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Nucleotide-binding and oligomerization domain NOD-like receptors (NLRs) are highly con-
served cytosolic pattern recognition receptors that play, in combination with toll-like recep-
tors, a critical role in innate immunity and inflammation. These proteins are characterized
by a central oligomerization domain termed nucleotide-binding domain, and a protein inter-
action domain containing leucine-rich repeats. Some NLRs, including NOD1 and NOD2,
sense the cytosolic presence of conserved bacterial molecular signatures and drive the
activation of mitogen-activated protein kinase and the transcription factor NF-κB. A dif-
ferent set of NLRs induces caspase-1 activation through the assembly of large protein
complexes known as inflammasomes. Activation of NLR proteins results in secretion of
pro-inflammatory cytokines and subsequent inflammatory responses. The critical role of
NLRs in innate immunity is underscored by the fact that polymorphisms within their genes
are implicated in the development of several immune-mediated diseases, including inflam-
matory bowel disease. Over the past few years, the role of NLRs in intestinal homeostasis
has been highlighted, however the mechanism by which dysfunction in these proteins leads
to aberrant inflammation is still the focus of much investigation.The purpose of this review
is to systematically evaluate the function of NLRs in mucosal innate immunity and under-
stand how genetic or functional alterations in these components can lead to the disruption
of intestinal homeostasis, and the subsequent development of chronic inflammation.
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INTRODUCTION
The innate immune system plays a pivotal role in the early induc-
tion of host defense mechanisms following exposure to pathogens.
Innate immunity can broadly be classified into sensor, effector, and
regulatory functions. Sensor activation of innate immune cells
provides a primary host response and triggers the downstream
effector and regulatory functions. This innate immune response is
achieved through the recognition of microbial agents by pattern
recognition receptors (PRRs), which include toll-like receptors
(TLRs) and NOD-like receptors (NLRs). PRRs detect and translate
signals of evolutionarily conserved pathogen-associated molecular
patterns (PAMPs) into rapid host defenses, triggering sequential
activation of intracellular signaling pathways that lead to induc-
tion of a range of cytokines that prime the adaptive immune
response for long lasting-protection (1, 2). Moreover, it is now evi-
dent that PRRs also sense damage-associated molecular patterns
(DAMPs), which are non-microbial ligands generated primarily
from stress signals, suggesting that PRRs are important for both
microbial defense and, when their signaling become dysfunctional,
the pathogenesis of non-infectious inflammatory diseases (3, 4).

The NLRs are a group of conserved intracellular PRRs that
play a pivotal role in innate immunity. The NLR family includes
22 identified protein members in humans and approximately 33
NLRs genes in mice (5) (Figure 1). The structural features of NLRs
are characterized by a central nucleotide-binding oligomerization

(NOD) domain, which mediates the self-oligomerization occur-
ring during activation (6), a variable N-terminal protein–protein
interaction domain, defined by the caspase recruitment domain
(CARD), and a C-terminal leucine-rich repeat (LRR) that detects
PAMPs. Based on the variation in their N-terminal domain, the
NLRs family can be further subdivided into five families: NLRA
or Class II transactivators (CIITA); NLRB or neuronal apoptosis
inhibitor proteins (NAIPs); NLRC, which includes the CARD-
containing molecules (NOD1, NOD2, and NLRC3-5) and the
NLRP proteins (NLRP 1–14); NLRX, an additional sub-family that
has no homology to the N-terminal domain of any of the other
four subsets and consists of one member; and NLRX1, which is
located within the mitochondria (5, 7–10) (Figure 1).

The physiological importance of NLRs in maintaining a finely
balanced immune response becomes apparent when signaling
derived from these components is dysregulated due to functional
or genetic defects. An example of such dysregulation is during
the development of several chronic inflammatory diseases, such as
inflammatory bowel disease (IBD) (11–13).

INNATE IMMUNE RESPONSE IN IBD
Idiopathic IBD includes two major forms of chronic intesti-
nal disorders: Crohn’s disease (CD) and ulcerative colitis (UC).
Genetic, environmental, and/or epithelial barrier dysfunctions
are all involved in the pathogenesis of IBD, and represent the
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NLR family Human symbol Mouse symbol Structure

NLRA CIITA Ciita

NLRB NAIP Naip1-7

NLRC

NOD1 Nod-1

NOD2 Nod-2

NLRC3 Nlrc3

NLRC4 Nlrc4

NLRC5 Nlrc5

NLRP

NLRP1 Nlrp1 a,b,c

NLRP2 Nlrp2

NLRP3 Nlrp3

NLRP4 Nlrp4 a,b,c,d,e,f,g

NLRP5 Nlrp5

NLRP6 Nlrp6

NLRP7

NLRP8

NLRP9 Nlrp9 a,b,c

NLRP10 Nlrp10

NLRP11

NLRP12 Nlrp12

NLRP13

NLRP14 Nlrp14

NLRX NLRX1

CARD NOD LRR AD BIR PYD FIIND Undefined

Nlrx1

FIGURE 1 |The human and mouse NLRs family. The NLR family is
subdivided into five sub-families, including NLRA, NLRB, NLRC,
NLRP, and NLRX. These proteins share common domains, such as a
CARD caspase recruitment domain, a NOD nucleotide-binding

oligomerization domain, a LRR leucine-rich repeat, an AD acidic
transactivation domain, a BIR baculoviral inhibition of apoptosis
protein repeat domain, a PYD pyrin domain, and a FIIND domain with
function to find.

sustained activation of mucosal immune responses. The patho-
genesis of IBD was originally attributed to an overly aggressive
adaptive immune response against luminal antigens. However,
a paradigm shift within the past 10 years has led to the novel

hypothesis that this chronic, relapsing inflammatory disease of the
gut more likely results from a primary defect in intestinal innate
immunity (14–16). In this context, several studies have provided
very important insights into the role of innate cytokine-driven
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pathways during chronic intestinal inflammation. Interestingly,
several innate cytokine may play a dichotomous role such that
their dysregulation (overproduction or underproduction) could
cause immunologic dysfunction and chronic intestinal inflamma-
tion (17–19). This recurrent concept is seen with innate cytokines
(TNF-α, IL-1β, and IL-18) and signaling molecules [NF-κB and
mitogen-activated protein kinase (MAPK)] that have long been
associated with pro-inflammatory immune states (20). Activation
of these pathways is mostly induced upon PAMP sensing by PRRs,
including NLRs, to generate acute inflammatory responses that
eliminate excessive numbers of bacteria and maintain mucosal
homeostasis. Thus, underproduction of innate cytokines and sig-
naling molecules during early, acute phases of disease could result
in ineffective bacterial clearance and chronic intestinal inflamma-
tion. Alternatively, inappropriate activation of PRRs during later,
chronic phases of intestinal inflammation could result in con-
tinuous stimulation of signaling pathways and overproduction of
pro-inflammatory cytokines,with a similar end result of continued
chronic intestinal inflammation.

The most compelling support for the concept that a primary
defect in innate immunity leads to IBD comes from the clear
genetic association between CD and carriage of polymorphisms
within the NOD2 gene (a component of the NLRC family of pro-
teins), which represents the most frequent genetic defect in CD
(13, 21–23). Consistently, dysregulation of other members of the
NLR families have been associated with increased susceptibility
to intestinal inflammation in both humans and animal models.
Therefore, while NLRs are widely expressed in several tissues in
both human and mice, in this review we provide an overview for
those that have been shown to be expressed at the intestinal level
and have a role in the pathogenesis of intestinal inflammation.

NON-INFLAMMASOME FORMING NLRs AND INTESTINAL
INFLAMMATION
NOD2
NOD2 is a member of the NLRC proteins family that is expressed
in both the hematopoietic and non-hematopoietic cellular com-
partments (24). The expression of NOD2 is more localized to
the hematopoietic compartment, mostly in antigen presenting
cells (APCs), however, NOD2 expression can also be upregu-
lated in epithelial cells, including those of the gastrointestinal
tract, upon the induction of pro-inflammatory stimuli, such as
TNF-α and IFN-γ (25). NOD2 recognizes muramyl-dipeptide
(MDP) a breakdown product of peptidoglycan present in the cell
wall of Gram-positive and Gram-negative bacteria (5) (Table 1).
Exposure to MDP causes a conformational change in NOD2
that promotes its oligomerization through the central NACHT
domain and binding of the dual specificity kinase RIP2 through
homotypic CARD–CARD interactions (26). Binding to NOD2
promotes RIP2 kinase activation, and the NOD2–RIP2 com-
plex then initiates a large signaling platform. Specifically, RIP2
activation promotes a TAK1–TAB2–TAB3 complex that culmi-
nates in the activation of the IκB kinase (IKK) complex and
IκBα phosphorylation and degradation. The NOD2:RIP2 com-
plex also activates the MAPKs such as ERK-1, ERK-2, JNK, and
p38 (27–29) (Figure 2; Table 1). This results in expression of
pro-inflammatory cytokines, chemokines, microbial factors, and

Table 1 | NLR family members studied in IBD.

NLR Agonist Pathway Studied in IBD

(Reference)

NOD1 iE-DAP (41–43, 46)

D-Lactyl-l Ala-γ-Glu-

meso-DAP-Gly

NF-κB

Heptanolyl-γ-Glu-meso-

DAP-Ala

MAPK

GM-tripeptide

NOD2 MDP NF-κB (13, 16–19, 21,

23, 33, 34)MurNAc-I-Ala-g-d-Glu-I-

Lys

MAPK

NLRP3 LPS Caspase-1 (71–74)

MDP

LTA

Bacterial RNA

Viral RNA and DNA

Uric acid crystals

Silica

Asbestos

NLRP6 Unknown Caspase-1 (81, 83, 84)

NLRP12 Unknown Caspase-1 (75, 89)

NLRC4 Flagellin from

Salmonella, Legionella,

Listeria, Pseudomonas

Caspase-1 (84, 104, 105)

Type III and type IV

secretion systems

CIITA Unknown Transcriptional

regulation of MHC

(111–113)

induction of adaptive immunity and regulatory T-helper 2 (Th2)
type immune responses (29). In addition, as recently demon-
strated, activation of NOD2 influences major histocompatibility
complex (MHC)-cross presentation, autophagy induction, and
resistance to intracellular bacterial infection (30–32). Thus, while
most well-known for its acute signaling effects, NOD2 activation
causes a variety of cellular changes in vivo that are also important
for immunologic homeostasis.

Detailed mapping of chromosome 16 identified polymor-
phisms within the NOD2 gene (also designated CARD15) as the
most frequent genetic alterations associated with CD. The CD-
associated NOD2 polymorphisms are represented by a frameshift
mutation in the LRR domain region (L110fsinsC), leading to par-
tial LRR truncation, as well as the SNPs R702W and G908R, and
the S431L and NN852S polymorphisms (16, 21, 33, 34). The asso-
ciated risk is dose-dependent, with heterozygous carriers of these
NOD2 gene polymorphisms harboring a 2- to 4-fold increased
risk of CD, and homozygous or compound heterozygous carriers
having a 20- to 40-fold increased risk. Notably, the CD-associated
NOD2 gene polymorphisms cause a loss-of-function in the NOD2
pathway. To date, the exact mechanism explaining the effects of the
loss-of function polymorphisms on downstream NOD2 signaling
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FIGURE 2 | Proposed models for the role of dysregulated NOD2 signaling
in IBD. Under normal conditions, NOD2 expressed in macrophages (MΦ) and
dendritic cells (DC) recognizes MDP, a breakdown product of peptidoglycan
(PGN) present in the cell wall of Gram-positive and Gram-negative bacteria.
Exposure to MDP causes a conformational change in NOD2 that promotes
binding of the dual specificity kinase RIP2 through homotypic CARD–CARD
interactions. Binding to NOD2 promotes RIP2 kinase activation, and the
NOD2–RIP2 complex then initiates a large signaling platform. Specifically,
RIP2 activation promotes activation of a TAK1 complex that culminates in the

activation of IκB kinase (IKK) complex, and IκBα phosphorylation and
degradation. The NOD2:RIP2 complex also leads to activation of MAP
kinases. This results in expression of innate cytokines, which promote normal
bacterial clearance and maintain intestinal homeostasis. In contrast, genetic
or functional defects in NOD2 cause a loss-of-function on downstream NOD2
signaling, which ultimately leads to decreased expression of innate cytokines.
Decreased NOD2 function may result in a failure to respond to bacteria,
facilitating their invasion and interaction with the gut mucosal immune
system, which culminates in chronic intestinal inflammation typical of IBD.

and CD have yet to be fully elucidated. It has been postulated that
decreased NOD2 function manifests itself in a failure to respond
to pathogens, facilitating invasion of bacteria and abnormal inter-
action between the gut mucosal immune system and luminal
antigens, which culminate in chronic intestinal inflammation (13)
(Figure 2).

An important point to note is that CD patients who do not
possess genetic mutations in NOD2 (nearly 85% of cases) may
still have a separate functional defect somewhere along the NOD2
signaling pathway that produces the same downstream effect of
NOD2 signaling dysfunction. In support of this concept,our group
has shown that the SAMP1/YitFc (SAMP) mouse model of spon-
taneous CD-like ileitis fails to respond to MDP administration

by displaying decreased innate cytokine production and dysreg-
ulated NOD2 signaling before the onset of disease, despite their
wild-type NOD2 genotype (13, 23). In line with these results, a
recent study in humans has identified a subset of CD patients who
do not carry NOD2 mutations but fail to produce innate cytokine
in response to MDP, similar to SAMP mice (Nunez et al., personal
communication).

During the different stages of chronic intestinal inflamma-
tion, it appears that NOD2 may play a dichotomous role such
that any deviation, either positively or negatively, could cause an
immune dysfunction that leads to inflammation (17–19). In fact
the NOD2 signaling pathway appears to be a critical regulator of
NF-κB-induced pro-inflammatory proteins, as the expression of
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both NOD2 and pro-inflammatory cytokines increases consid-
erably upon inflammatory stimulation (35). It has been shown,
for example, that pediatric CD patients who are wild-type for
the NOD2 genotype have overexpression and hyperactivity of
NOD2 and its obligate kinase RIP2 in their small intestines (36). In
addition, IL-10-deficient mice, which normally develop colitis, are
protected from developing severe chronic colitis when a deletion
of the NOD2 gene is also introduced into these mice. Moreover,
macrophages isolated from IL-10 deficient mice display enhanced
NOD2-dependent pro-inflammatory activity in which the well-
known synergistic activity of MDP and TLR ligands is intrinsically
hyper-responsive to bacterial stimulus, contributing to the devel-
opment of colitis (37). In this context, it has been postulated that
inhibition of the NOD2:RIP2 complex signaling in the presence of
a wild-type NOD2 genome may be efficacious (17). These findings
allude to complex and opposing roles for NOD2 in the patho-
genesis of chronic intestinal inflammation, strictly dependent on
the phase of disease. Therefore, it appears that NOD2 plays a
dual role in the pathogenesis of chronic intestinal inflammation,
by protecting the intestinal mucosa under normal physiologi-
cal conditions and inducing the production of pro-inflammatory
cytokine during the chronic phase of gut inflammation.

NOD1
NOD1 is expressed in a wide variety of cells in both the
hematopoietic and non-hematopoietic compartment. Within the
non-hematopoietic compartment, NOD1 is highly expressed in
intestinal epithelial cells where it plays an important role in main-
taining gut homeostasis by regulating host primary responses
to normal gut microbiota and pathogen (38). NOD1 shares the
same structure of NOD2 with exception of the amino-terminal
domain, which contains a single CARD, compared to the tan-
dem CARDs contained within the NOD2 domain (Figure 1). The
NOD1 LRR region has been implicated in the recognition of the
diaminopimelate (DAP)-containing GlcNAc-tripeptide muropep-
tide found mostly in Gram-negative bacterial peptidoglycans (39)
(Table 1). As observed for NOD2, exposure to NOD1 ligand
causes a conformational change that promotes its oligomeriza-
tion through the central NACHT domain and binding of the dual
specificity kinase RIP2 through homotypic CARD–CARD inter-
actions. This results in activation of NF-κB and MAPK pathways
and regulation of acute inflammatory responses (40) (Table 1).

NOD1 gene has been mapped to chromosome bands 7p14–p15,
a region which was previously reported to contain an IBD suscep-
tibility locus. This focused much attention on the NOD1 gene as
a candidate factor associated with increased susceptibility to IBD.
An insertion/deletion polymorphism (rs6958571) was identified
within the NOD1 gene, and a number of studies were conducted
to investigate the association of this polymorphism with human
IBD (41). However, these studies had conflicting results (42). To
date, the detailed functions of this polymorphism remain unclear,
and further studies on the function of NOD1 insertion/deletion
polymorphism are required.

Although an insertion/deletion functional polymorphism has
not definitively been associated with IBD, animal studies have
demonstrated an important role for NOD1 in experimental
intestinal inflammation. For example, Cheng et al. demonstrated

an increase in dextran sodium sulfate (DSS)-induced epithelial
injury, intestinal permeability, and inflammation in the absence of
NOD1 signaling (43). The increased intestinal inflammation was
associated with increased epithelial proliferation within colonic
crypts, suggesting that NOD1 may be important in maintaining
the integrity of the intestinal epithelium to protect against injury
and inflammation. One possible explanation is that NOD1 stim-
ulation, as mentioned above, results in the activation of NF-κB, a
positive regulator of cell survival (43, 44). In fact, NF-κB plays a
crucial role in maintaining the integrity of the intestinal epithe-
lium, specifically through the adaptor molecule NEMO, such that
its deletion in mice results in increased intestinal epithelial apopto-
sis and spontaneous colitis (45). Moreover, NOD1-deficient mice
possess an elevated risk of developing colonic cancer after experi-
mental treatment with azoxymethane (AOM)–DSS. This increased
susceptibility to develop tumors in NOD1-deficient mice is strictly
dependent on signals deriving from the microbiota. Accordingly,
antibiotic eradication of host microbiota in NOD1-deficient mice
before the experimental induction of colitis resulted in reduced
frequency of developing polyps (43). Finally, a study demonstrated
that NOD1 recognizes Clostridium difficile and regulates intestinal
neutrophil recruitment, a typical local inflammatory response to
infection that has been demonstrated to be defective in NOD1-
deficient mice (46). This suggests that loss of NOD1 mediates a
loss of specific local inflammatory responses resulting in more
severe and uncontrolled intestinal inflammation in response to
pathogens.

INFLAMMASOME FORMING NLRs AND INTESTINAL
INFLAMMATION
NLRP3
NLRP3, a member of the NLRP protein family, is expressed in
response to inflammatory stimuli mainly within the hematopoi-
etic compartment in both lymphocytic and myelogenic lineages.
To a lesser extent, it can also be expressed by other cell types of
the non-hematopoietic compartment, such as skin, keratinocyte,
and osteoblasts (47). NLRP3 consists of a carboxy-terminal LRR
domain, a central NOD domain, and an amino-terminal PYD,
mainly interacting with apoptosis-associated speck-like protein
containing a CARD (ASC) (8) (Figure 1). NLRP3 participates in
inflammasome formation through the recruitment of ASC, sub-
sequent activation of caspase-1, and secretion of IL-1β and IL-18.
Activation of inflammasomes is thought to involve two steps. The
first, or priming signal, involves the transcription of pro-IL-1β,
pro-IL-18, and pro-caspase-1, as well as expression of NLRP3 itself.
The second step, or activating signal, involves mechanisms that
lead to inflammasome assembly in response to microbial or dan-
ger signals, and in turn drives cleavage and release of biological
active IL-1β and IL-18. Hence, mice lacking caspase-1 are defec-
tive in the maturation and secretion of IL-1β and IL-18 (48–50).
NLRP3 is able to recognize a variety of exogenous and endoge-
nous stimuli including lipopolysaccharide (LPS), MDP, bacterial,
and viral RNA (51–53) as well as the imidazoquinoline antiviral
compounds R837 and R848 (54) (Table 1). In vitro, addition of
ATP to macrophages that are pre-exposed to TLRs ligands such as
LPS can significantly increase caspase-1 activation and secretion
of IL-1β. Importantly, ATP stimulates the P2X7 receptor, which
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results in the opening of a pore mediated by hemichannel protein
pannexin-1. A consequence of this process is that, following stim-
ulation with ATP bacterial products are able to enter the cytosol
through the pore and to subsequently activate NLRP3 and caspase-
1. Thus, NLRP3 recognition of PAMPs appears to be linked to
pannexin-1-dependent pore formation (55, 56).

Polymorphisms within the NLRP3 gene have been associated
with several disorders, including celiac disease, psoriasis, type 1
diabetes, and increased susceptibility to HIV-1 (57–59). SNPs
in the NLRP3 regions were originally reported to be associated
with CD, however, other groups have not detected this associa-
tion (60). However, SNPs affecting receptors downstream from
NLRP3, such as IL-18R1, IL-1RL1, IL-1RL2, and IL-1R2, have
been associated with increased IBD susceptibility (56). In addi-
tion, polymorphisms within the gene encoding the inflammasome
effector cytokine IL-18 correlate with increased susceptibility to
CD (61). In this context, understanding the mechanisms by which
inflammasome effector cytokines IL-1β and IL-18 modulate gut
homeostasis is of particular importance. In fact, intestinal mucosa
cells located in affected areas of the gut from patients with CD dis-
play elevated expression of IL-18 (62, 63). Notably, IL-18 derived
from intestinal epithelial cells during the initial phase of intestinal
inflammation has been demonstrated to play a protective role in
facilitating tissue repair and supporting homeostatic mechanisms.
In fact, both IL-18 and IL-18R deficient mice are more suscep-
tible to acute DSS-induced colitis than wild-type control mice.
Interestingly, epithelial-derived IL-18 is also critical for protec-
tion against DSS colitis conferred by NLR-mediated signaling, as
shown in studies using NLRP3 deficient mice (64). In contrast,
during the chronic phase of intestinal inflammation, production
of IL-18 shifts from epithelial cells to lamina propria monocytes.
This cellular redistribution may be responsible for the change to a
pro-inflammatory role that IL-18 plays during chronic inflamma-
tory responses within the gut mucosa. Similar to IL-18, intestinal
mucosal IL-1β levels are also elevated in IBD (65). IL-1β plays a
pro-inflammatory role, as its neutralization by either endogenous
or exogenous administration of IL-1R antagonist results in sig-
nificant amelioration of colitis (66–68). However, administration
of recombinant IL-1β also has a beneficial effect, suggesting that
IL-1β is fundamental for mucosal protection and maintenance
of homeostasis (69). These protective effects were only achieved
with administration of a low dose of IL-1β, and only when given
24 h before induction of colitis. Neutralization of IL-1β activity
during the acute phase of disease was associated with exacer-
bated severity of inflammation and delayed recovery from injury
(70). Thus, it appears that homeostasis of the intestinal mucosa is
highly sensitive to the levels of expression of the inflammasome
effector cytokines IL-1β and IL-18, and dysregulated expression
that results in either overproduction or underproduction of these
cytokines proteins may severely affect the susceptibility of the
gastrointestinal tract to chronic inflammation.

Recent studies examining the molecular mechanisms by which
NLRP3 and caspase-1 control integrity of the intestinal epithe-
lium during experimental colitis point to a critical role of NLRP3
in gut mucosal immune homeostasis (71). Specifically, NLRP3
deficient mice were significantly more susceptible to DSS colitis
compared to wild-type mice (64, 71, 72), and deficiency of the

inflammasome proteins ASC and caspase-1 caused greater colitis-
associated mortality and more severe inflammation during both
the acute and chronic phases of colitis (64, 71, 73). One possi-
ble explanation is that following chemically induced insult on the
intestinal epithelium, NLRP3 inflammasomes may trigger repair
mechanisms characterized by increased division of stem cells at the
base of crypts to replace damaged enterocytes (74). In addition,
the absence of NLPRP3 led to defective production of the down-
stream effectors cytokines IL-18 and IL-1β, resulting in increased
permeability of the gut epithelium. Compromised epithelial bar-
rier function in both NLRP3 and caspase-1 deficient mice allows
bacteria to invade the intestinal lamina propria and mucosa, which
accelerates inflammatory responses and leads to chronic intestinal
inflammation (75).

Together, these studies indicate that NLRP3 plays a central
role in regulating the integrity of the intestinal mucosal barrier
under homeostatic conditions, and in shaping innate immune
responses during experimental colitis. In addition, NLRP3 effector
cytokines IL-1β and IL-18 play dual roles such that their dysreg-
ulated expression may have both protective or pro-inflammatory
effects, depending on the distinct phase of disease.

NLRP6
NLRP6 is high expressed in the duodenum, ileum, and colon, pri-
marily within the hematopoietic compartment by macrophages,
dendritic cells, lymphocytes, and granulocytes (74, 76, 77).
NLRP6 signaling is important in both radioresistant (stromal)
and radiosensitive (hematopoietic) cells during bacterial infec-
tion with Salmonella typhimurium, Listeria monocytogenes, and
Escherichia coli (78). The structure of NLRP6 is less well charac-
terized than other members of the NLR family and consists of an
N-terminal PYRIN domain, a central nucleotide-binding domain
(NBD), and a C-terminal LRR (Figure 1). NLRP6 co-localizes
with the ASC, and this is directly dependent on the presence
of the PYRIN domain (79, 80). Co-expression of NLRP6 and
ASC results in cooperative induction of caspase-1 and increased
production of IL-1β, suggesting that NLRP6 participates in inflam-
masome signaling (79). Reduced expression of IL-18 was observed
in NLRP6 deficient mice, as well as increased susceptibility to
chemically induced colitis (81). However, direct evidence that
NLRP6 activates in vivo inflammasomes under physiological con-
ditions has not been fully elucidated. In addition, NLRP6 is posi-
tioned upstream from both NF-κB and MAPK signaling pathways,
such that NLRP6 deficient mice enhance both pathways upon
stimulation with TLR2 and TLR4 ligands in vitro. NLRP6 defi-
cient cells that are infected with bacteria produce increased levels
of TNF-α and IL-6, suggesting that NLRP6 negatively regulates
innate immunity and host defense against both Gram-positive
and Gram-negative bacteria (82).

As already mentioned, NLRP6 is highly expressed in the intes-
tine and may play a central role in maintaining homeostasis within
the intestinal mucosa. Moreover, NLRP6 is protective against
the development of significant damage and inflammation within
the colon during chemically induced DSS colitis. Interestingly,
microbiome profiling, as analyzed by 16S RNA sequence analy-
sis, revealed that in mice deficient in NLRP6, ASC, caspase-1,
or IL-18, gut microbial ecology is altered with a predominant
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role of Prevotellaceae and Tm7 as key representative members of
this microbiota-associated phenotype; these strains have also been
found to be increased in IBD patients (81). This altered microbiota
was associated with a colitogenic phenotype, which was transmis-
sible to wild-type mice housed in the same cages. Notably, the use
of antibiotics ameliorated the DSS-induced colitis, further sup-
porting the colitogenic activity of Prevotellaceae. NLRP3 deficient
mice also have decreased production of IL-18, suggesting that the
altered microbiome in these mice is directly related to IL-18 levels.
In fact, IL-18 deficient mice were also able to transmit colitogenic
flora to wild-type mice.

Of note, changes in the microbiome not only play a critical role
in determining susceptibility to colitis, but also to inflammation-
associated tumorigenesis (83). In fact, in the AOM–DSS model
of inflammation-induced tumorigenesis, NLRP6 deficient mice
developed significantly more tumors and hyperplasia compared
to wild-type mice, and this effect was associated with elevated lev-
els of CCL5. Interestingly, co-housing experiments using NLRP3
and CCL5 deficient mice did not result in increased colitis or
tumors in CCL5 deficient mice, suggesting that the colitogenic and
tumorigenic microbiota may be mediated by the presence of CCL5
(84). Altogether, these results strongly suggest that a dysregu-
lated NLRP6 inflammasome pathway may be a predisposing factor
to chronic intestinal inflammation and inflammation-associated
tumorigenesis.

NLRP12
NLP12, previously known as monarch-1 and PYPAF7, was one of
the first NLR proteins to be described and was originally associ-
ated with inflammasome formation (79, 85). NLRP12 co-localizes
with ASC, dependent on the presence of the PYRIN domain, sim-
ilar to NLRP6 (80). In vitro studies originally demonstrated that
transient transfection of NLRP12 and ASC induces inflammasome
formation, as well as transcription of an NF-κB reporter construct,
suggesting that NLRP12 was an inflammasome forming NLR, and
promoted caspase-1 activation and production of IL-1β, in addi-
tion to being a positive regulator of NF-κB signaling (72). Evidence
for the involvement of NLRP12 in induction of inflammasome for-
mation are mostly based on in vitro studies; ex vivo studies have
evaluated NLRP12 inflammasome formation using NLRP3 defi-
cient mice, and have shown that this NLR actually is not able to
regulate formation of either IL-1β and IL-18 (73–75, 86–90).

Notably, several studies have demonstrated that NLRP12 down-
regulates NF-κB responses to TLR agonists (75, 77, 78, 86, 88, 89,
91–93). Specifically, previous in vitro studies showed that NLRP12
negatively regulated non-canonical NF-κB pathway activation by
directly associating with TRAF3 and NF-κB inducing kinase (NIK)
(75, 94). This interaction leads to proteasome-mediated degrada-
tion of NIK and subsequent attenuation of p100 cleavage to p52
(95). Also, NLRP12 has been shown to attenuate canonical NF-
κB signaling through inhibition of IRAK-1 (75, 91, 92) and to
down-regulate the MAPK cascade by attenuation of ERK signaling
activation (75, 89).

As observed for NLRP6, NLRP12 plays a central role in
protecting against chemically induced colitis and inflammation-
associated tumorigenesis (75, 89). In fact, NLRP12 deficient were
more susceptible to DSS-induced colitis and AOM-DSS-induced

colon cancer. However, NLRP12 is not involved in regulation of
the microbiome, as NLRP12 deficient mice are unable to transmit
colitogenic flora to wild-type mice after co-housing, in contrast
to what it has been observed for NLRP6 (81). The increased
inflammatory responses observed in NLRP12 deficient mice dur-
ing DSS-induced colitis are correlated with increased canoni-
cal and non-canonical NF-κB activation signaling. In addition,
tumors isolated from these mice showed significantly higher non-
canonical activation of NF-κB and increased expression of inflam-
mation and cancer-related markers (75, 89). Using bone marrow
chimera mice, Allen et al. suggested that both the hematopoi-
etic and non-hematopoietic compartments contribute to early
disease manifestations during DSS-induced colitis, however, the
non-hematopoietic compartment is important for limiting the
number of tumors formation (75).

In summary, these studies provide evidence of an anti-
inflammatory and anti-tumorigenic role for NLRP12 at the intesti-
nal level. These effects have been mostly associated with down-
regulation of NF-κB and ERK signaling activation. Therefore,
further understanding of the role of NLRP12 may help iden-
tify new therapeutic approach aimed at stimulating this fac-
tor in order to potentially control intestinal inflammation and
inflammation-associated tumorigenesis.

NLRC4
NLRC4, also known as IPAF, is mostly expressed in myeloid cells.
NLRC4 contains an N-terminal CARD domain, a central NACHT
domain, and a C-terminal LRRs (Figure 1). The N-terminal CARD
allows a direct interaction with caspase-1, independently of ASC.
NLRC4 can activate the caspase-1 inflammasome upon cytosolic
detection of bacterial flagellin, but also components of the type
III secretion system (T3SSs) in associations with NAIP proteins
(96) (Table 1). In addition to cytokine production, activation of
caspase-1 through a NLRC4 dependent pathway has been associ-
ated with subsequent death of cells, termed pyroptosis, which can
take place independent of ASC (97, 98). Therefore, although there
are structural similarities with other NLR proteins, activation of
NLRC4 may have an opposite function in determining the activity
of caspase-1, adding more specificity to the function of the innate
immune system in response to bacteria.

NLRC4 plays a central role in host defense following infection
with several pathogens, such as Legionella pneumophila, Can-
dida albicans, S. typhimurium, Burkholderia pseudomallei, and
Pseudomonas aeruginosa (99–102). In fact, all of these pathogens
lead to caspase-1 activation, release of IL-1β, and rapid cell
death. For example, NLRC4 deficient macrophages infected with
S. typhimurium showed defective activation of caspase-1 and
secreted IL-1β and IL-18 (103). In addition, S. typhimurium-
induced macrophage death was also retarded in NLRC4 deficient
macrophages. In another study, Franchi et al. reported that NLRC4
deficient mice were highly susceptible to orogastric Salmonella
infections (104). In this study, the authors found that NLRC4
deficient mice with the Balb/c genetic background, but not the
C57BL/6 background, were highly susceptible to orogastric infec-
tion with Salmonella, suggesting a central role for the NLRPC4 in
host defense against enteric Salmonella through the production of
IL-1β by resident intestinal macrophages (104).
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Most of these studies have concentrated on the function of
NLRC4 within the hematopoietic compartment, primarily in
macrophages. However in a recent study using NLRC4 defi-
cient mice, it has been shown the NLRC4 plays a protective role
against infection with Citrobacter rodentium that is dependent
on its expression in non-hematopoietic cells. Citrobacter roden-
tium is an extracellular pathogen that adheres to the intestinal
epithelium of the large intestine causing hyperplasia and inflam-
mation (105). Specifically, bone marrow chimera experiments
revealed that the protective effect of NLRC4 is dependent on
its elevated expression in epithelial crypts, but not in intestinal
stromal cells (105). Another study supports an intrinsic epithelial
cell effect leading to enhanced tumorigenesis in the absence of
NLRC4 (84). In fact, this study showed that NLRC4 mice have a
higher frequency of tumors in the AOM–DSS model compared
to wild-type mice. Therefore, further studies of these mecha-
nisms need to be conducted to enhance our knowledge on the
role of NLRC4 in epithelial repair to an acute inflammatory
insult.

CLASS II TRANSACTIVATOR
Class II transactivator is a member of the NLR/CATERPILLER
family of proteins consisting of a series of regulatory domains
that include an activation domain (AD), an acetyl-transferase
(AT) domain, a proline/serine/threonine (PST) domain, a GBD,
and finally, the canonical LRR domain common to all NLR pro-
teins (106) (Figure 1). Upon stimulation with IFN-γ, STAT-1
triggers CIITA expression though IFN-γ activation sequence ele-
ments present in the CIITA promoters. Distinct from others
NLRs, the function of CIITA lies in transcriptional regulation of
the MHC (107–110) (Table 1). In fact, it induces transcription
of MHC class II genes and enhances constitutive MHC class I
gene expression. CIITA is mainly expressed in cells that express
MHC class II molecules, such as lymphocytes, macrophages, and
dendritic cells. In addition, CIITA has been demonstrated to
negatively regulate innate immune responses by regulation of
NOD2 (107).

Although CIITA is well-known as a key regulator for the expres-
sion of MHC class II molecules, it also plays an additional role
in T-helper cell differentiation and activation-induced cell death
(111). Expression of CIITA in T cells enhances Th2-type immu-
nity, as shown by in vivo studies where transgenic mice expressing
CIITA (CIITA-tg mice) had increased susceptibility to oxazolone-
induced colitis, an experimental model of Th2 mediated intestinal
inflammation. This study found that CIITA expression in CD4+

T cells tends to bias CD4+ T cells toward Th2-type immune
responses, inhibiting Th1 differentiation (111).

A more recent study demonstrated that silencing one of the
four CIITA promoters, the CIITApIV, which is inducible by IFN-γ,
causes the loss of MHC class II expression on tumor cells. A study
using gastric and colorectal tumor cell lines demonstrated that a
subset of these tumor cells do not induce CIITA expression fol-
lowing IFN-γ stimulation (112). Interestingly, it has been reported
that an association exists between CIITA methylation and DR17
and DQ2 HLA alleles in patients with UC and colon-associated
cancer (CAC) (113).

CONCLUSION
During the last decade accumulating evidence led to the novel
hypothesis that defective innate immune responses at the intestinal
level may be the primary contributor to IBD. The most compelling
support for this concept derives from the clear genetic associ-
ations between CD and carriage of polymorphisms within the
NOD2 gene, further underscoring the importance of these PRRs
in IBD. In this context, several studies discussed in this review
described how multiple members of the NLRs protein family
regulate intestinal inflammation. Activation of these pathways
is mediated by bacterial components in order to generate acute
inflammatory responses that lead to bacterial clearance. Thus,
down-regulation of these signaling pathways during the early
phases of disease may predispose to chronic intestinal inflam-
mation. In contrast, inappropriate activation of these signaling
pathways during chronic phases of intestinal inflammation may
result in continuous production of pro-inflammatory mediators
that contribute to maintaining chronic intestinal inflammation.
Therefore, a better understanding of the dichotomous nature of
NLRs during acute and chronic phases of intestinal inflammation
may provide new insights into therapeutic strategies against IBD.
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