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Abstract

Humans appear to be sensitive to relative small changes in their surroundings. These changes are often initially perceived as
irrelevant, but they can cause significant changes in behavior. However, how exactly people’s behavior changes is often
hard to quantify. A reliable and valid tool is needed in order to address such a question, ideally measuring an important
point of interaction, such as the hand. Wearable-body-sensor systems can be used to obtain valuable, behavioral
information. These systems are particularly useful for assessing functional interactions that occur between the endpoints of
the upper limbs and our surroundings. A new method is explored that consists of computing hand position using a
wearable sensor system and validating it against a gold standard reference measurement (optical tracking device). Initial
outcomes related well to the gold standard measurements (r = 0.81) showing an acceptable average root mean square error
of 0.09 meters. Subsequently, the use of this approach was further investigated by measuring differences in motor behavior,
in response to a changing environment. Three subjects were asked to perform a water pouring task with three slightly
different containers. Wavelet analysis was introduced to assess how motor consistency was affected by these small
environmental changes. Results showed that the behavioral motor adjustments to a variable environment could be
assessed by applying wavelet coherence techniques. Applying these procedures in everyday life, combined with correct
research methodologies, can assist in quantifying how environmental changes can cause alterations in our motor behavior.
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Introduction

The evolutionary development of the hand as part of the upper

extremity has been essential for progression of the human race.

Bipedalism freed the hands from locomotion for dexterous

behavior, such as tool making and communication [1]. Many of

the gained advantages of freeing up the hands relate to the

interaction of the extremity with objects. It has been suggested that

progression in hand function not only provided new ways to

fabricate and use tools, but also affected other behavior states. This

is illustrated by aggressive behavior, such as clubbing and

throwing, that suddenly became available to the early humans

because of a change in anatomical design [2]. These findings

indicate the range of behaviors that can be influenced by a

changing function of the upper extremity. However, performance

is not just based on the anatomical properties of the limb, since

motor control will define the level of efficiency at which the

movements are executed. Movements are precisely controlled by

the brain and communication deficits between the musculoskeletal

and nervous system lead to direct changes in (motor) behavior.

Even at the early stages of life, spontaneous movements differ

between premature infants with brain injuries and those without

injuries [3]. Motor patterns also alter during our life span and

changes are likely to relate to the development of neural

mechanisms that underlie the control of the arm and hand [4].

Objective measurements of arm movements could even inform us

about associated neurological functioning throughout normal and

impaired development. However, they also reveal how behavior

changes in response to modest changes in the environment. Both

humans and animals seem sensitive to what appears to be only

small changes in their surroundings [5,6]. Yet, we lack the

scientific base of how these small everyday alterations might affect

our behavior. An accurate tool that quantifies human-object

interaction is needed to study this and one potential approach is

explored in this paper.

Accurate measurements of human movement during specific

tasks can increase the understanding of certain behaviors in

response to alterations in our perceived world. Assessment tools

need to be able to collect relevant parameters for the duration of a

particular activity in order to acquire relevant information

regarding the interactions between a person and their surround-

ings. Traditionally, kinematics and biomechanical aspects of

movement are studied with optical motion analysis systems in

laboratory settings. Although, this kind of research yields valuable

information, the results only remain valid in conditions where no
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anticipation or reaction to a real-world environment is required

[7]. It is preferable to collect data on location during real-life

situations where individuals can express ‘‘normal’’ behavior. This

kind of data has a higher degree of ecological validity, therefore

increasing the external validity of the final results (Locke, 1986).

Such an approach would require a portable sensor system that can

collect body segment orientation in any environment under a

range of different conditions.

Triaxial gyroscopes can be used to measure the angular

orientation of a body segment, by integrating the angular velocity

signal. However, a relative small offset error of the signal will

introduce large integration errors. As the majority of normal

human movement generates accelerations below the gravitational

acceleration of 9.81 m/s2, accelerometers can be used to provide

additional inclination information. Since the accelerations that

occur are relatively small compared to the gravity vector, the

magnitude of the acceleration with respect to gravity can be

neglected, thus providing inclination information that can be used

to correct the drifted orientation estimate from the gyroscopes. It

has been shown that a triaxial accelerometer and gyroscope can be

fused together to accurately measure the orientation of human

body segments (Luinge & Veltink, 2005). However, this method

will be less accurate for movements with relatively large

accelerations and it does not provide information of the rotation

component around the vertical axis. Further improvements can be

made by adding a triaxial magnetometer to the measurement unit.

A magnetometer is sensitive to the earth’s magnetic field and gives

information about the heading direction. This information can be

used to correct for drift of the gyroscope about the vertical axis

(Roetenberg et al., 2003). Inertia Measurement Units (IMUs)

consisting of a triaxial accelerometer, gyroscope and magnetom-

eter provide consequently the most accurate measurements of

angular orientation during movement. IMUs have become more

and more popular in the human movement and clinical research

field, as they combine certain notable benefits. They are small,

portable and lightweight, thereby satisfying the requirements to

perform measurements in real-world situations and at the same

time providing a cheaper alternative to the laboratory-bound

optokinetic systems (Veltink et al., 1996).

The aim of this study is to explore the validity of a wearable

sensor system to track the arm (part 1) and investigate if the system

can identify how motor behavior changes with small alterations in

the environment (part 2). The validity of the sensing device is

examined by determining how closely the distal position of the

arm (a solid hand and wrist complex) relates to the position

acquired by an optical tracking device, during a series of

predefined arm movements. Subsequently, wavelet analysis was

applied to compare slightly different object constraints within the

same everyday task, in order to assess changes in the consistency of

the displayed motor behavior. Three different objects, which all

have the same functional purpose, were used to introduce changes

in the environment.

Experiments

Part 1
Validation of the measurement system. One healthy

female participant aged 37 years (height 171 cm, weight 61 kg)

volunteered to participate in this study after local college ethical

approval (BDM/10/11-12) from the King’s College London College

Research Ethics Committee and written informed consent was

obtained for all parts of this study. Three IMUs (MTx, Xsens

Technologies B. V., Enschede, Netherlands) were placed on the

hand, lower and upper arm (Figure 1). Straps were used to provide

a preloading force and thereby decreasing measurement errors [8].

The sensors (30 g each) were securely attached to each body

segment in order to ensure that the orientation of the sensor with

respect to the body segment did not change.

The placement of the sensor determined the relationship of the

sensor axis to the anatomical coordinate system, as the sensor

coordinate system was fixed to the device. The Z-axis of each IMU

coordinate system was physically placed to run as close as possible

perpendicular to the sagittal plane, while at the same time

minimizing relative motion between sensors and underlying bones.

As the participant sat as still as possible with the arm hanging to

the side of the body, a further analytical correction was applied by

software (MT Software V2.8.1, Xsens Technologies B. V.,

Enschede, Netherlands). The alignment program placed the Z-

axis of each IMU in line with gravity (vertical plane) with the new

X-axis of all the sensors perpendicular to the Z-axis and along the

line of the original global X-axis, while the Y-axis was chosen as to

obtain a right handed coordinate frame. The non-orthogonality

between the axes of the body-fixed coordinate system was less than

0.1u.
Active Codamotion markers (Codamotion, Charnwood Dy-

namics, Leicestershire, UK) were placed, using double-sided

adhesive tape, on the radial styloid process, ulnar styloid process,

lateral epicondyle, medial epicondyle, acromion, spinous process

of the seventh cervical vertebra and the IMUs (Figure 1). A

standard system configuration was used for data acquisition by the

Codamotion and Motion Tracker software. The cameras of the

optical tracking device were positioned in such a way that the

position data of the right side could always be obtained during

movement. The three dimensional (3D) position of these markers

can be determined with an accuracy of 61 mm [9].

Data for both the Codamotion and the IMUs was acquired at

100 Hz and an electronic pulse was used to synchronize the two

measurement systems. All further data analysis was done using

Matlab (MathWorks, Inc., Natick, MA, USA).

Motion sequences. The participant sat on a chair with the

arm rested at the side of the trunk. The subject was asked to

Figure 1. Optical tracking markers and Inertia Measurement
Units (IMUs) as attached to the left arm of the participant.
doi:10.1371/journal.pone.0088080.g001
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perform three different sequences each consisting of three different

positions (Figure 2) and each held for roughly 10 seconds. The first

sequence started with the arm fully extended, hanging by the side,

in the start position, followed by flexing the elbow to 90u and

keeping the forearm in neutral, after which the participant was

asked to move to 90u of shoulder anteflexion, with the arm fully

straight and pointing forward (sequence A). In the second

sequence, the participant began in the same starting position as

the first sequence and was then instructed to move to 90u of

shoulder abduction with the elbow fully extended, from this

position the elbow was flexed to 90u and an internal rotation was

performed (sequence B). The last sequence also had the same

starting position as the previous two, from which the participant

moved her arm to 90u of shoulder abduction and 90u elbow flexion

with an external rotation; this was followed by moving to 45u
retroflexion in the shoulder and 120u of flexion in the elbow

(sequence C).

Biomechanical model used with the IMU data. The

upper extremity can be approximated as a multilink chain, with

each body part as a rigid segment and its movement represented

by one IMU [10]. A simplified two-segment 3D model was used

that only consisted of two (upper and lower arm) rigid segments

(Figure 3). The shoulder blade (scapula) movement was not taken

into account. In addition, the hand and wrist were considered as a

single rigid segment for ease of application of the model. The

upper arm movement was essential, as it has already been shown

that functional changes of the hand-wrist complex directly affects

movement patterns at the shoulder [11]. To keep the model as

simple as possible only the signals from the sensors that were

absolutely vital to reproduce the general movement pattern were

selected. Body segment lengths were calculated from anthropo-

metric data [10], as a percentage of the body height of the

participant.

Analysis. The 3D representations of the distal point of the left

arm (point [d] in figure 3) obtained using the two measurement

devices were compared by calculating a two-tailed Pearson

product-moment correlation coefficient (r) and by calculating the

Figure 2. Arm positions used. Each arm position sequence used is identified by a letter (A, B or C) and consisted of three succeeding positions the
participant was instructed to attain and then hold for approximately 10 s.
doi:10.1371/journal.pone.0088080.g002

Figure 3. Initial condition of the two-link model. Segment
lengths were taken from anthropometric data [9]. The proximal point
(p) represents the shoulder; the intermediate point (i) is the elbow and
the distal point (d) the hand. All positions are given in (X,Y,Z). (LU)
length of the upper arm; (LL) length of the lower arm and hand.
doi:10.1371/journal.pone.0088080.g003
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root mean square error (RMSE) between the two signals [7,12,13].

The dynamic range, defined as the largest possible signal (full

range of motion) divided by the smallest possible signal [14]

(maximum error), was calculated for the IMU based model.

Independent analysis of each direction of movement, referred to as

X, Y and Z, was performed. In addition, the Euclidean norm dk k
was determined by

di~ XiYiZi½ �

dik k~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

i zY 2
i zZ2

i

q

with di representing a vector based on Xi, Yi and Zi with index

point i.

Results. The shape of the curve describing the movement

was on the whole highly comparable between the two measure-

ment methods (Figure 4). High Pearson correlation coefficients

were found in both the Y and Z direction for all movement

sequences (Table 1). After an initial high correlation in the X

direction for sequence A, a drop in correlation occurred for the

subsequent sequence. The movement of the hand in the X

direction was poorly correlated in sequence B. However, the

RMSE calculated in the X direction for this sequence was not

higher than those found for sequence A and C. The best accuracy

was found for sequence A, with RMSE ranging from 0.02 to 0.05

meters. Sequence B not only had the poorest correlation between

the methods, it also suffered from the highest RMSE. The

Euclidean norm showed a lower correlation for sequence B, but

had very strong correlations for both A and C. The highest

dynamic range was found for sequence B in direction X. In

general, the Z direction performed the best in terms of highest

correlations and lowest RMSEs. It also had relative high dynamic

ranges across all sequences.

Discussion. Single plane movements (e.g. sequence A) seem

to provide the best correlations between methods. However, even

in more complicated movement patterns (sequence B and C)

motion of the distal part of the upper limb model relates well to the

motion of the optical tracking marker in both the Y and Z

direction. The low negative correlation found in sequence B does

not affect the overall movement pattern too much, as the hand

position changed more for the Y and Z direction (DY = 0.39 and

DZ = 0.68 m) than for the X direction (DX = 0.25 m).

The Euclidian norm provides a method for dimensionality

reduction and the results indicate it performed relatively well

across the explored sequences. On the whole, the principal

movement patterns can be picked up by the proposed method

based on body-worn sensors, but they do not provide high absolute

accuracy of the position of endpoints. The dynamic range showed

that information could be extracted from the dominant planes of

motion. Yet, smaller deviations, particular in the X direction, did

(almost) not register beyond the noise level. The proposed method

can best be applied to movement patterns, with large changes in

positions. The proposed model is most suitable for motor behavior

that involves large ranges of motion at the shoulder complex.

Although motion artifacts do have a detrimental effect on

outcome, the largest source of accuracy errors is more likely due to

the fact that the biomechanical arm model was based on only two

segments. It has been shown that IMUs can obtain accurate

estimations of arm position when applied during movement

patterns that require a very limited range of motion [15]. The

sequences in this study were specifically selected in order to obtain

an insight into the accuracy of the proposed model over a fuller

range of arm movements. Also, the difference found between the

two methods could be contributed to inaccuracies associated with

the relative movement of the sensors or markers compared to the

underlying bones. Due to this relative movement between the

optical tracking marker and the underlying bony landmark,

artifacts in position data can occur [16]. Displacements of more

than 20 mm between skin and underlying bone have been

reported for optical tracking systems [17].

The presented validation results relate to the agreement of the

two systems within this study. These outcomes do not reflect

validation of this system for an out of experiment population and

are meant to provide the required internal validation that is

needed for further exploration of the method within this paper.

Part 2
Analyzing changes in motor behavior. The upper limb

model was subsequently tested by having three healthy subjects (2

males and 1 female, aged between 27 and 42 years), using three

different liquid container designs (pitcher, teapot and kettle). From

an initial starting position (hands placed along their side),

participants were asked to pick up the container with liquid with

their left hand and pour a little bit into a cup without spilling. All

subjects confirmed that they were accustomed to pouring with

their left arm and the sensor system was fitted on that side. Both

Figure 4. Positions of the hand in each direction (X, Y, Z and Euclidean norm) and for every sequence. Dashed blue lines are the
positions obtained from the optical tracking device and the solid red lines correspond to hand positions calculated by the biomechanical model
using IMU data.
doi:10.1371/journal.pone.0088080.g004

Table 1. Pearson correlation coefficients, Root Mean Square Errors and dynamic range between the positions obtained by both
methods.

Pearson correlation coefficient (p,0.01) Root Mean Square Error (meters) Dynamic Range

S A B C A B C A B C

X 0.99 20.11 0.60 0.04 0.14 0.13 50.46 0.95 0.97

Y 0.95 0.97 0.93 0.05 0.15 0.08 3.46 2.38 2.10

Z 0.99 0.98 0.99 0.02 0.07 0.10 44.76 7.35 9.48

dk k 0.98 0.73 0.95 0.03 0.17 0.15 7.0 2.07 1.3

S stands for motion sequence; X, Y and Z represent the directions of movement for the upper limb point and the Euclidean norm is given by dk k.
doi:10.1371/journal.pone.0088080.t001
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the container and cup were placed in a preset location to ensure

agreement between subjects and tasks. Apart from these basic

constrains, participants were free to choose their own preferred

movement path and speed. Subjects were asked to repeat the

pouring task 8 times during two separate trials. The start and end

position consisted of the arm resting on the side of body. The

measurements were taken in the kitchen where the subjects would

normally prepare their drinks (Figure 5). The container and mug

were placed about 20 cm away from the edge of the kitchen

countertop.

The purpose of these measurements was to show the utility of

the sensing system for determining coherence in motor behavior

related to the individual or object (container). The previous

mentioned local college ethical approval also covered this part of

the study and written informed consent was obtained from all

three subjects. Observation of the initial results shows that the

difference is more profound, between subjects than within subjects

(Figure 6).

Analysis. The data presented in Figure 6 can be compared

using a range of methods. As the signal varies in time, one could

apply a Fourier analysis that relies on adding together the

appropriate infinite sum of sine waves. However, most behavioral

signals are finite and require the detection of localized features. In

this case the use of wavelets is more appropriate. Fourier analysis is

based on a single function that is scaled, but the wavelet transform

also shifts the function, generating a more accurate description of

the signal [18]. A wavelet is a special case of a vector in a separable

Hilbert space that generates a basis under the action of a collection

of unitary operators defined in terms of translation and dilation

operations [19]. We use a continuous wavelet transform (CWT) to

divide the signal into wavelets, allowing us to analyze the

frequency content over time. This information can then be used

to compare two signals and find a potential relationship between

them. Regions where the signals have equal power or phase

behavior indicate an association. The wavelet coherence can be

interpreted, to some extent, as a measure of local correlation [20].

Coherence measures the variability of time differences between

two time series in a specific frequency band [21]. It can be

expected that the variance for a particular behavioral task (e.g.

pouring) is somewhat comparable across repetitions performed by

the same subject who is using the same container. Changing the

situation, in our case by applying a different container, can cause

interference in a ‘‘similar’’ set of motor behaviors [22]. Therefore,

wavelet-coherence is initially computed only within repeated

movements of one subject and one container. A subsequent

comparison is made between the summed results of each of the

subjects and objects.

A Morlet waveform was selected for the wavelet analysis, as it

was expected to show an appropriate match with the performed

activities [23]. The wavelet coherence of two time series x and y

can be described as,

C~
S(CW �

x (a,b)CWy(a,b))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S CWx(a,b)j j2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S CWy(a,b)
�� ��2

q

where S is the smoothing operator, while CWx(a,b) and CWy(a,b)

denote the continuous wavelet transforms of the signal x and signal

y at the scales a and the positions b [24]. A good practical

introduction to wavelet coherence can be found in [25]. The

wavelet coherence can be used in this experiment to compare

signals between subjects or between containers (objects). Data were

analyzed using the wavelet toolbox in Matlab (MathWorks, Inc.,

Natick, MA, USA).

Examples of simulated outcomes for wavelet coherence are

given in Figure 7 in order to provide some further background to

the reader. The examples show the wavelet coherence between

different sine and Haar waves. The first example (A) shows the

outcome between two almost identical sine waves. The second

example (B) shows a Haar and sine wave with the exact same

frequency. In the last example (C) there is a factor 2 difference in

frequency, between the two waves. It is clear from Figure 7 that

the localized similarities differ depending on the signals that are

compared. The amount of divergence can subsequently be

described, as an average wavelet coherence value ( �CC). This value

is simply calculated by first averaging across the scales at each time

point (columns) and subsequently across the time points them-

selves,

CCi ~ n{1
Xn

j~1

Cij for i ~ 1 : m

�CC~m{1
Xm

i~1

Ci

with C representing the coherence with rows i and columns j for

lengths n and m. High scales are associated with low frequencies,

while the low scales portray the high frequencies. The high scales

Figure 5. Experimental setup. A Picture of the kitchen that was used with at the top right corner an inset of the containers and mug B Schematic
of the experimental setup that was applied.
doi:10.1371/journal.pone.0088080.g005
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(low frequencies) are of particular interest, as everyday living

activities normally take several seconds to complete and even

longer when restricted by impairments [26].

The subjects poured several times with each container providing

the opportunity to calculate the mean wavelet coherence of the

Euclidean Norm across all possible pairwise repetitions. Based on

these outcomes a between and within subject �CC could be

computed by taking the average of all subjects or objects. This

provided a simple measure of consistency in motor behavior,

which was used to explore the notion that consistency in motor

behavior might differ between subjects and containers.

Results. The average (6 standard deviation) duration of the

pouring tasks was 10.6 (62.1) seconds with a range of 7.3 to 16.8

seconds. The coherence results are provided in Figure 8.

Inspection of the wavelet coherence plots show that subject 1

has a distinctive different outcome compared to subject 2 and 3.

Subject 1 also showed the highest overall phase difference (.73)

with respect to time and scale. Overall the pitcher yielded the

highest �CC across subjects (.82), while the kettle had the lowest (.77).

This example shows the ability of the analysis method to

differentiate between movement patterns. The difference in

localized features indicates how much and when consistency in

motor behavior differs within subjects and between objects

(Figure 8).

Discussion. This preliminary dataset demonstrates the pos-

sible utility of the simplified upper limb model in a real-life setting,

by combining concepts such as wavelets and unitary math. The

results showed that wavelet analysis can be applied to compare

everyday movement tasks, such as pouring. The wavelet coherence

estimates the association between two signals with respect to both

time and scale. The outcomes obtained in the wavelet coherence

analysis focused on how consistent motor behavior was within and

between subjects. It became clear that subject 1 was the least

consistent in motor behavior, which potentially relates to the

selection of an alternative motion path (Figure 6. A) compared to

subjects 2 and 3. The pitcher also seemed to provide a context in

which each subject was able to display more consistent behavior.

The example explored in this study has limited generalizability,

due to the small experimental sample size and the focus on the left

hand. The aim of this study was not to provide results that could

Figure 6. Traces of the hand computed using a two-linked segmental model. All figures starting with A compare the patterns between
three subjects (blue, red and green) interacting with a pitcher (A.1), teapot (A.2) and kettle (A.3). The figures labeled with a B show the traces for
each subject (B.1, B.2 and B.3) using pitcher (blue), teapot (red) and kettle (green). All plots show a 2D projection of the data for each plane.
doi:10.1371/journal.pone.0088080.g006
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be easily extrapolated, but to show that behavioral consistency in

activities of daily living could be explored in more detail using

sensors and wavelets.

The importance of situations for determining behavior is well-

known and cross-situational consistency of behavior has already

been associated with how much situations are ‘‘alike’’ [27]. Higher

measurement resolutions could provide a richer understanding of

behaviors that are assumed similar. It even allows for possible

detection of minor environmental changes, such as a slightly

different interaction object, that are now often overlooked.

Defining behavior within the field of behavioral science has led

to many different interpretations and opinions [28]. A recent study

generated a more evidence based definition that stated that

behavior is the internally coordinated responses (actions or

inactions) of whole living organisms (individuals or groups) to

internal and/or external stimuli, excluding responses more easily

understood as developmental changes [28]. The majority of these

responses reflect coordinated actions of the human musculoskeletal

system, despite the fact that these actions are emerging properties

of multiple attributes.

The focus on real-world repeatability of motor behavior comes

from one of the most cited articles in cross-species behavior [29].

The authors found that repeatability estimates were higher in the

field compared to the laboratory and repeatability was higher

when the interval between observations was short. Although,

humans are likely to differ from other species these findings offer

an interesting argument to collect more real-world data. There is

also evidence that repeatability increases with human ageing and

this has been linked to the process of consolidated identity or

reputation [30,31]. The proposed method might provide a new

way of exploring real-world behavior with a system that is not

limited to a specific setting. Although, camera tracking with

consumer products has now been shown to be useful for low-cost

hand tracking [32], such a method still remains restricted to

tracking people within a limited field of view. In addition, optical

tracking systems will lose their utility once this field is obstructed.

Discussion

Limitations of the Study, Open Questions, and Future
Work

The Euclidean norm was utilized for data analysis, as it

represents a simple magnitude value. Caution needs to be taken

with only applying the norm as parameter, as the dimensional

reduction and consequent loss of information might only be

appropriate for certain hypotheses. Nonetheless, the method

introduced in this paper could also take in other sensing variables.

In principle, questions regarding how specific situations can affect

consistency in behavioral control of the arm could be investigated

using the proposed method.

As mentioned previously, the small subject sample minimizes

any generalizability of the presented results. Small sample sizes

have been used to pilot applications for body-worn sensors [33],

but it comes with the limitation that further research needs to be

done in order to establish the boundaries of the external validity of

the proposed system and analysis method. Although, the

coherence approach should provide relevant outcomes with only

a few trials [34], it is recommended not to extrapolate these results

beyond the explorative nature of this study.

Figure 7. Example of how the wavelet coherence changes over three samples of wave patterns. Zero-mean Gaussian noise is added to all
signals. Top plots: A Red signal shows a sine wave with a frequency f and the blue trace has a frequency of 1.001f. B Red signal shows a sine wave,
while blue is a Haar wave with the same frequency f. C The red signal shows a sine wave with a frequency f and the blue trace has a frequency of 2f.
Bottom plots show the wavelet coherence for each example. The heat map displayed on the right side specifies the coherence. The mean wavelet
coherence value ( �CC) is displayed in the corner of each bottom plot.
doi:10.1371/journal.pone.0088080.g007

Figure 8. Wavelet coherence plots of the Euclidean norm. The
mean coherence across 8 movement repetitions is displayed for each
subject, while using one of the three containers. At the end of the rows
all wavelet coherences per subject are averaged (Withins). At the
bottom of each column all subjects are averaged for each container
(Betweens). The warmer the color of a region, the greater the coherence
is between the two signals. The full wavelet coherence is subsequently
averaged for each subject and container to generate a single value ( �CC)
that is displayed in top corner of each plot.
doi:10.1371/journal.pone.0088080.g008
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Recently, it has been argued that more progression is need in

the conceptualization and measurement of situations to better

understand personality and the ongoing person–situation debate

[33]. The presented work here explored a measurement tool that

could be applied for studying person–situation paradigms. A larger

study is required to determine if the system can be used to

determine how consistency in everyday living depends on concepts

such as personality.

Future work should focus on an even less intrusive version of

this device, as it has been shown that utility might be affected by

the measurement tool itself if it is not fully unobtrusive [35].

Integrating the sensor system into a garment is a potential

adaptation that would make the system less noticeable, subse-

quently generating data sets that even more closely represent real-

life behavior. Furthermore, one can also start applying unitary

mathematics directly to predict human interaction by modifying

recently presented methods for predicting linguistics [36]. Such

analysis needs to be applied to larger datasets in order to

disentangle natural variation from variability that arises due to a

changing environment. Comparing the obtained outcomes to a

reference database would provide a method to track changes over

time and differentiate between environmental changes and natural

variability. The methodology can potentially be developed into a

long-term tracking system that identifies how people interact in

everyday life, thus providing a possible continued data stream for

investigating behavioral consistency of an individual during ever

changing natural surroundings. This approach might be interest-

ing for a range of different research fields, including product

design and human factors.

Conclusion

The current tool focuses on measuring aspects of arm

movement, which represents only a small part of overall human

behavior. However, the results obtained with the presented system

have shown how specific sensor modalities could be used to

provide feedback regarding behavioral changes in response to a

changing (object-related) environment. The example given in this

paper shows how new sensing tools can help evaluate behavior and

potentially improve our understanding of our interaction with our

environment. The concept of using body-worn sensors to gather

behavioral information in itself is not new. Applying sensor systems

to measure animal behavior has been important for understanding

how animals interact with their environment and is one of the

fundamental aims of animal ecology [37]. Moreover, human

behavior has also been widely tracked using sensors [38,39]. Yet,

often this monitoring relates to energy expenditure or activity

recognition and those studies that do track upper limb movement

have frequently a purely clinical aim.

Recently, patients with and without the behavioral variant of

frontotemporal dementia have been identified as similar in a

caregiver-based assessment of activities of daily living, whereas a

clear distinction was identified with a performance based

measurement [40]. This example highlights the need to quantify

(motor) behavior beyond the level that is often applied. Small

changes in our environment are not often taken into account,

while they do influence our behavior. For example, it is known

that changing colors and shapes directly alters behavior [41,42].

We propose here that wearable sensor systems can be utilized to

understand how small changes in a real-life environment affect us.

This approach combined with well-developed research protocols

could help us better quantify how our interactions are affected by

our everyday surroundings.

Supporting Information

Data S1 The supporting information contains the Euclidean

norm (m/s2) for each subject and container condition described in

part 2. Only data that crossed the threshold value of.625 was

defined as movement. All other values were set to the

aforementioned threshold value to minimize their impact in the

wavelet analysis. All starting points of the movements were

aligned.

(XLS)
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et al. (2008) Study of the motion artefacts of skin-mounted inertial sensors under

different attachment conditions. Physiological Measurement 29: N21–N31(21).

9. Lichtwark GA, Wilson AM (2006) Interactions between the human gastrocne-

mius muscle and the Achilles tendon during incline, level and decline

locomotion. Journal of Experimental Biology 209: 4379–4388.

10. Winter DA (1990) Biomechanics and motor control of human movement New

York Wiley.

11. May-Lisowski TL, King PM (2008) Effect of wearing a static wrist orthosis on

shoulder movement during feeding. American Journal of Occupational Therapy

62: 438–445.

12. Thies SB, Tresadern P, Kenney L, Howard D, Goulermas JY, et al. (2007)

Comparison of linear accelerations from three measurement systems during

‘‘reach & grasp’’. Medical Engineering & Physics 29: 967–972.

13. O’Donovan KJ, Kamnik R, O’Keeffe DT, Lyons GM (2007) An inertial and

magnetic sensor based technique for joint angle measurement. Journal of

Biomechanics 40: 2604–2611.
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