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Pseudomonas syringae pv. lapsa is a pathovar of Pseudomonas syringae that can infect wheat. The complete genome of P. syrin-
gae pv. lapsa strain ATCC 10859 contains a 5,918,899-bp circular chromosome with 4,973 coding sequences, 16 rRNAs, 69
tRNAs, and an average GC content of 59.13%. The analysis of this genome revealed several gene clusters that are related to
pathogenesis and virulence.
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Pseudomonas syringae is a rod-shaped, polarly-flagellated,
Gram-negative, aerobic bacterium, which comprises 64

pathovars with each corresponding to a specific susceptible host
species, including tomato, wheat, apple, cocoa, etc. (1). Among
these pathovars, Pseudomonas syringae pv. lapsa can specifically
infect wheat, a widely cultivated food crop, causing yield reduc-
tion and economic loss. Though the whole-genome sequence of a
model pathogen, i.e., P. syringae pv. tomato DC3000, has been
published and well studied (2), most of the P. syringae strains have
their genome sequences unrevealed or uncompleted. To gain a
better understanding of the pathogenesis mechanism, as well as
the virulence features of P. syringae, the whole-genome sequence
of the P. syringae pv. lapsa, strain ATCC 10859 was determined.

Three paired-end DNA libraries were constructed, with aver-
age insert sizes of 380 bp, 490 bp, and 680 bp, respectively, for
sequencing with an Illumina MiSeq platform. Meanwhile, a 10-
kbp SMARTbell template library was constructed for sequencing
in a PacBio RS II single-molecule real-time (SMRT) sequencing
platform (3). A total of 4,282,609 (2 � 307-bp paired-end) reads,
as well as 19,804 reads with a mean read length of 10,375 bp were
obtained, corresponding to sequencing depths above 400� and
30�, respectively. De novo assembly of the SMRT reads was per-
formed using the Hierarchical Genome Assembly Process
(HGAP) assembly protocol version 3 (4) and the Gepard program
(5), which yielded one complete circular chromosome sequence.
The Illumina reads were adapter-trimmed using the Skewer pro-
gram (6) before being used for error correction on the circular
sequence. Genome annotations were done by the NCBI Prokary-
otic Genome Annotation Pipeline (7). The genome contains a
5,918,899-bp circular chromosome with an average GC content of
59.13%. There are 4,973 coding sequences (CDSs), 16 rRNAs, 63
tRNAs, 1 ncRNA, and 55 pseudogenes.

Many studies have proved that Pseudomonas spp. can be used
for biocontrol via secrete secondary metabolite (8, 9) and biofilm
formation (10, 11). As expected, several secondary metabolism
associated gene clusters, such as genes associated with pyrimidine

synthesis (ACA40_02470, ACA40_02475, ACA40_10035, ACA40_
01095, ACA40_19310, ACA40_20760) and genes associated with
benzoate synthesis (ACA40_09900, ACA40_10125, ACA40_24870),
were identified in this strain. Meanwhile, 6 fimbrial gene clusters
(cup) (ACA40_01475, ACA40_07220, ACA40_09125, ACA40_13630,
ACA40_15640, ACA40_22320), which were involved in distinct
stages of biofilm formation (12), were identified in this strain. Due
to the importance of flagella biosynthesis in the development of
biofilm (13), the flagella-associated genes were also checked. In
sum, 5 flagellar motor genes (motA:ACA40_02870, ACA40_
22280, motB:ACA40_02875, motC:ACA40_16875, motD:ACA40_
16870), as well as 4 other flagellar genes (FliY:ACA40_01295,FliL:
ACA40_01630, FliK:ACA40_16680, FlhB:ACA40_16685) were
found. These results indicate that ATCC 10859 is a potential an-
tagonistic bacterium.

Genome comparison between P. syringae pv. lapsa ATCC
10859 and P. syringae pv. tomato DC 3000 (2) revealed that about
14.7% (729/4,973) of the CDSs of the first strain cannot find ho-
mologs in the latter one. Not including many hypothetical genes
annotated in this genome, 43 genes associated with type III secre-
tion system (T3SS) were found. In comparison, there are 82, 64,
and 49 T3SS genes annotated with the DC3000, 1448A, and B728a
genomes, respectively.

Nucleotide sequence accession number. The genome se-
quence has been deposited at GenBank under the accession num-
ber CP013183. Strain ATCC 10859 is available from American
Type Culture Collection (ATCC).
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