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Advances in quantitative analysis of 
astrocytes using machine learning

Astrocytes, a subtype of glial cells, are star-
shaped cells that are involved in the homeostasis 
and blood flow control of the central nervous 
system (CNS).  They are known to provide 
structural and functional support to neurons, 
including the regulation of neuronal activation 
through extracellular ion concentrations, the 
regulation of energy dynamics in the brain 
through the transfer of lactate to neurons, 
and the modulation of synaptic transmission 
via the release of neurotransmitters such as 
glutamate and adenosine triphosphate. In 
addition, astrocytes play a critical role in neuronal 
reconstruction after brain injury, including 
neurogenesis, synaptogenesis, angiogenesis, 
repair of the blood-brain barrier, and glial scar 
formation after traumatic brain injury (Zhou et 
al., 2020). The multifunctional role of astrocytes 
in the CNS with tasks requiring close contact with 
their targets is reflected by their morphological 
complexity, with processes and ramifications 
occurring over multiple scales where interactions 
are plastic and can change depending on the 
physiological conditions. Another major feature 
of astrocytes is reactive astrogliosis, a process 
occurring in response to traumatic brain injury, 
neurological diseases, or infection which involves 
substantial morphological alterations and is often 
accompanied by molecular, cytoskeletal, and 
functional changes that ultimately play a key role 
in the disease outcome (Schiweck et al., 2018). 
Because morphological changes in astrocytes 
correlate so significantly with brain injury and the 
development of pathologies of the CNS, there 
is a major interest in methods to reliably detect 
and accurately quantify such morphological 
alterations. We review below the recent progress 
in the quantitative analysis of images of astrocytes. 
We remark that, while our discussion is focused 
on astrocytes, the same methods discussed below 
can be applied to other types of complex glial 
cells.

Quantitative image analysis: Automated methods 
of quantitative image analysis have gained 
increased recognition in the biomedical field as 
they allow to objectively extract a multiplicity 
of features that can be used to interrogate the 
biomedical data. However, despite the remarkable 
success in the development of general-purpose 
algorithms for cell detection and analysis, progress 
in the automated image analysis of astrocytes has 
been slow due to the difficulty in adapting such 
algorithms to images of astrocytes. The challenges 
in processing microscopy images of astrocytes are 
due to their broad variability in size and shapes, 
their unique morphological complexity with 
processes occurring over multiple scales, and the 
entangled nature of spatial arrangements they 
form. During the last few years though, following 
spectacular advances in machine learning from 
the applied mathematics and computer science 
literature, a new generation of more powerful 
algorithms for biomedical image analysis were 
introduced, including algorithms specifically 
targeted to images of astrocytes. In Figure 1A, we 
show an image processing pipeline for astrocyte 
images based on an algorithm recently proposed 
by Kayasandik et al. (2020). The algorithm is 
designed to output accurate state-of-the-art 
astrocyte reconstructions from brain images where 
astrocytes may be dense; hence, one can compute 
morphology features of individual cells that can 
be applied for classification or profiling. Below, 
we examine the main image processing blocks of 
the pipeline, with special attention to astrocyte 
detection and segmentation. In doing that, we also 
discuss how the analysis methods employed by 
this algorithm compare with both traditional and 

more advanced alternative methods. We conclude 
the paper by discussing future directions and 
outstanding challenges concerning the automated 
analysis of astrocytes.   

Astrocyte detection: Astrocytes are typically 
visualized in microscopy images using a glial 
fibrillary acidic protein marker. Due to their 
complex morphology, though, conventional 
methods for cell detection/segmentation based 
on intensity thresholding perform inconsistently, 
even when combined with more sophisticated 
thresholding techniques (Healy et al., 2018). Since 
these methods are very sensitive to a multiplicity 
of factors including noise level, image illumination, 
and cell density, a laborious manual tuning 
of parameters is often required to guarantee 
satisfactory performance. By contrast, learning-
based methods, especially convolutional neural 
networks, do provide far superior and more 
consistent performance. Suleymanova et al. (2018) 
were the first to propose a deep learning approach 
to automatically detect astrocytes in microscopy 
images. This approach, called FindMyCells, is 
based on an application of DetectNet - a deep 
learning architecture specifically designed for 
tasks of object recognition - and was developed 
using a dataset of 1250 bright-field microscopy 
images ( inc luding over 17,000 cel ls)  that 
were publicly released in the Broad Bioimage 
Benchmark Collection. The detection performance 
of FindMyCells, measured in F1 score, is reported 
to achieve 0.81 on this dataset, as compared 
with a conventional method based on automated 
thresholding where the F1 score is only 0.34. We 
recall that the F1 score is a measure of binary 
classification accuracy defined as the harmonic 
mean of precision and recall; it ranges between 
0 and 1, with 1 indicating perfect classification. 
We remark that the implementation of such 
a method - as for any learning-based method - 
requires a training phase, where 1120 out of 1250 
annotated images were employed to learn the 
parameters of the neural network (the remaining 
130 images were used for testing). While the 
detection performance is impressive, one must 
notice that this result is dependent on the type 
of training images and detection performance 
might decrease if the test images are of different 
types. For instance, it was shown in Kayasandik et 
al. (2020) that the F1 score of FindMyCells is only 
0.41 when computed on a different image dataset 
consisting of fluorescent images of astrocytes, 
even though images were acquired at the same 
magnification level. This drop in performance 
is due to the difference in image characteristics 
with respect to the training images, resulting 
from factors including the different astrocyte 
populations and the different image modalities 
(fluorescent microscopy vs bright field) of the new 
dataset. To improve detection performance, one 
should re-train DetectNet using a new training set 
of images that are of the same type as the images 
in the new dataset. To generate such a training 
set, a domain expert has to annotate a sufficient 
number of images by identifying their spatial 
location. This observation highlights one of the 
main limitations of learning-based methods; while 
they can provide state-of-the-art performance 
in complex object detection problems, they 
often require many training samples to achieve 
competitive performance. This requirement is 
labor intensive and might be unfeasible if data 
is scarce due to technical limitations or privacy 
constraints. On the other hand, more traditional 
model-based methods do not require training and 
their results are more interpretable. However, 
they become more difficult to implement and less 
performing as the data and the image processing 
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rules they try to impose become more complex.  

To combine the advantages of the model- 
and training-based methods, Kayasandik et al. 
(2020) have proposed a method for astrocyte 
detection that applies a geometric descriptor 
called Directional Ratio, whose main idea consists 
in identifying potential cell bodies associated 
with pixels of local isotropy in images. Detection 
is  further ref ined by analyz ing the shape 
characteristics of the astrocyte segmented using 
a convolutional neural network. The reported 
F1 score performance is 0.80 on the main image 
dataset considered in the paper, consisting of 
fluorescent microscopy images. Remarkably, the 
F1 score for astrocyte detection on the Broad 
Bioimage Benchmark Collection dataset used by 
Suleymanova et al. (2020) is 0.70, showing that 
this approach is significantly less sensitive to data 
type than FindMyCells and that performance 
remains competitive on a rather broad range 
of images, including an image from bright field 
microscopy.   

Astrocyte segmentation:  Machine learning 
algorithms currently provide state-of-the-art 
performance for cell segmentation and deep 
learning architectures, especially the U-Net 
architecture and its variants, which have been 
particularly successful in biomedical applications, 
as they can be trained with a relatively small 
number of training images (Falk et al., 2019). 
We recall that a U-net is a special convolutional 
neural network where a feature-extracting 
(encoding) section of the network is followed 
by a decoding section where pooling operations 
are replaced by upsampling operators. As a 
result, the expansive section is approximately 
symmetric to the contracting section, yielding a 
U-shaped architecture. For the challenging task 
of segmenting astrocytes in fluorescent images, it 
was shown in Kayasandik et al. (2020) that about 
100 manually annotated astrocytes were sufficient 
to train a U-Net architecture to a satisfactory 
segmentation model. 

As shown in Figure 1A, the astrocyte segmentation 
routine by Kayasandik et al. (2020) is part of 
an image processing pipeline where astrocytes 
are first detected and next segmented within 
an appropriate region of interest. By identifying 
regions of interest centered on individual cells, 
this approach also ensures that even cells that are 
close to each other can be individually detected 
and segmented. This astrocyte segmentation 
routine uses a deep learning architecture built 
using a cascade of two U-nets that were trained 
using a collection of fluorescent images of 
astrocytes that were manually segmented by 
domain experts and were publicly released with 
the publication. On this dataset, this method 
achieves an F1 score performance of 0.76, 
outperforming a basic U-net yielding an F1 score 
equal to 0.64. As expected, a segmentation routine 
based on a traditional method such as automated 
thresholding (Healy et al., 2018) has significantly 
lower performance and yields a lower F1 score of 
0.53. Figure 1B shows the astrocyte segmentation 
performance of the method by Kayasandik et al. 
(2020) as compared to automated thresholding. 
The figure shows that the first method is also 
able to separate contiguous cells, while the latter 
method is unable to capture elongated processes 
and other complex cellular structures.   

M o r p h o l o g i c a l  a n a l y s i s  a n d  a s t r o c y t e 
classification: The ability to automatically detect 
astrocytes and extract reliable information 
about their morphology has important practical 
implications including the development of 
improved models for the role of astrocytes in the 
physiology of the CNS and its pathologies. Due 
to this interest, several automated and semi-
automated methods were proposed to analyze the 
morphology of astrocytes. Kulkarni et al. (2015) 
and Tavares et al. (2017) in particular, proposed 
methods to perform morphometric analysis of 
astrocytes on confocal fluorescence microscopy 
images of multiplex-labeled (glial fibrillary acidic 
protein, 4′,6-diamidino-2-phenylindole (DAPI)) 
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brain tissue. In both cases, astrocyte nuclei are 
identified from the DAPI marker. The algorithms 
next generate a 3-D arbor reconstruction for 
each astrocyte either by using a special ray-
tracing algorithm (Kulkarni et al., 2015) or by 
using a semi-automated pipeline based on the 
open-source software FIJI-ImageJ and its Neurite 
Tracer plugin (Taveres et al., 2017). At this point, 
one can compute standard quantitative arbor 
measurements, such as the Sholl analysis. More 
recently, Sethi et al. (2021) introduced a software 
tool, called SMorph, that integrates multiple 
functionalities for the quantitative morphological 
analysis of neurons, astrocytes, and microglia. This 
method requires that the user manually identifies 
a region of interest containing a single cell. Next, 
the software automatically finds the cell body, 
the main arbors and directly computes several 
morphometric parameters. 

A major limitation of the methods described 
above is that they do not include a capability to 
automatically detect astrocytes, except in the 
situation where a DAPI nucleus marker is available. 
Even in this case though, there is no guarantee that 
one can reliably associate an astrocyte to a DAPI 
marker. Furthermore, the astrocyte reconstruction 
generated by these methods typically captures 
only the main cell processes (missing features 
that have a potentially significant physiological 
role) and there is no systematic validation of the 
reconstruction process. By contrast, one of the 
advantages of the new generation of algorithms 
such as that image processing pipeline in Figure 
1A is that it outputs individually segmented 
astrocytes starting from an image containing 
multiple cells, without the need of a nucleus 
marker, even when astrocytes are densely packed. 
Working on individually segmented astrocytes, it 
is then straightforward to compute any multiple 
morphometric features and possibly to integrate 
the astrocyte segmentation algorithm into a high-
content image screening pipeline. An additional 
advantage of this learning-based approach is the 
possibility of extracting morphological features 
via representation learning. Namely, since a deep 
neural network is used for segmentation, shape 
features can be associated with the hidden layer 
coefficients of the network. This type of approach 
has already been explored for other biomedical 
applications and offers a promising avenue for an 
unbiased approach to the morphological analysis 
of astrocytes.

Conclusion: As compared with other areas of 
biomedical image analysis, such as neuronal 
imag ing ,  the  deve lopment  of  automated 

methods targeted at the analysis of images of 
astrocytes is still in its infancy. In the opinion 
of the authors, a major outstanding obstacle 
to the development of the field is the lack of 
publicly available image databases to be used for 
benchmarking methods of astrocyte detection and 
segmentation - currently, the only publicly available 
databases of astrocyte images are the Broad 
Bioimage Benchmark Collection set published by 
Suleymanova et al. (2018) and the set released by 
Kayasandik et al. (2020), where the first one is only 
annotated for detection and not for segmentation. 
By contrast, the field of neuronal imaging has 
benefited enormously from major projects such 
as NeuroMorpho (Ascoli et al., 2007) that provide 
public-access archives of neuronal images and 
digital reconstructions of neuronal morphology. 
It is highly desirable that a similar effort would 
be carried out for astrocytes and possibly other 
glial cells, as this would have a dramatic and 
transformative impact in the field.
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Figure 1 ｜ Image processing pipeline for astrocyte images (A) and astrocyte segmentation (B). 
(A) The pipeline includes a pre-processing stage, followed first by a routine for astrocyte detection and extraction, 
and next by a routine computing individual astrocyte segmentation. The algorithm outputs an image reconstruction 
containing all segmented astrocytes; in addition, it provides quantitative information about individual astrocyte 
morphology and classification. (B) Starting from the left the figure shows: a fluorescent image of astrocytes, the 
segmentation obtained using the automated local thresholding method of Healy et al. (2018), and the segmentation 
obtained using the learning-based method of Kayasandik et al. (2020).


