets were not used to train 

the pretrained brain age model, so are truly out of sample.  

Consistent with previous work (Leonardsen et al., 2022), we found that classifiers 

trained from intermediate representations of the pretrained brain age model (brainage64D) 

perform a lot better than BAG, suggesting that too much information is lost when 

summarizing a person’s biological age with a single number (i.e., BAG). Yet, direct models 

perform significantly better than brainage64D. Finetuning the brainage64D classifiers yields 

similar prediction performance to the direct models, but do not outperform direct models 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.16.623903doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.16.623903
http://creativecommons.org/licenses/by-nc-nd/4.0/


even when sample size is very small (N = 50). Overall, our results do not dispute transfer 

learning as a general strategy to improve prediction or that brain age is a powerful marker of 

general brain health. However, given the computational demands of training and then 

finetuning large models, our results suggest that targeted approaches for extracting specific 

markers of brain health from small datasets continue to hold significant value.  
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2. RESULTS 

2.1. Overview 

Here we considered data from three datasets: the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) dataset (Jack et al., 2010; Jack et al., 2008; Mueller et al., 2005), the 

Australian Imaging, Biomarkers and Lifestyle (AIBL) study (Ellis et al., 2009; Ellis et al., 

2010; Fowler et al., 2021) and the Singapore Memory Aging and Cognition center (MACC) 

Harmonization cohort (Chong et al., 2017; Hilal et al., 2015; Hilal et al., 2020; Xu et al., 

2015). More details about the datasets and preprocessing can be found in Methods (Sections 

5.1 and 5.4). 

Following Leonardsen and colleagues (Leonardsen et al., 2022), we considered age-

matched and sex-matched cognitively normal (CN) participants and participants diagnosed 

with AD dementia (N = 1272) for the AD classification task. We also considered age-

matched and sex-matched MCI participants who progressed to AD dementia within three 

years (i.e., progressive MCI or pMCI) and remained as MCI (i.e., stable MCI or sMCI) for 

the MCI progression task (N = 576). For more details, see Methods (Section 5.2).  

For both classification tasks, we utilized a nested (inner-loop) cross-validation 

procedure, in which participants were assigned to a development set and a test set with an 

80:20 ratio. The development set was in turn divided into a training set and a validation set 

with an 80:20 ratio. In general, models were trained on the training set and hyperparameters 

were tuned on the validation set. The final model was evaluated in the test set. This training-

validation-test procedure was repeated 50 times for robustness. For more details, see Methods 

(Section 5.3). 

 

2.2. Leveraging a pretrained brain age model does not improve AD classification over 

training a model directly 

For AD classification, we compared five approaches (Figure 1) - the direct model and 

four brain age models (BAG, BAG-finetune, Brainage64D and Brainage64D-finetune) 

derived from a state-of-the-art pretrained brain age model (Leonardsen et al., 2022). The 

brain age model was previously trained on 53,542 participants across diverse datasets 

(Leonardsen et al., 2022). For more details, see Methods (Sections 5.5 and 5.6). Figure 2A 

shows the AD classification AUC (across 50 training-validation-test splits) for all five 

approaches. Figure 2B illustrates the p values from comparing pairs of approaches using the 

corrected resampled t-test (Nadeau & Bengio, 2003). Table 1 reports the actual p values.  
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Figure 1. Workflow of five AD classification models. Given a T1 MRI scan, each model 
predicted a classification label (AD or CN). “Direct” is a model trained from scratch, while 
the other four models involved a brain age model that was previously trained from 53,542 
participants across diverse datasets (Leonardsen et al., 2022). (A) “Direct” used the same 3D 
CNN architecture as the brain age model, except for the final binary classification layer. 
Classification labels (AD or CN) and T1 images of the development set were used to train the 
3D CNN from scratch. (B) BAG model subtracted the chronological age of each test 
participant from the predicted age of the pretrained brain age model. The resulting brain age 
gap (BAG) was used as the AD/CN predictor. (C) Age & T1 images of CN participants in the 
development set were used to finetune the pretrained brain age model to improve age 
prediction of CN participants in development set. The finetuned brain age model was then 
used to compute BAG of each test participant, and the resulting BAG was used as the AD/CN 
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predictor. (D) “Brainage64D” extracted 64-dimensional (64D) brain age features from the 
output of the global averaging pooling layer of the pretrained brain age model. The 64D 
features and classification labels (AD/CN) of the development set were used to train a logistic 
regression model. The final model consisted of the concatenation of the pretrained brain age 
model up to (and including) the global average pooling layer and the trained logistic 
regression model. (E) “Brainage64D-finetune” involved finetuning all layers of the trained 
Brainage64D model (from panel D) to improve AD classification in the development set. 

 

Direct and Brainage64D-finetune performed the best, with no statistical difference 

between the two approaches. BAG and BAG-finetune performed the worst with no statistical 

difference between the two approaches. Brainage64D (without finetuning) achieved an 

intermediate level of performance. Importantly, the performance of Brainage64D (mean 

AUC=0.84) was comparable to the results reported by Leonardsen and colleagues (2022) 

(mean AUC=0.83).  

Overall, this suggests that with the largest training set size of 997, leveraging a 

pretrained brain age model did not improve AD classification performance, compared with 

simply training a model from scratch. 

 

 

Figure 2. AD classification AUC. (A) Box plots show the test AUC across 50 random 
training-validation-test splits. For each box plot, the horizontal line indicates the median 
across 50 test AUC values. Triangle indicates the mean. The bottom and top edges of the box 
indicate the 25th and 75th percentiles, respectively. Outliers are defined as data points 
beyond 1.5 times the interquartile range. The whiskers extend to the most extreme data points 
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not considered outliers. (B) Minus log10 p values between all pairs of AD classification 
approaches based on the corrected resampled t-test (Nadeau & Bengio, 2003). Larger -
log10(p) indicates greater statistical significance. Non-black color indicates significant 
differences after false discovery rate (FDR) correction (q < 0.05). For each pair of 
approaches, red (or blue) color indicates that the approach on the row outperformed (or 
underperformed) the approach on the column. For example, if we focus on the “Direct” row, 
the red color indicates that “Direct” statistically outperformed BAG, BAG-finetune and 
Brainage64D.  
  

AD/NC Classification 
AUC 

(mean ± std) 

P values 
BAG BAG-

finetune Brainage64D Brainage64D-
finetune Direct 

BAG 
(0.70 ± 0.02)  

0.438 5.62e-9 4.20e-19 1.47e-18 
BAG-finetune 
(0.71 ± 0.04)   6.64e-6 2.23e-12 1.42e-12 
Brainage64D 
(0.84 ± 0.02)    2.73e-11 7.44e-9 

Brainage64D-finetune 
(0.93 ± 0.01)     0.655 

Direct 
(0.92 ± 0.01)      

Table 1. AD classification AUC (mean ± std) and uncorrected p values between pairs of 
approaches. AUC was averaged across 50 random training-validation-test splits. P values 
were computed using the corrected resampled t-test (Nadeau & Bengio, 2003). Bolded p 
values indicate statistical significance after FDR correction (q < 0.05). 

 

2.3. Even when sample size is small, leveraging a pretrained brain age model does not 

improve AD classification over training a model directly 

Adapting a pretrained model (trained from large datasets) for a new classification task 

might be more advantageous when the sample size available for the new task is small. Figure 

3 shows the AD classification AUC (across 50 training-validation-test splits) for Direct, 

Brainage64D and Brainage64D-finetune across different development set sizes. Given their 

poor performance (Figure 2), we did not consider BAG and BAG-finetune in this analysis. 

Table 2 reports the actual AUC, while Table 3 reports the p values obtained from comparing 

the Direct approach with Brainage64D and Brainage64D-finetune using the corrected 

resampled t-test.  

Brainage64D was numerically better than the Direct approach for development set 

sizes of 50 and 100, but the improvement was not statistically significant. The Direct 

approach was numerically better than Brainage64D from a development set size of 200 

onwards, which became statistically significant when development set size was at least 500.  
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On the other hand, the Brainage64D-finetune was numerically better than the direct 

approach for all sample sizes, but differences were not significant even when sample size was 

very small (N = 50). Overall, this suggests that leveraging a pretrained brain age model did 

not improve AD classification over training a model directly. 

 

 

Figure 3. AD classification AUC of Brainage64D, Brainage64D-finetune, and Direct across 
different development set sizes. Boxplots showing test AUC across different development set 
sizes (number of training and validation participants). Test sets were identical across 
development set sizes, so AUCs were comparable across sample sizes. For each boxplot, the 
horizontal line indicates the median across 50 test AUC values. Triangle indicates the mean. 
The bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. 
Outliers are defined as data points beyond 1.5 times the interquartile range. The whiskers 
extend to the most extreme data points not considered outliers.  

 

Number of 
training and 
validation 

participants 

Brainage64D Brainage64D-finetune Direct 

50 0.7214 ± 0.0465 0.7393 ± 0.0595 0.6893 ± 0.0742 

100 0.7729 ± 0.0384 0.8216 ± 0.0368 0.7547 ± 0.0596 

200 0.7968 ± 0.0319 0.8643 ± 0.0284 0.8195 ± 0.0307 

300 0.8160 ± 0.0269 0.8833 ± 0.0251 0.8533 ± 0.0288 

400 0.8231 ± 0.0277 0.8996 ± 0.0185 0.8736 ± 0.0221 

500 0.8279 ± 0.0255 0.9042 ± 0.0163 0.8919 ± 0.0185 
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600 0.8315 ± 0.0246 0.9101 ± 0.0235 0.9013 ± 0.0195 

700 0.8362 ± 0.0234 0.9157 ± 0.0144 0.9094 ± 0.0191 

800 0.8389 ± 0.0226 0.9211 ± 0.0152 0.9148 ± 0.0182 

900 0.8403 ± 0.0213 0.9241 ± 0.0152 0.9200 ± 0.0172 

997 0.8411 ± 0.0213 0.9276 ± 0.0144 0.9246 ± 0.0146 

Table 2. AD classification AUC (mean ± std) of different approaches for AD classification 
task across different development set sizes (i.e., number of training and validation 
participants). Given their poor performance (Figure 2), we did not consider BAG and BAG-
finetune in this analysis. 

 

Number of training 
and validation 

participants 
Direct vs Brainage64D Direct vs Brainage64D-finetune 

50 0.8816 0.8314 
100 0.8696 0.5990 
200 0.6743 0.2287 
300 0.2941 0.2888 
400 0.0368 0.1035 
500 0.0010 0.3727 
600 0.0001 0.5728 
700 2.7106e-5 0.5171 
800 2.0102e-6 0.3845 
900 4.0756e-8 0.5238 
997 7.4415e-9 0.6551 

Table 3. Uncorrected p values between AUC of Direct and Brainage64D, as well as between 
Direct and Brainage64D-finetune across different development set sizes (i.e., number of 
training and validation participants). Bolded p values indicate statistical significance after 
FDR correction (q < 0.05). Given their poor performance (Figure 2), we did not consider 
BAG and BAG-finetune in this analysis. 

 

2.4. Leveraging a pretrained brain age model does not improve MCI progression 

prediction over training a model directly 

For the MCI progression prediction, we compared two direct models (Direct and 

Direct-AD2prog) with the best brain age derived model (Brainage64D-finetune-AD2prog; 

Figure 4). Both Direct-AD2prog and Brainage64D-finetune-AD2prog utilized intermediate 

representations (features) from the best AD classification models (Direct and Brainage64D-

finetune) as inputs to train a new classifier for predicting MCI progression (Figure 4). For 

more details, see Methods (Section 5.7).  

Figure 5 shows the MCI progression prediction AUC for all three approaches. Table 4 

reports the p values from comparing pairs of approaches using the corrected resampled t-test 

(Nadeau & Bengio, 2003). Both Direct-AD2prog and Brainage64D-finetune-AD2prog 
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performed better than the direct approach. There was no statistical difference between Direct-

AD2prog and Brainage64D-finetune-AD2prog.  

Consistent with previous studies (Lian et al., 2020; Oh et al., 2019; Wen et al., 2020), 

our results suggest that MCI progression prediction can be improved by transferring features 

from previously trained AD classification models. However, we did not observe any 

additional benefit from leveraging features of a pretrained brain age model.  

 

Figure 4. Workflow of three MCI progression prediction models. Given a T1 MRI scan, each 
model predicted a classification label (sMCI or pMCI). (A) “Direct” used the same 3D CNN 
architecture as the pretrained brain age model (Leonardsen et al., 2022), except for the final 
binary classification layer. Classification labels (sMCI or pMCI) and T1 images of the 
development set were used to train the 3D CNN from scratch. (B) “Direct-AD2prog” 
extracted 64-dimensional (64D) features from the output of the global averaging pooling 
layer of the previously trained Direct AD classification model (Figure 1A). The 64D features 
and classification labels (sMCI/pMCI) of the development set were used to train a logistic 
regression model. (C) “Brainage64D-finetune-AD2prog” extracted 64-dimensional (64D) 
features from the output of the global averaging pooling layer of the previously trained 
brainage64D-finetune AD classification model (Figure 1E). The 64D features and 
classification labels (sMCI/pMCI) of the development set were used to train a logistic 
regression model.  
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Figure 5. MCI progression prediction AUC. Box plots show the test AUC across 50 random 
training-validation-test splits. For each box plot, the horizontal line indicates the median 
across 50 test AUC values. Triangle indicates the mean. The bottom and top edges of the box 
indicate the 25th and 75th percentiles, respectively. Outliers are defined as data points 
beyond 1.5 times the interquartile range. The whiskers extend to the most extreme data points 
not considered outliers. P values are computed using the corrected resampled t-test. “*” 
indicates statistical significance after FDR correction (q < 0.05) and “n.s.” indicates not 
significant after FDR correction. 

 

sMCI/pMCI classification 
AUC (mean ± std) 

P values 
Direct Direct-AD2prog Brainage64D-finetune-

AD2prog 
Direct 

(0.6047 ± 0.0587)  
2.90e-5 3.00e-4 

Direct-AD2prog 
(0.7426 ± 0.0382)   0.756 

Brainage64D-finetune-
AD2prog 

(0.7375 ± 0.0440)    

Table 4. MCI progression prediction AUC (mean ± std) and uncorrected p values between 
pairs of approaches. AUC was averaged across 50 random training-validation-test splits. P 
values were computed using the corrected resampled t-test (Nadeau & Bengio, 2003). Bolded 
p values indicate statistical significance after FDR correction (q < 0.05). 
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2.5. Even when sample size is small, leveraging a pretrained brain age model does not 

improve MCI prediction over training a model directly 

Adapting a pretrained model (trained from large datasets) for a new classification task 

might be more advantageous when the sample size available for the new task is small. Figure 

6 shows the MCI prediction AUC (across 50 training-validation-test splits) for Direct-

AD2prog and Brainage64D-finetune-AD2prog across different development set sizes. We did 

not consider the “direct” approach for this analysis, given its poor performance (Figure 5). 

Table 5 shows the actual AUC values and p values from comparing Direct-AD2prog and 

Brainage64D-finetune-AD2prog. Across all sample sizes, there was no statistical difference 

between Direct-AD2prog and Brainage64D-finetune-AD2prog. Overall, this suggests that 

even when sample size is small, there was not a significant advantage in leveraging features 

from a pretrained brain age model.  

 

 

Figure 6. MCI progression prediction AUC of Brainage64D-finetune-AD2prog and Direct-
AD2prog across different development set sizes. Boxplots showing test AUC across different 
development set sizes (number of training and validation participants). Test sets were 
identical across development set sizes, so AUCs were comparable across sample sizes. For 
each boxplot, the horizontal line indicates the median across 50 test AUC values. Triangle 
indicates the mean. The bottom and top edges of the box indicate the 25th and 75th 
percentiles, respectively. Outliers are defined as data points beyond 1.5 times the interquartile 
range. The whiskers extend to the most extreme data points not considered outliers. 
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Number of training and 

validation participants 
Direct-AD2prog 

Brainage64D-

finetune-AD2prog 
P values 

50 0.7253 ± 0.0482 0.7294 ± 0.0450 0.9587 

100 0.7307 ± 0.0508 0.7257 ± 0.0484 0.9240 

150 0.7316 ± 0.0475 0.7350 ± 0.0452 0.9296 

200 0.7352 ± 0.0451 0.7345 ± 0.0458 0.9839 

250 0.7385 ± 0.0418 0.7373 ± 0.0457 0.9624 

300 0.7376 ± 0.0463 0.7377 ± 0.0450 0.9965 

350 0.7415 ± 0.0402 0.7365 ± 0.0441 0.7939 

400 0.7411 ± 0.0417 0.7362 ± 0.0441 0.7905 

448 0.7426 ± 0.0382 0.7375 ± 0.0440 0.7558 

Table 5. MCI prediction AUC (mean ± std) and p values comparing Direct-AD2prog and 
Brainage64D-finetune-AD2prog across different development set sizes (i.e., number of 
training and validation participants). Given its poor performance (Figure 5), we did not 
include the “Direct” approach in this analysis. Across all sample sizes, there was no 
statistically significant difference. 
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3. DISCUSSION 

 In this study, we evaluated the utility of brain age models in generating specific 

markers of brain health in the domain of AD dementia. We found that models directly trained 

to predict AD-related outcomes (i.e., direct models) performed as well as, or even better than, 

brain age derived models. Even when training data was scarce (N = 50), brain age derived 

models did not statistically outperform direct models. Overall, given the widespread 

availability of brain data with age-only information, we believe that brain age can still be 

useful as a marker of general brain health. However, our results suggest that current large-

scale brain age models do not offer a strong advantage for predicting specific health 

outcomes.  

To interpret our results, it is useful to think of brain age derived models as a form of 

transfer learning (Weiss, Khoshgoftaar, & Wang, 2016; Zhuang et al., 2021), which can be 

broadly defined as using past experience from one or more source tasks to improve learning 

on a target task (Hospedales et al., 2022). In the case of brain age derived models, we first 

train a model to predict age in a large dataset, followed by model transfer to predict another 

phenotype in a new dataset. There are a few factors that might influence the success of 

transfer learning in the current study. 

The first factor to consider is sample size. Given that the brain age model is trained 

from a very large dataset (N > 50,000), the hope is that the features will be more robust than 

those learned directly from a small dataset with target outcomes of interest (N < 1000), thus 

improving the performance of the target outcomes. We note that in the scenario with very 

small sample sizes (N = 50), there were >1000 times more data for training the brain age 

model than the target task, yet brain age models did not yield a significant advantage over 

direct models.  

 The second factor to consider is the similarity between source and target tasks. 

Transfer learning is easier if source and target tasks are more similar. Conversely, transfer 

learning is harder if source and target tasks are more different. However, given that age is the 

strongest risk factor for AD dementia, we believe the source and target tasks in our study are 

relatively well-aligned.  

 The final factor is the impact of well-documented MRI site differences (An et al., 

2024; Fortin et al., 2018; Pomponio et al., 2020) which may degrade model transfer between 

the original large-scale data to the new data. Previous studies have suggested that training 

models on large diverse datasets could overcome site differences without having to explicitly 

perform harmonization (Abraham et al., 2017; Chen et al., 2024). Since the pretrained brain 
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age model was trained on a wide variety of scanners and populations, we did not think that 

this would be a serious issue for the brain age derived models.  

 Overall, when considering all three factors, we note that it was not a foreordained 

result that brain age derived models and direct models would have similar performance. 

Indeed, an interesting finding is that BAG exhibited the worst performance, and finetuning 

did not improve the performance of BAG. This suggests that while BAG might be a powerful 

marker of general brain health, too much information is lost by reducing a person’s brain 

health to a single number, thus diminishing its utility for predicting specific brain health 

outcomes.  

 Furthermore, Brainage64D exhibited worse performance than Brainage64D-finetune 

and Direct models. On the other hand, Brainage64D-finetune and Direct models performed 

similarly well in the AD classification task. Brainage64-finetune-AD2prog and Direct-

AD2prog models also performed similarly well in the MCI progression task. Overall, this 

suggests the importance of finetuning brain age models to new tasks potentially due to site 

differences or due to task misalignment between predicting chronological age and AD-related 

health outcomes. 

 Finally, it is important to note that brain age derived models are just one approach of 

transfer learning. There is a plethora of transfer learning approaches in the brain imaging 

(Deepak & Ameer, 2019; Malik & Bzdok, 2022; Mei et al., 2022) and machine learning 

(Bengio, 2011; Palatucci et al., 2009; Shin et al., 2016) literature. We believe that the idea of 

translating models trained from large-scale datasets to predict new phenotypes in small 

datasets remains a promising one. However, similarity between the source and target tasks is 

an important factor that needs to be taken care of to maximize transfer learning performance 

(Chen et al., 2024; He et al., 2022; Wulan et al., 2024).  

Indeed, a recent study suggests that age prediction based on neuropsychological 

measures leads to better MCI progression prediction than BAG from brain imaging data 

(Garcia Condado, Cortes, & Initiative, 2023). Furthermore, there are also studies that have 

developed biological age models based on mortality (Levine et al., 2018). It is possible that 

brain age models trained on mortality, rather than chronological age, could yield better 

markers of specific brain health. We leave this to future work. 

 A limitation of the current study is that we only considered one pretrained brain age 

model (Leonardsen et al., 2022). We believe that this model remains the best (or one of the 

best) in the field, but we do not preclude the possibility that other brain age models trained on 

even larger and more diverse datasets might yield better transfer learning results. However, 
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new brain age models are typically trained to improve chronological age prediction (Dartora 

et al., 2024; Kalc et al., 2024). In doing so, the models might learn better features for 

predicting age, but not necessarily for predicting other phenotypes.   

 Another limitation is that for fair comparison, the neural network architecture and 

training procedure were constrained to be the same between brain age derived models and 

direct models. For example, given the relatively small sample sizes available to the direct 

models, it might make sense to use a less complex neural network architecture (e.g., less 

layers). Consequently, our AD classification and MCI progression prediction results are not 

the best in the field.  

Studies in the past five years have reported AD classification AUC ranging from 0.82 

to 0.99 (Ashtari-Majlan, Seifi, & Dehshibi, 2022; Bashyam et al., 2020; Kang et al., 2023; 

Leonardsen et al., 2022; Lu et al., 2022; Ocasio & Duong, 2021; Yin et al., 2024; Zarei et al., 

2024; Zheng, Pfahringer, & Mayo, 2022), and MCI progression prediction AUC ranging 

from 0.62 to 0.94 (Ashtari-Majlan, Seifi, & Dehshibi, 2022; Bron et al., 2021; Gao et al., 

2020; Kang et al., 2023; Li et al., 2021; Luo et al., 2024; Nanni et al., 2020; Ocasio & Duong, 

2021; Zhou et al., 2024). Therefore, while our AD classification AUC (0.92) and MCI 

progression prediction AUC (0.74) are not the best, they are still in line with recent studies, 

especially given our architecture limitations. 

Furthermore, it is important to emphasize that prediction performance is not directly 

comparable across studies because of different patient selection criteria, problem set up, 

dataset differences, and so on. However, a meaningful comparison can be made with 

Leonardsen and colleagues (Leonardsen et al., 2022) because we have strived to align our set-

up with theirs as closely as possible. The highly similar AD classification AUCs between our 

Brainage64 model (0.84) and theirs (0.83) suggest that our implementation is not biased 

against brain age derived models.  
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4. CONCLUSION 

Brain age is a powerful marker of general brain health. However, it remains unclear whether 

brain age derived models are better than models directly trained to predict the specific brain 

health outcomes. Surprisingly, despite three orders of magnitude more training data (50,000 

vs 50), brain age models did not outperform direct models for predicting AD-related health 

outcomes. Overall, our results suggest that if we are interested in specific markers of brain 

health, then currently, it might be more advantageous to directly train models from datasets 

with target outcomes of interest.  
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5. METHODS 

5.1. Datasets 

In this study, we considered three datasets: the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) dataset (Jack et al., 2010; Jack et al., 2008; Mueller et al., 2005), the 

Australian Imaging, Biomarkers and Lifestyle (AIBL) study (Ellis et al., 2009; Ellis et al., 

2010; Fowler et al., 2021) and the Singapore Memory Aging and Cognition center (MACC) 

Harmonization cohort (Chong et al., 2017; Hilal et al., 2015; Hilal et al., 2020; Xu et al., 

2015). Each dataset included both MRI data and clinical data collected at multiple timepoints.  

In the first classification task, our goal was to predict whether an individual was 

cognitively normal (CN) or diagnosed with AD dementia at baseline using the baseline 

anatomical T1 scan. We refer to this task as AD classification. In the second classification 

task, our goal was to predict whether an individual with mild cognitive impairment (MCI) at 

baseline progressed to AD dementia within 36 months (i.e., progressive MCI or pMCI) or 

remained mild cognitively impaired (i.e., stable MCI or sMCI) based on the baseline 

anatomical T1 scan. We refer to this task as MCI progression prediction. Individuals who (1) 

exhibited more than one diagnosis changes (e.g., MCI → AD → MCI), (2) reverted to CN 

(i.e., MCI → CN), or (3) had missing diagnoses (such that we could not determine whether 

the individual should be considered pMCI or sMCI) were excluded. We note that there were 

no overlapping participants used for AD classification and MCI progression prediction tasks.  

For the ADNI dataset, we considered participants from ADNI 1, ADNIGo/2, and 

ADNI3. T1 scans were acquired using 1.5T and 3T scanners from Siemens, Philips, and 

General Electric. At baseline, there were 2,039 scans, comprising 942 CN individuals, 432 

individuals with AD dementia, 391 individuals who were sMCI, and 274 individuals who 

were pMCI. For the AIBL dataset, T1 scans were collected from Siemens 3T scanners. At 

baseline, there were 580 scans from 479 CN individuals, 78 individuals with AD dementia, 

13 individuals who were sMCI, and 10 individuals who were pMCI. For the MACC dataset, 

T1 scans were collected from a Siemens 3T Tim Trio scanner, and a Siemens 3T Prisma 

scanner. At baseline, there were 457 scans from 132 CN individuals, 207 individuals with 

AD dementia, 79 individuals who were sMCI, and 39 individuals who were pMCI. 

 

5.2. Sample stratification 

Following Leonardsen and colleagues (Leonardsen et al., 2022), for the AD 

classification task, age and sex matching were performed for each scanner model to ensure 

the same age and sex distribution between the two diagnostic groups. For instance, suppose 
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Scanner Model X in Dataset A has more participants with AD dementia than CN participant, 

then for each CN participant, we found the closest matching AD participant in terms of sex 

and age. Once all the CN participants were successfully matched, any excess AD participants 

were excluded from subsequent analyses. After matching, there were 636 CN participants and 

636 participants with AD dementia. Figure 7A and Table 6 show the age and sex distributions 

of participants before and after matching. The same matching procedure was performed for 

the MCI progression prediction task (Figure 7B and Table 7), yielding 288 participants with 

sMCI and 288 participants with pMCI.  

 

 

Figure 7. Age and sex distributions for each group before and after matching. (A) Age and 
sex distributions of CN participants and participants with AD dementia, before and after 
matching. (B) Age and sex distributions of participants with sMCI and pMCI, before and 
after matching. 

 

 Participants Age (mean ± 
std years) 

Sex 
(female) 

Before 
matching 

CN 1553 
(AIBL 479, ADNI 942, MACC 132) 71.9 ± 6.71 57% 

AD 717 
(AIBL 78, ADNI 432, MACC 207) 75.0 ± 7.64 53% 

After 
matching CN 636 

(AIBL 78, ADNI 428, MACC 130) 73.3 ± 7.21 49% 
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AD 636 
(AIBL 78, ADNI 428, MACC 130) 74.2 ± 7.60 48% 

Table 6. Participant demographics of three datasets (AIBL, ADNI, MACC) used for AD 
classification before and after matching age and sex. After matching, the paired t-test p value 
between the age of CN participants and participants with AD dementia was 0.031. For sex, 
the p value for the chi-square goodness of fit test between the two diagnostic groups was 
0.99. 

 

 Participants Age (mean 
years + SD) 

Sex 
(female) 

Before 
matching 

sMCI 483 
(AIBL: 13, ADNI 391, MACC: 79) 73.0 ± 7.38 42% 

pMCI 323 
(AIBL: 10, ADNI 274, MACC: 39) 74.2 ± 6.83 45% 

After 
matching 

sMCI 288 
(AIBL 10, ADNI 239, MACC 39) 73.9 ± 6.93 45% 

pMCI 288 
(AIBL 10, ADNI 239, MACC 39) 74.0 ± 6.87 44% 

Table 7. Participant demographics of three datasets (AIBL, ADNI, MACC) used for MCI 
progression prediction before and after matching age and sex. After matching, the paired t-
test p value between the age of the two groups (sMCI and pMCI) was 0.87. For sex, p value 
for chi-square goodness of fit test between the two groups was 0.99. 

 

5.3. Train, validation, and test split 

For the AD classification task, we split the matched participants into a development 

set and test set, maintaining an 80:20 ratio. The development set was further divided into a 

training set and a validation set, also maintaining an 80:20 ratio. This results in training-

validation-test split ratio of 64:16:20. The split into training, validation and test sets was 

performed separately for each scanner model of each dataset.  

In general, the training set was used to train the parameters of each classification 

model. The validation set was used for early stopping (see details in Section 5.6). Finally, the 

test set was used to evaluate the performance of the model. This procedure was repeated 50 

times with a different split of the participants into training, validation and test sets. The same 

procedure was repeated for the MCI progression prediction task. 
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5.4. T1 preprocessing 

We performed the same T1 preprocessing as Leonardsen et al., 2022. Briefly, the T1 

scans underwent skull stripping using FreeSurfer recon-all (Reuter, Rosas, & Fischl, 2010; 

Ségonne et al., 2004), which generated a brain mask to remove non-brain areas and the skull. 

Subsequently, the brain was aligned to the standard FSL orientation via fslreorient2std 

(Jenkinson et al., 2012). Afterward, the images were linearly registered to MNI152 space 

using FLIRT (Greve & Fischl, 2009; Jenkinson et al., 2002; Jenkinson & Smith, 2001) with 

linear interpolation and a rigid body transformation with 6 degrees of freedom. The 

registration process used the FSL MNI152 1mm template. After registration, the images were 

cropped along the borders at [6:173, 2:214, 0:160] (using python indexing convention), 

resulting in 3D volumes of dimensions 167 × 212 × 160. This cropping procedure resulted in 

a compact cuboid that preserved almost all brain-related information. Finally, the voxel 

intensity values of all images were normalized to a range of [0, 1] by dividing all voxel 

intensities by 255. 

 

5.5. Neural network backbone 

The pretrained brain age model (Leonardsen et al., 2022) utilized the Simple Fully 

Convolutional Network (SFCN) backbone (Leonardsen et al., 2022; Peng et al., 2021). 

Therefore, we used the SFCN architecture for all tested models (Figure 2). The SFCN 

backbone comprised 5 repeated convolutional blocks and an appended 6th convolutional 

block. Each of the 5 repeated convolutional blocks consisted of a 3D convolutional layer with 

a filter size of (3, 3, 3), zero padding with a padding size of 1, and a stride of 1. This results in 

convolutional layers of the same size as the input image. Each convolutional layer is followed 

by a batch normalization layer, rectified linear activation function (ReLU) activation, and a 

max pooling layer with a pooling size of (2, 2, 2). This results in the output size of each 

convolutional block being reduced by half across the height, width, and depth, compared to 

the input size. The appended 6th convolutional block incorporates a channel-wise 

convolutional layer, a final batch normalization layer, and a global average pooling layer. The 

number of filters used in the convolutional layers are [32, 64, 128, 256, 256, 64], so the 

output of the global average pooling layer is of length 64. In the SFCN-regression model 

(Leonardsen et al., 2022), the 64 features were entered into a fully connected layer (with one 

output node) to directly predict chronological age. Because the pretrained SFCN-regression 

model achieved the best brain age prediction performance on external data (Leonardsen et al., 

2022), we used the SFCN-regression model for the above analyses.  
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Figure 8. Schematic of Simply Fully Convolutional Network (SFCN) architecture 
(Leonardsen et al., 2022; Peng et al., 2021). The number of filters used in the convolutional 
layers were [32, 64, 128, 256, 256, 64]. The output of the global average pooling layer was of 
length 64. In the pretrained SFCN-regression model (Leonardsen et al., 2022), the 64-
dimensional output of the global average pooling layer was fed into a fully connected layer 
(with one output node) to directly predict chronological age.  
 

5.6. AD classification models 

We compared five approaches for AD classification (Figure 1): Direct approach 

(Figure 1A), brain age gap (BAG; Figure 1B), BAG-finetune (Figure 1C), Brainage64D 

(Figure 1D) and Brainage64D-finetune (Figure 1E). All computations involving SFCN 

utilized NVIDIA RTX 3090 GPUs with 24GB memory and CUDA 11.0. 

 

5.6.1. Direct approach 

In the “Direct” approach, we trained a SFCN model from scratch to predict the 

classification label. More specifically, we replaced the fully connected layer (with one output 

node) of the SFCN-regression model with a fully connected layer with two output nodes for 

CN and AD classification labels respectively (Figure 1A). Stochastic gradient descent (SGD) 

was used to minimize the cross-entropy loss. Because of the computational cost, no 

hyperparameter was tuned. Instead, we used a fixed set of hyperparameters: weight decay = 

1e-4, dropout rate = 0.5, and initial learning rate = 0.1. The learning rate was decreased by a 

factor of 10 every 30 epochs. The training batch size was set to 6 due to GPU memory 

constraints. For each training-validation-test split, the Direct approach was trained from 

scratch (using randomly initialized weights) for 150 epochs in the training set. Model 

parameters with the highest area under the receiver operating characteristic curve (AUC) in 
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the validation set was used for evaluation in the test set. The evaluation metric was also AUC. 

For each training-validation-test split, the training duration was approximately 5 hours.  

 

5.6.2. Brain age gap (BAG) approach 

The remaining four approaches involved the pretrained SFCN-regression model 

(Leonardsen et al., 2022). The first brain-age approach was simply the brain age gap (BAG) 

generated by the pretrained SFCN-regression model (Figure 1B). More specifically, the 

preprocessed T1 image of a test participant was fed into the pretrained brain age model. The 

BAG was then defined as the predicted age minus the actual chronological age of the 

participant. If the BAG was above a certain BAG threshold, we would classify the participant 

as having AD dementia. Otherwise, we classified the participant as CN. By varying the BAG 

threshold, we could compute the area under the receiver operating characteristic curve (AUC) 

for this approach. We note that the training and validation sets were not used at all for the 

BAG approach.  

 

5.6.3. Brain age gap finetune (BAG-finetune) approach 

As seen in Section 2.2, the BAG approach did not result in a good classification 

accuracy. One potential reason is that the new datasets (ADNI, AIBL and MACC) were too 

different from the original multi-site datasets used to train the brain age model (Leonardsen et 

al., 2022). Therefore, we considered the BAG-finetune approach (Figure 1C), in which the 

pretrained brain age model was finetuned to predict chronological age in the CN participants. 

More specifically, for each training-validation-test split, the weights of the pretrained SFCN-

regression model were finetuned to predict the chronological age of the CN participants in the 

training set using the mean absolute error (MAE) loss. The same hyperparameters were used 

as the Direct approach, except that the initial learning rate was set to a low value of 0.01 to 

avoid significant deviation from the original pretrained weights. The validation set was used 

to select the epoch with the hyperparameters that yielded the best chronological age 

prediction based on MAE. The finetuned brain age model was then used to generate brain age 

gap in each test participant, which was in turn used to compute AUC in the test set.  

 

5.6.4. Brain age 64D (Brainage64D) approach 

 As will be seen, the BAG-finetune approach also did not perform well, so another 

possible hypothesis is that summarizing a participant with just a single scalar (brain age gap) 

might be losing too much information. Therefore, we considered the brain age 64D 
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(Brainage64D) approach, in which a logistic ridge regression model was trained on the 64-

dimensional output of the global averaging pooling layer in the pretrained SFCN-regression 

model (Figure 1D). The scikit-learn package (Pedregosa et al., 2011) was used. The logistic 

ridge regression model included an inverse regularization parameter � (larger value indicated 

lower regularization). Model fitting was performed on the training set, and the inverse 

regularization parameter was determined based on AUC in the validation set.  

The optimal hyperparameter was selected from 0.001, 0.01, 0.1, 1, 10, 100 or 1000. 

The best hyperparameter was then used to retrain the logistic regression model on the full 

development (training and validation) set. The final trained Brainage64D model was the 

concatenation of the pretrained SFCN-regression model up to (and including) the global 

average pooling layer and the trained logistic regression model. This final model was then 

evaluated in the test set.  

 

5.6.5. Brain age 64D finetune (Brainage64D-finetune) approach 

As seen in Section 2.2, the Brainage64D approach performed better than BAG 

(Section 5.6.2) and BAG-finetune (Section 5.6.3), but was still worse than the Direct 

approach. One potential reason is that the new datasets (ADNI, AIBL and MACC) were too 

different from the original multi-site datasets used to train the brain age model (Leonardsen et 

al., 2022). Therefore, we considered a Brainage64D-finetune approach (Figure 1E), in which 

we finetuned the previously trained Brainage64D model (Section 5.6.4). All layers of the 

trained Brainage64D model were finetuned, using the same cost function and 

hyperparameters as the Direct approach (in Section 5.6.1), except that the initial learning rate 

was set to a low value of 0.01 to avoid significant deviation from the original pretrained 

weights. Model parameters with the highest AUC in the validation set was then used for 

evaluation in the test set.  

 

5.7. MCI progression prediction models 

We compared three approaches for MCI progression prediction (Figure 4): Direct 

approach (Figure 4A), Direct-AD2prog (Figure 4B) and Brainage64D-AD2prog (Figure 4C). 

All computations involving SFCN utilized NVIDIA RTX 3090 GPUs with 24GB memory 

and CUDA 11.0. 
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5.7.1. Direct approach 

The “Direct” approach for predicting MCI progression is the same as “Direct” 

approach for AD classification. In other words, we trained a SFCN model from scratch to 

predict whether a participant was pMCI or sMCI. Similar to Section 5.6.1, we replaced the 

fully connected layer (with one output node) of the SFCN-regression model with a fully 

connected layer with two output nodes for sMCI and pMCI classification labels respectively 

(Figure 4A). Stochastic gradient descent (SGD) was used to minimize the cross-entropy loss. 

Because of the computational cost, no hyperparameter was tuned. Instead, we used a fixed set 

of hyperparameters: weight decay = 1e-4, dropout rate = 0.5, and initial learning rate = 0.1. 

The learning rate was decreased by a factor of 10 every 30 epochs. The training batch size 

was set to 6 due to GPU memory constraints. For each training-validation-test split, the 

Direct approach was trained from scratch (using randomly initialized weights) for 150 epochs 

in the training set. Model parameters with the highest area under the receiver operating 

characteristic curve (AUC) in the validation set was used for evaluation in the test set.  

 

5.7.2. Direct-AD2prog 

As seen in Section 2.4, the prediction performance of the “Direct” approach was not 

good. Previous studies have suggested that adapting an AD classification task to predict MCI 

progression can improve prediction performance, compared with training a model from 

scratch (Lian et al., 2020; Oh et al., 2019; Wen et al., 2020). Therefore, we extracted the 64-

dimensional output of the global averaging pooling layer of the previously trained Direct AD 

classification models (Section 5.6.1; Figure 1A). We then trained a logistic ridge regression 

model using the 64-dimensional features to predict whether a participant progressed to AD 

dementia. We refer to this approach as Direct-AD2prog (Figure 4B), where “AD2prog” refers 

to the fact that we transferred features from the AD classification model to build a new model 

to predict disease progression.  

Consistent with Section 5.6.4, the logistic ridge regression model included an inverse 

regularization parameter � (larger value indicated lower regularization), which was 

determined based on AUC in the validation set. The optimal hyperparameter was selected 

from 0.001, 0.01, 0.1, 1, 10, 100 or 1000. The best hyperparameter was then used to retrain 

the logistic regression model on the development (training and validation) set. The trained 

model was then evaluated on the test set. 
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5.7.3. Brainage64D-finetune-AD2prog 

Similar to Direct-AD2prog, we also extracted the 64-dimensional output of the global 

averaging pooling layer of the previously trained Brainage64D-finetune AD classification 

models (Section 5.6.5). We then trained a logistic ridge regression model using the 64-

dimensional features to predict whether a participant progressed to AD dementia. We refer to 

this approach as Brainage64D-finetune-AD2prog (Figure 4C). Consistent with previous 

sections, we again select the optimal regularization hyperparameter (from 0.001, 0.01, 0.1, 1, 

10, 100 or 1000) based on the validation set. The best hyperparameter was then used to 

retrain the logistic regression model on the full development (training and validation) set. The 

trained model was then evaluated on the test set. 

 

5.8. Vary training and validation set sizes 

Adapting a pretrained model (trained from large datasets) for a new classification task 

might be more advantageous when the sample size available for the new task is small. 

Therefore, we repeated the previous AD classification and MCI progression prediction tasks 

by varying the size of the development (training and validation) set. 

Recall that we have previously repeated the training-validation-test procedure 50 

times (Section 5.3). In the current analysis, for each of these 50 repetitions, we in turn 

randomly sub-sample the development (training and validation) set. In the case of AD 

classification, we varied the development set size as follows: 50, 100, 200, 300, 400, 500, 

600, 700, 800, 900, and the maximum development set size of 997. In the case of MCI 

progression prediction, we varied the development set size as follows: 50, 100, 150, 200, 250, 

300, 350, 400, and the maximum development set size of 448.  

Consistent with previous analyses, the development set was in turn divided into 

training and validation sets with an 80:20 ratio. The test set was also maintained to be the 

same across all development set sample sizes, so that the prediction accuracies were 

comparable across development sample sizes. 

In the case of AD classification, care was taken so that when the subsampled 

development set had the same numbers of CN participants and participants with AD 

dementia. Since BAG and BAG-finetune performed poorly in the main analysis (Figure 2), 

for this analysis we only considered Brainage64D, Brainage64D-finetune and Direct 

approach. 

In the case of MCI progression prediction, care was taken so that when the 

subsampled development set had the same numbers of sMCI and pMCI participants. Since 
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Direct performed poorly in the main analysis (Figure 5), for this analysis we only considered 

Direct-AD2prog and Brainage64D-finetune-AD2prog. Furthermore, while we varied the 

development set size, the input features for both approaches were extracted from AD 

classification models trained from the full sample size (Section 5.7).    
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