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The reason why dopamine neurons die in Parkinson’s disease remains largely unknown.
Emerging evidence points to a role for brain inflammation in neurodegeneration.
Essential questions are whether brain inflammation happens sufficiently early so that
interfering with this process can be expected to slow down neuronal death and whether
the contribution from inflammation is large enough so that anti-inflammatory agents
can be expected to work. Here I discuss data from human PD studies indicating that
brain inflammation is an early event in PD. I also discuss the role of T-lymphocytes and
peripheral inflammation for neurodegeneration. I critically discuss the failure of clinical
trials targeting inflammation in PD.
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INTRODUCTION

Idiopathic Parkinson’s disease (PD) is the most common neurodegenerative movement disorder,
afflicting 1% of the population over the age of 60 (de Rijk et al., 1997). The cardinal symptoms
of PD (bradykinesia, tremor, rigidity) result from the degeneration of dopamine neurons in the
nigrostriatal pathway. Neuronal cell bodies, located in the compact part of the substantia nigra
(SNc), send axons to the striatum. The dorsal putamen receives dopaminergic axon terminals from
the ventral tier of the SNc (Lynd-Balta and Haber, 1994). These projections are especially involved
in motor functions and they are particularly vulnerable to degeneration in PD (Kordower et al.,
2013). In PD dopamine neurons in the SNc gradually die. This causes progressive malfunction
of the nigro-striatal system and disease progression. The pathological hallmark of PD is loss of
dopamine neurons and accumulation of misfolded α-synuclein in Lewy bodies in degenerating
neurons in the SNc (Jellinger, 2012). Although Lewy bodies contain about 90 different types of
protein, α-synuclein is thought to play a critical role in disease development (Wakabayashi et al.,
2013). In the early stages of PD the motor symptoms are reversed by dopamine replacement
therapy, but these treatments grow less effective over time. With disease progression motor
complications, such as dyskinesia, become treatment limiting. In addition, most PD patients
develop non-motor symptoms with disease progression, which have a major impact on quality of
life and disability (Schapira et al., 2017). No current treatment slows or stops the neurodegeneration
and the progression of PD (Hilker et al., 2005). The main reason why we lack treatment that
can stop dopamine neurons from dying, is that the etiology of PD is largely unknown. This is
reflected by the fact that the human central nervous system is complex and neuronal function is
incompletely understood, making the underlying causes of neurodegeneration difficult to decipher.
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Our understanding of pathogenic mechanisms in idiopathic
PD is mainly based on results from experimental animal PD
models. So far data from these studies have not successfully
been translated into effective neuroprotective treatment. Recent
data from human studies suggest that brain inflammation is an
important contributor to neurodegeneration in PD. In this review
I will discuss the role of inflammation in neurodegeneration and
whether inflammation could be a potential therapeutic target in
idiopathic PD. I will focus on human idiopathic PD. There are
several reviews discussing inflammation in experimental toxic
and genetic PD models; for a recent excellent review bridging
human and experimental PD (see Schonhoff et al., 2020).

PARKINSON’S DISEASE AND
NEURODEGENERATION

Several mechanisms are proposed to underlie the progressive
death of dopamine neurons in PD, but it remains unclear which
mechanism that are the main driver of the disease process.
Both oxidative stress, caused by mitochondrial dysfunction and
enzymatic metabolism of dopamine by monoamine oxidase
(MAO) (Burbulla et al., 2017), as well as impaired protein
degradation and brain inflammation (Olanow, 2007) may
contribute to neurodegeneration. Nigral dopamine neurons
are thought to be especially vulnerable because they have
large arborizations and a vast number of synaptic nerve
terminals, putting a large metabolic stress on these neurons
(Diederich et al., 2019).

The neurodegenerative process probably starts many years
before the start of motor symptoms. Postmortem analyses have
shown that at the time of diagnosis about 30% of dopamine
neuronal cell bodies in the SNc (Fearnley and Lees, 1990; Greffard
et al., 2006; Kordower et al., 2013) and 50% of dopamine axon
terminals in the dorsal putamen are lost (Scherman et al., 1989;
Kordower et al., 2013). Thereafter, the degeneration is quite rapid.
By 4 years after diagnosis there is an almost total loss of dopamine
axon terminals, whereas the degeneration of neuronal cell bodies
is a bit slower. However, by 5 years the majority of cell bodies
is lost (Kordower et al., 2013). This means that if dopamine
neurons are to be rescued, neuroprotective treatments must start
as soon as possible. After 4–5 years from the time of diagnosis
there will probably be no neurons left to rescue. It should be
mentioned that after many years of disease, Kordower et al.
(2013) reported that there still was a proportion of dopamine
neurons left in the ventral tier of the SNc, which seemed to be
resistant to further degeneration. Also, there was a higher loss of
neurons positive for dopamine markers than of the total pool of
melanized nigra neurons, but there was a marked early loss also
of the latter pool. This could mean that the surviving melanized
neurons are dopamine producing neurons, which have lost their
dopamine phenotype as a consequence of disease progression.
If neuroprotective treatment will restore their dopaminergic
phenotype is not known. If this is the case, protective treatment
could have some effect also if started at later stages in the disease
process. However, the majority of SNc neurons, both melanized
and those with a dopaminergic phenotype, are lost early in the

disease, stressing the need of starting neuroprotective treatments
as early as possible.

INFLAMMATION IS AN EARLY AND
SUBSTANTIAL EVENT IN PARKINSON’S
DISEASE

The question is therefore whether there is any evidence that
inflammatory processes start early enough so that treatments
targeting inflammatory cascades can be expected to have
neuroprotective effects. Important in this respect is also whether
the contribution from inflammation is so large that inhibiting this
process will slow or halt the degeneration of dopamine neurons.

Brain Inflammation and Microglia
Activation
Pivotal to the inflammatory cascades putatively leading to death
of dopamine neurons in PD is microglia activation. Under
physiological conditions microglia are “resting” or surveillant.
In the rodent brain it has been shown that they are finely
ramified (Sogn et al., 2013) and quite evenly distributed
throughout the brain parenchyma, where they continually
survey their microenvironment with mobile processes and
protrusions (Nimmerjahn et al., 2005). Microglia can move
around because they contain high levels of the contractile protein
actin and by doing so, at a given time, their tiny delicate
processes contact about 3% of excitatory synapses in the brain
(Sogn et al., 2013). As a part of the innate immune system,
microglia are able to sense neuron derived danger-associated
molecular patterns resulting in microglia activation (Wolf et al.,
2017). Upon activation microglia become larger and thicker,
showing a spheric shape (Nimmerjahn et al., 2005). Activated
microglia exists in several phenotypes, which probably represent
a continuum from neuroprotective to neurotoxic phenotypes
(Ransohoff, 2016a). When microglia are protective they usually
take on phagocytotic properties, eating cellular debris and they
secrete anti-inflammatory substances, e.g., interleukin-(IL) 10
and transforming growth factor β (TGF-β) (Le et al., 2016).
Toxic microglia secrete pro-inflammatory cytokines, such as
IL-1β, IL-6, interferon-γ (INF-γ), and tumor necrosis factor-α
(TNF-α) (Qin et al., 2016), and they produce pro-inflammatory
enzymes, such as nitrogen monoxide synthase and release
nitrogen monoxide (Hunot et al., 1996).

α-Synuclein Can Activate Microglia
In PD, as in other neurodegenerative diseases, there is a wealth of
data suggesting that toxic microglia dominate, killing dopamine
neurons (Ransohoff, 2016b). Microglia can be activated by a
variety of factors including neurotransmitters, pro-inflammatory
cytokines and bacterial toxins, such as lipopolysaccharide
(LPS) (Gao et al., 2008). Mounting evidence indicates that
α-synuclein, the main protein component in Lewy bodies
in dying dopamine cells, is essential for activating microglia
(Figure 1; Austin et al., 2006; Allen Reish and Standaert, 2015;
Sanchez-Guajardo et al., 2015). In experimental animal models of
PD misfolded α-synuclein is released from injured neurons into
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FIGURE 1 | The root cause of PD is unknown, but inflammation is probably an early damaging event in PD. Probably genetic and/or environmental factors contribute
to starting the α-synuclein pathology in dopamine neurons. In physiology α-synuclein (“normal α-synuclein”) is transported from the SNc along axons to nerve
terminals in the striatum where it is important for synaptic transmission. In dysfunctional dopamine neurons α-synuclein is misfolded into oligomers (“misfolded
α-synuclein oligomer”), which can be secreted into the interstitium. This aberrant α-synuclein can activate microglia, in turn starting an inflammatory process through
in particular IL-6 and IL-1β. Whether TNF-α works at early PD stages has not been investigated, but TNF-α is involved in sustained brain inflammation. INF-γ may
also be part of the sustained inflammatory response, but the data for this are less robust. These cytokines can potentiate the toxic effect on dopamine neurons and
the neurodegenerative process, ultimately leading to aggregation of α-synuclein in Lewy bodies and neuronal death. The anti-inflammatory TGF-β, and perhaps
IL-10, are probably secreted to counteract the toxic effects of the pro-inflammatory cytokines. However, in PD, the toxic effects seem to prevail. The effect of
activated microglia and cytokine release on the death of dopamine neurons is not known for the human brain. A cue may be achieved by studying human iPSC
microglia–neuron co-cultures.

the extracellular fluid. Here it activates microglia through various
surface receptors and induces a pro-inflammatory response with
production and secretion of e.g.,IL-1β, IL-6, INF-γ, and TNF-α
(El-Agnaf et al., 2003; Su et al., 2008, 2009; Chung et al., 2009;
Alvarez-Erviti et al., 2011; Béraud et al., 2013; Kim et al., 2013;
Roodveldt et al., 2013; Cebrián et al., 2014). This will ultimately
damage dopamine neurons (Mount et al., 2007; Cebrián et al.,
2014; Main et al., 2016; Zhang et al., 2017). Importantly, also in
PD patients there is ample evidence that aberrant α-synuclein
is secreted from neurons into the extracellular fluid, where it
can be detected in the cerebrospinal fluid (Tokuda et al., 2010;
Wang et al., 2012; Majbour et al., 2016).

Probably as an initial event in PD pathogenesis α-synuclein
can undergo conformational change to a β-sheet-rich structure,
which polymerizes to form toxic soluble oligomers and longer
fibrils. These ultimately precipitate as intracellular insoluble
plaques in Lewy bodies (Figure 1). Enriched in Lewy bodies
are phosphorylated α-synuclein at S129 (Spillantini et al., 1998),

which is considered to be a hallmark of pathological α-synuclein
(Fujiwara et al., 2002). α-synuclein assembled into such
oligomers and fibrils is thought to be toxic to neurons,
leading to neurodegeneration (Conway et al., 2001; Luk et al.,
2012; Froula et al., 2019), but whether this actually happens
through activation of microglia is incompletely understood.
In this context, it is noteworthy that in microglia-neuron co-
cultures in vitro α-synuclein did not produce any neurotoxic
effect in the absence of microglia (Zhang et al., 2005),
suggesting that α-synuclein may trigger neurotoxicity through
inducing microglia activation. Several other in vitro studies
have shown that α-synuclein plays a key role in microglia
activation (Thomas et al., 2007; Klegeris et al., 2008) and
that α-synuclein induced activation of microglia causes death
of dopamine neurons (Kirik et al., 2002; Eslamboli et al.,
2007). Likewise, it has recently been shown that fibrillar
α-synuclein was toxic to neurons only though through microglia
(Acuña et al., 2019).
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Early Microglia Activation in PD
Whether activation of pro-inflammatory microglia is the cause
or just a consequence of damaged dopamine neurons in the PD
brain is unclear. However, what is clear is that animal PD models
and human PD studies have shown that inflammation is an early
event in the progression of PD.

Experimental PD models have demonstrated that activation
of microglia precedes dopamine neuron degeneration (Zhang
et al., 2005; Su et al., 2008, 2009; Marinova-Mutafchieva
et al., 2009; Sanchez-Guajardo et al., 2010). Indeed, α-synuclein
overexpression in rats induces alterations in dopamine neuron
properties and impairs motor behavior long before dopamine
neuron degeneration, which is dependent on microglia activation
(Krashia et al., 2019).

However, PD is an exclusively human disease. Although
damaging the dopamine nigrostriatal pathway in animals by
toxins or genetically gives Parkinson-like behavioral symptoms,
such models do not recapitulate the human disease. Thus,
they cannot be used as reliable models in which to test
neuroprotective strategies. This is supported by the fact
that anti-inflammatory agents, which have been found to be
neuroprotective in animal Parkinson models, do not show
neuroprotective effects when tested in human patients with
PD. This is the case for minocycline, a tetracycline with anti-
inflammatory properties, which is neuroprotective in 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models of PD (Du
et al., 2001; Wu et al., 2002), but not in human PD (NINDS Net-
PD Investigators, 2008; Parashos et al., 2014). The same is true
for agents inhibiting peroxisome proliferator-activated receptors
(PPARs), which can induce microglia activation (Agarwal et al.,
2017). These agents have shown neuroprotection in animal PD
models (Carta et al., 2011; Pisanu et al., 2014), but not in patients
with PD (NINDS Exploratory Trials in Parkinson Disease (NET-
PD) FS-ZONE Investigators, 2015). Thus, in the discussion below
I will focus on data from human studies. The failure of these
anti-inflammatory therapeutic approaches in human PD could
be related to the complexity of the central nervous system in
humans compared to animals and the multifactorial nature of
neurodegeneration in PD. Of importance could also be a possible
weak potency of the drugs in question and challenges related
to clinical trial design, such as inclusion of PD patients with
advanced disease (as discussed below).

Early Microglia Activation and Cytokines in Brains of
PD Patients
The most compelling human evidence indicating that early
microglia activation plays an essential role in dopamine neuron
pathology in PD stems from postmortem analysis of healthy
embryonic dopamine neurons grafted into the striatum of PD
patients (Olanow et al., 2019). In the grafts there were signs of
inflammation with invasion of activated microglia several years
before the grafted dopamine neurons accumulated α-synuclein.
This suggests that microglia activation could contribute to
the development of α-synuclein pathology in the implanted
dopamine neurons. Indeed, increased inflammation in the
PD brain has been linked to accumulation of pathological
α-synuclein (Dzamko et al., 2017).

In line with this are studies showing microglia activation
in incidental PD, a prodromal PD form, where a-synuclein
accumulation is found in dopamine neurons at autopsies, but
clinically these individuals have not yet developed PD (Doorn
et al., 2014). Also in patients with prodromal idiopathic rapid-
eye-movement sleep behavior disorder, who did not show any
sign of parkinsonism or cognitive impairment, there is evidence
of brain inflammation on translocator protein positron emission
tomography imaging (TSPO PET) in the SNc (Stokholm et al.,
2017). In addition, TSPO PET of patients with Parkinson’s disease
with disease duration of less than 2 years showed inflammation
in the midbrain, including SNc (Ouchi et al., 2005; Iannaccone
et al., 2013). However, there is inconsistency in the TSPO PET
results, because one study showed evidence of inflammation in
several brain regions other than the SNc (Gerhard et al., 2006),
and another study showed no signs of brain inflammation at
all (Varnäs et al., 2019). This somewhat questions the reliability
of TSPO PET to detect brain inflammation in PD. On the
other hand, transcriptome analysis of SN tissue from incidental
PD has shown that there is activation of immune responses,
as well as evidence of axonal dysfunction and deregulation
of synapses (Dijkstra et al., 2015). This points to an early
involvement of inflammation, together with synaptic impairment
in PD. Whether inflammation contributes to such a “dying-back”
neurodegeneration (i.e., that the degeneration starts in axon
terminals in the putamen and spreads retrogradely to the SNc
(Chu et al., 2012) in PD is not settled.

Despite some inconsistency, altogether, these morphological/
imaging/transcriptome studies indicate early involvement of
activated microglia in PD (Figure 1). To identify which
cytokines these early activated microglia secrete one must turn
to biochemical analysis of cerebrospinal fluid (CSF), which can
be sampled at all stages of PD. Two CSF studies of PD patients
at early stages (disease duration 3 years or less) have been
performed. First, IL-1β and IL-6 were shown to be increased in
PD compared to control subjects (Blum-Degen et al., 1995). The
authors could not detect the cytokines in the blood, indicating
that the cytokines have a central origin. Later the same group
found that the IL-6 concentration in the CSF was increased in
de novo Parkinson patients compared to controls and that the
concentration was inversely correlated to disease severity (Müller
et al., 1998). This suggests that microglia secrete, in particular, IL-
6 at an early Parkinson stage, but probably also IL-1β (Figure 1).

Sustained Microglia Activation and Cytokines in
Brains of PD Patients
There are several human studies showing sustained brain
inflammation in advanced PD cases. First, postmortem studies
have shown that activated microglia are present in both the
SN and the putamen (McGeer et al., 1988a,b; Banati et al.,
1998). By immunohistochemistry it has been shown that these
cells were enriched with TNF-α (Imamura et al., 2003). In
addition, individuals developing PD caused by intoxication with
MPTP showed the presence of activated microglia at postmortem
examination many years after the insult (Langston et al., 1999),
suggesting that a single toxic event may lead to long lasting and
continuous brain inflammation. Second, biochemical methods
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have detected increased brain tissue levels of TNF-α, IL-1β, IL-
6, IFN-γ, and TGF-β in the postmortem PD striatum compared
to controls (Mogi et al., 1994a,b, 1996a, 1995, 2007). Third, in
the CSF there are higher levels of TNF-α (Mogi et al., 1994b;
Delgado-Alvarado et al., 2017; Schröder et al., 2018; Iwaoka et al.,
2020), IL-1β (Mogi et al., 1996b; Yu et al., 2014; Iwaoka et al.,
2020), IL-6 (Mogi et al., 1996b; Schröder et al., 2018; Lian et al.,
2019), and TGF-β (Mogi et al., 1995) in PD vs. controls. It should
be mentioned that several groups could not find any significant
difference in some of the cytokines between PD and controls.
This was true for IL-6 (Lindqvist et al., 2013; Yu et al., 2014;
Delgado-Alvarado et al., 2017; Starhof et al., 2018; Iwaoka et al.,
2020), IFN-γ (Starhof et al., 2018; Schröder et al., 2018; Iwaoka
et al., 2020), TNF-α (Lindqvist et al., 2013; Yu et al., 2014; Starhof
et al., 2018), as well as for IL-1β (Starhof et al., 2018; Lian et al.,
2019), IL-10 (Starhof et al., 2018; Schröder et al., 2018), and TGF-
β (Starhof et al., 2018). Moreover, Iwaoka et al. (2020) could not
detect IL-1β and IFN-γ in the CSF of PD patients. Karpenko et al.
(2018) found detectable levels of TNF-α, IL-1β, IL-6, and IL-10 in
PD CSF, but they did not compare with a control group. IFN-γ
has also been detected in the CSF at lower concentrations in PD
compared to controls (Yu et al., 2014).

Taken together, although information about early cytokine
production in PD is somewhat scarce, it supports the idea that
microglia are activated early in the disease process and suggests
that they produce pro-inflammatory cytokines, especially IL-6
and IL-1β (Figure 1). It has not yet been investigated whether
TNF-α and IFN-γ are also produced at early stages, but along
with IL-1β and IL-6, TNF-α probably contributes to persistent
neuroinflammation, while the data are less robust for IFN-γ
(Figure 1). The cytokine studies suggest that also the anti-
inflammatory cytokine TGF-β could be part of the microglial
phenotype in progressive PD (Figure 1), but whether IL-10 is
significantly produced in the CNS during the course of PD is not
so clear. These considerations are in line with a meta-analysis of
cytokine CSF-concentrations in advanced PD patients, showing
that IL-6, IL-1β, and TGF-β were increased compared to controls
(Chen et al., 2018). The authors could not detect any significant
difference for TNF-α, but there was a much higher heterogeneity
in this data set, as well as a lower number of analyses than for
IL-6, IL-1β, and TGF-β.

Thus, microglia may produce a mix of pro- and anti-
inflammatory cytokines, reflecting the complex nature of the
inflammatory cascades taking place in the parkinsonian brain
(Joers et al., 2017). TGF-β could be secreted to counteract the
toxic effects of IL-6, IL-1β, and TNF-α, but the significance of
this is not known. To my knowledge the potential toxic effect of
activated human microglia on human dopamine neurons has not
been studied. This may be done by investigating the survival of
dopaminergic neurons derived from human induced pluripotent
stem cells (hiPSC) (Swistowski et al., 2010) in a mixed culture
with mature hiPSC-derived microglia (Muffat et al., 2016). Such
human iPSC microglia–neuron co-cultures could be made from
patients with idiopathic PD and compared with those from
healthy controls.

The cytokines observed in brain tissue and CSF are most
likely produced by microglia. However, it should be mentioned

that reactive astrocytes are also present in the PD brain. These
have been shown to produce certain pro-inflammatory cytokines,
although it is generally thought that astrocytes rather produce
and secrete neuroprotective factors, such as glial cell line-derived
neurotrophic factor (GDNF), brain-derived neurotrophic factor
(BDNF) and mesencephalic astrocyte-derived neurotrophic
factor (MANF) (Pöyhönen et al., 2019). Recent biomarker studies
have examined the levels of inflammation related proteins in the
CSF of PD patients. Chitinase-3-like protein 1 (CHI3L1)/YKL-
40 is such an inflammatory associated protein, which is secreted
from, in particular, reactive astrocytes in the inflamed brain
(Bonneh-Barkay et al., 2010). With respect to YKL-40 and PD,
results from CSF studies are conflicting; some studies found the
same concentration in PD patients as in controls (Magdalinou
et al., 2015; Wennström et al., 2015; Hall et al., 2016), whereas
others found YKL-40 to be lower in PD patients compared
to controls (Olsson et al., 2013; Hall et al., 2018). However,
YKL-40 was associated with disease progression (Hall et al.,
2016), supporting the idea that reactive astrocytes are involved
in brain inflammation and neurodegeneration in PD. Another
inflammation related protein thought to be involved in PD
is the soluble part of the triggering receptor expressed on
myeloid cells 2 (sTREM2), which comprises the extracellular
domain of the full length TREM2 receptor protein. TREM2
seems to be located in microglia, at least in rodents (Frank
et al., 2008), but if human microglia produce TREM2 is unclear
(Fahrenhold et al., 2018). In experimental animals activation of
TREM2 stimulates a phogocytotic phenotype of microglia and
dampens cytokine production, but sTREM2 does the opposite;
it activates microglia to secrete pro-inflammatory cytokines
(Zhong et al., 2017). sTREM2 is increased in the CSF from PD
patients compared to controls (Wilson et al., 2020). In the latter
study sTREM2 was correlated with Tau, meaning that it may
signal at the same time ongoing processes of inflammation and
neurodegeneration.

Cytokines in the Blood of PD Patients
Several studies have measured cytokine concentrations in the
blood. Two studies have investigated blood cytokine levels in
early PD (within 2 years from diagnosis). The first one showed
that TNF-α, IL-1β, and IL-10 were higher in PD than in controls,
but they could not find any difference for INF-γ (Williams-Gray
et al., 2016). Later, Kim et al. (2018) found that the levels of IL-
1β were higher in PD compared to controls, but this was not the
case for IL-6, IL-10, and TNF-α. In advanced PD several studies
have measured cytokine levels. A recent meta-analysis showed
that blood concentrations of IL-1β, IL-6, IL-10, and TNF-α are
increased in patients with PD (Qin et al., 2016). Also, IFN-γ
seems to be increased in the blood of advanced PD patients
compared to controls (Mount et al., 2007). Thus, it seems as
if especially IL-1β is present at high levels in the blood of PD
patients from the start of motor symptoms. In addition, several
cytokines, including IL-1β, IL-6, IL-10, TNF-α, and probably
IFN-γ could be part of an ongoing systemic inflammation along
disease progression in in PD.

It is known that subpopulations of CD4+ T-helper
lymphocytes secrete cytokines (Box 1). These cells can be
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BOX 1
Activation of the adaptive immune system requires recognition of foreign
antigens. These are recognized by a diversity of T cell receptors (TCR),
enabling them to recognize any protein antigen. TCRs are expressed on the
surface of Tlymphocytes. They disclose the presence of protein antigens by
binding short peptides, which are cleavage products of the protein antigen.
Such peptides are presented on the surface of cells bound to class I or class II
molecules of the major histocompatibility complex (MHC). MHC class I is
present on all nucleated cells, whereas MHC class II is located on professional
antigen presenting cells (APCs), such as microglia. Peptides presented on
MHC class I are recognised by T-cell receptors on cytotoxic CD8+ T cells and
those on MHC class II are sensed by Tcell receptors on CD4+ T helper cells.
Class I molecules usually presents endogenous derived peptides, often from
proteasomal breakdown of for instance viral proteins. This will trigger a
cytotoxic response of CD8+ T-cells by release of cytotoxic granules
comprising perforin and granzymes. Perforin forms a pore in the membrane of
the target cell, allowing the granzymes to enter the target cell. As granzymes
are proteases they induce apoptosis of the target cell.

On class II MHC molecules the peptides are usually derived from
extracellular antigens, which have been phagocytosed by the antigen
presenting cell. TCR recognition of such peptide/MHCII complexes primes
naı̄ve CD4+ Tcells to differentiate into specific subtypes depending on e.g. the
cytokine repertoire secreted by the APC. The release of IL-12/IFN-γ results in
T-helper 1 (Th-1) cells, while the release of IL-4 generates T-helper 2 (Th-2)
cells. The concentrations of TGF-β/IL-6 are involved in the differentiation of
T-helper 17 (Th-17) and regulatory T cells (Tregs). The effector functions of
CD4+ T-cells are mediated by cytokines secreted by the differentiated cells.
The typical Th1 cytokine profile comprises IFN-γ and TNF-α and the Th-17
profile consists of IL17 and IFN-γ. These cytokines can be toxic to other cells,
such as neurons in the brain. They trigger activation of microglia in the innate
immune system, Blymphocytes and CD8+ T-cells, as well as regulate Tregs in
the suppression of immune reactions. The functional roles of CD4+ and CD8+
-cells in the brain are incompletely understood.

differentiated into pro-inflammatory cells, such as T helper 1 (Th
1) and T helper 17 (Th17), and anti-inflammatory phenotypes,
such as T helper 2 (Th2) and the T regulatory (Treg) cells.
Pro-inflammatory Th1 helper cells secrete IFN-γ and TNF-α,
suggesting that these cells may have contributed to the increased
blood levels of these cytokines in PD (Kustrimovic et al., 2018).
Also, IL-17, which is typically secreted from Th-17 cells, are
found to be elevated in the blood of PD patients (Sommer et al.,
2018). The IL-10 finding may be mediated by Tregs, while the
elevated levels of IL-1β and IL-6 most likely reflect production
by peripheral macrophages. Together, the increased blood levels
of cytokines suggest a peripheral site of injury with activation of
peripheral immune cells during the course of PD (see discussion
below). However, a reason for the elevation in blood cytokines
could also be a “wash out” from the brain via the glymphatic
system (Iliff et al., 2012). Moreover, it has also been observed
decreased plasma concentrations of several cytokines in PD; e.g.,
IL-6, IL-1β, IL-10, TNF-α, IFN-γ, and IL-17 (Hasegawa et al.,
2000; Rocha et al., 2018), indicating rather an impaired cytokine
production in advanced PD.

Involvement of Adaptive Immunity and
Activation of T-Cells in PD
As discussed above the innate immune system seems to
contribute to neurodegeneration in PD. Activation of microglia,
which can sense α-synuclein and secrete pro-inflammatory
cytokines, will promote neuronal pathologies (Figure 1). This

is supported by genome wide association studies (GWAS),
which have shown that pathways involved in inflammation
and regulation of cytokine production are related to PD
(Durrenberger et al., 2012; Holmans et al., 2013). Moreover, a
large number of the genes associated with PD risk alleles are
expressed by microglia (Gosselin et al., 2017). Thus, microglia
may form a link between innate and adaptive immunity in
PD (Figure 2).

In the healthy human brain postmortem immunolocalization
studies have demonstrated that major histocompatibility complex
(MHC) class II molecules are exclusively present on “resting”
microglial cells (Hayes et al., 1987; Lowe et al., 1989). This
constitutive expression is low compared to the density of MHC
class II on activated microglia (Hayes et al., 1987). Postmortem
analyses of PD brains have shown that MCH class II is highly
expressed on the surface of activated microglia. First, McGeer
et al. (1988a,b) demonstrated that human leukocyte antigen
(HLA)-DR-positive reactive microglia were present in the SN
in PD to a much greater extent than in non-neurological cases.
Then, it was shown that the number of reactive microglia positive
for MHC class II (using an antibody recognizing HLA-DP, -
DQ, and -DR) increased as the dopamine neuron degeneration
developed (Imamura et al., 2003). Adding to this is that genetic
data from idiopathic PD link MHC class II to the disease.
GWAS have identified an association with several MHC class
II genes, e.g., HLA-DRB1, HLA-DRB5, HLA-DRA, HLA-DQA1,
and HLA-DQB1, as well as the MHC class I molecules HLA-
B and HLA-C (Hamza et al., 2010; Wissemann et al., 2013;
Pierce and Coetzee, 2017).

Thus, by expressing a variety of MCH class II molecules
microglia can act as antigen presenting cells (Figure 2; Lowe
et al., 1989). This microglia property may play an important
part in the pathogenesis of PD. It is well known that MHC
class II presents antigens to CD4+ T-cells (Figure 2; Box 1).
In experimental PD models α-synuclein triggers generation
of MHC class II on microglia, which is essential for a
complex interaction with infiltrating CD4+ T-cells. In this
interaction cytokines are produced (e.g., IFN-γ and TNF-
α), ultimately resulting in dopamine neuronal degeneration
(Harms et al., 2013). The identity of the peptides presented
by microglial MHC class II has not been clarified. In
addition, in the human PD brain the evidence that microglia
present antigens to CD4+ T cells is lacking. However, T-cells
isolated from the blood of PD patients are reactive toward
epitopes derived from α-synuclein (Sulzer et al., 2017). The
authors found that the α-synuclein epitopes comprised those
containing phosphorylation at S129, implying that the T-cells
recognized aberrant α-synuclein. Moreover, the T-cells from
patients with PD that responded were mostly CD4+ T-cells
and a few CD8+ cytotoxic T cells interacting with MHC
class II and MHC class I, respectively. α-synuclein peptides
that bound to MHC class II with high affinity were encoded
by HLADRB1 and DRB5 (Sulzer et al., 2017). These HLA
variants are the same as those noted to be associated with
PD by GWAS (see above). This is intriguing because increased
CD4+ T cell infiltration, along with CD8+ T-cells, has been
found in the postmortem SN of PD patients compared to
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FIGURE 2 | Proposed time course and the action of microglia and CD4+ and CD8+ T-cells on degeneration of dopamine neurons in PD. (A) Probably as an initial
event in PD pathogenesis dysfunctional dopamine neurons secrete misfolded α-synuclein oligomers, which can activate microglia (see Figure 1). Next, activated
microglia phagocytose this α-synuclein and present aberrant α-synuclein peptides via MHC class II molecules to CD4+ T-cells. It is well established that activated
microglia present antigens on MHC II, but which type of antigens that are presented in the human PD brain is not known. Activated microglia release
pro-inflammatory cytokines, including INF-γ (see Figure 1). The cytokines are toxic to dopamine neurons, further augmenting the pathology. INF-γ can increase the
expression of MHC class II on microglia and MHC class I on dopamine neurons. (B) Priming of CD4+ T-cells, as well as of CD8+ T-cells, happens after microglia
activation, but exactly when in the time course of PD progression is not known. Whether priming of CD4+ and CD8+ T-cells occurs within or outside (see Figure 3)
the PD brain is not clarified. INF-γ, which can be secreted also from primed CD4+ T-cells, sustains the activated phenotype of microglia and further increases the
expression of MHC class II on microglia and MHC class I on dopamine neurons. This will stimulate the priming process. Besides INF-γ, primed CD4+ T-cells may
secrete TNF-α and primed CD8+ T-cells may release secretory granules, both of which may be toxic to neurons. But if these T-cell mediated toxicities take place in
the brain of PD patients is not known. TCR, T-cell receptor.

healthy controls (Brochard et al., 2009). In addition, the latter
authors gave experimental evidence using an animal PD
model that it was the CD4+, and not the CD8+ cells,
which contributed to loss of dopamine neurons. Thus, it
seems as if, in particular, cells expressing MHC class II
may present peptides of aberrant α-synuclein to CD4+ T-
cells, although this may also be the case for MHC class
I and CD8+ T-cells (Figure 2). These interactions may
generate autoreactive T-lymphocytes, recognizing disease-altered
self-proteins as foreign antigens, suggesting that Parkinson’s
disease could be an autoimmune disease (Sulzer et al., 2017).
Interestingly, as Tregs are important for the maintenance

of immunological self-tolerance, dysfunctional Tregs may
contribute to development of autoimmune disorders (Sakaguchi
et al., 2020). Indeed, it has been observed that Tregs from patients
with PD have an impaired ability to suppress effector T cells
compared to healthy controls (Saunders et al., 2012). Hence,
dysfunctional Tregs may be involved in the escape from tolerance
underlying the development of autoreactive T-cells observed
by Sulzer et al. (2017).

Recently, evidence was given that α-synuclein specific T-cell
responses are present very early in the course of PD, and perhaps
before motor symptoms are evident (Lindestam Arlehamn
et al., 2020). This underscores the idea that inflammatory
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cascades are triggered at an early disease stage. However, when
the priming of these α-synuclein specific T-cell takes place
compared to the activation of microglia in the PD brain is
not clear. Moreover, there are no exact data on where T-cells
are activated over the course of PD. The mechanisms whereby
activated T-cells may injure dopamine neurons the brains of
PD patients are also rather obscure. The α-synuclein reactive
T-cells detected in the blood (Sulzer et al., 2017; Lindestam
Arlehamn et al., 2020) could have been activated in the brain
(Figure 2), or in the periphery in draining lymph nodes
(discussed below, Figure 3), but probably in a process taking
place after neuronal dysfunction and microglia activation have
occurred (Figures 2, 3). Alternatively, this could have happened
in for instance the gut, as a consequence of an initial local
inflammatory processes, but if and when gut pathology come
into play in PD pathogenesis is not settled (discussed below;
Figure 3). In the brain α-synuclein is exclusively produced by
neurons (Jakes et al., 1994). Therefore, since microglia do not
express α-synuclein, the antigen presentation to CD4+ T-cells
in the brain must take place after microglia have phagocytosed
extracellular α-synuclein (probably aberrant misfolded species;
see Zhang et al., 2005; Lee et al., 2008). This implies that microglia
get involved in the disease process as a consequence of an initial
secretion of pathological α-synuclein from dysfunctional neurons
(Figure 1). Thus, T-cells are probably activated downstream of
microglia activation (Figure 2).

T-cell migration and infiltration into the brain parenchyma
are tightly regulated at the level of the brain barriers (Nishihara
et al., 2020). In spite of this, T-cell surveillance in the human brain
does occur, not only in PD (Brochard et al., 2009; Sommer et al.,
2018), but also in individuals without any known brain disease
(Smolders et al., 2018). Thus, the possibility exists that patrolling
CD4+ T-cells can be primed in the brain when facing pathologic
a-synuclein peptides on microglial MHC class II (Figure 2). The
invasion of CD8+ T-cells is in fact larger than that of CD4+ T-
cells (Brochard et al., 2009; Smolders et al., 2018), indicating that
also CD8+ cells can be initially primed in the brain (Figure 2).
Interestingly, it has been shown that dopamine neurons in the
SN of PD patients express MHC class I (Cebrián et al., 2014). In
this way endogenous aberrant α-synuclein in dopamine neurons
could be presented via MHC class I to CD8+ T-cells (Figure 2).
Moreover, using in vitro models Cebrián et al. (2014) showed that
the expression of MHC class I on dopamine neurons was induced
by production of INF-γ by activated microglia, thus putting
also the possible brain priming of CD8+ T-cells downstream of
microglia activation (Figure 2). Although T-cells are present in
the PD brain, a prominent lymphocytic infiltrate, like that found
in multiple sclerosis, is not observed in PD (cf. Brochard et al.,
2009; Machado-Santos et al., 2018).

As the circulation of T-cells through the PD brain is
probably limited, the T-cell priming event is more likely to
take place outside the brain at specialized priming sites like
peripheral lymph nodes (Figure 3). A scenario could be that
pathological α-synuclein released from neurons into the brain
interstitium drains with the glymphatic system (Iliff et al.,
2012) to the CSF in the subarachnoidal space. From here
pathological α-synuclein could reach cervical lymph nodes

(Benner et al., 2008; Ahn et al., 2019) via the newly discovered
meningeal lymph vessels (Aspelund et al., 2015; Louveau et al.,
2015; Ahn et al., 2019). In the lymph nodes monocyte-derived
dendritic cells may phagocytose these α-synuclein antigens and
via MHC class II induce priming of CD4+ T-cells (Korn and
Kallies, 2017). These primed T-cells can then infiltrate the
brain. When facing antigen presenting microglia they may be
reactivated starting a stronger local immune response (Figure 3).
However, the profile and function of such activated CD4+ T-cells
in the PD brain remain to be determined.

Although nothing is known about the repertoire of cytokines
that is secreted by T-lymphocytes infiltrating the PD brain,
peripheral T-lymphocytes from PD patients secrete for instance
IFN-γ (Sulzer et al., 2017; Kustrimovic et al., 2018) and TNF-α
(Kustrimovic et al., 2018). These cytokines have been shown to
be involved in dopamine neurodegeneration in experimental PD
models (Mount et al., 2007; Harms et al., 2013). Therefore, the
situation in the PD brain (Figure 2) may be similar to that in
the brain of patients with multiple sclerosis, in which infiltrating
CD4+ T-cells secrete neurotoxic INF-γ and TNF-α (Fletcher
et al., 2010). Moreover, INF-γ may increase the expression of
MHC class II on microglia (Panek and Benveniste, 1995), and
as mentioned above that of MHC class I on dopamine neurons.
This will further enhance dopamine neuronal toxicity. INF-γ
is probably secreted by CD4+ T-cells, but this could also be
done by microglia (Kawanokuchi et al., 2006; Mount et al., 2007;
Cebrián et al., 2014).

To sum up, what is known about adaptive immunity in the
human PD brain is that microglia and dopamine neurons in the
SN express MHC class II and MHC class I molecules, respectively.
CD4+ and CD8+ T-cells are enriched in this brain region.
The mechanisms whereby they contribute to degeneration of
dopamine neurons is still not clarified, but some of their putative
roles are depicted in Figures 2, 3.

Can Systemic Inflammation Lead to
Brain Inflammation and
Neurodegeneration?
Accumulation of α-Synuclein in Gut Neurons and
Spreading to the Brain
Emerging data have proposed that systemic inflammation with
T-cell priming can occur in the gut as a key event in PD
pathogenesis. According to the Braak hypothesis (Braak et al.,
2003) α-synuclein pathology could start outside the brain and
transmit centrally from for example the intestine via the vagus
nerve and the parasympathetic dorsal motor nucleus of the
vagus (Breen et al., 2019). There are indeed indications that
α-synuclein pathology is present in peripheral organs, such as the
intestine (Braak et al., 2006). Thus, it has been speculated that
a pathological process, such as inflammation, in the gut could
trigger pathologic α-synuclein aggregation in local neurons. This
could make the gut the initiating site of inflammation, driving
propagation of pathological α-synuclein to the brain in a prion-
like fashion (see Kim et al., 2019 for experimental evidence), in
turn leading to PD neuropathology and neuroinflammation as
discussed above. This mechanism of neurodegeneration in PD
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FIGURE 3 | Possible peripheral sites of α-synuclein induced activation of T-cells. (1) Misfolded α-synuclein oligomers are secreted from dopamine neurons in the
SNc into the intersitium. From here α-synuclein can flow via the glymphathic system to the CSF and into meningeal lymph vessels and reach cervical lymph nodes
(red filled arrows). Here α-synuclein may be phagocytosed by antigen presenting cells (APC) and presented to CD4+ T-cells via MHC class II and T-cell receptors
(TCRs), leading to priming of the T-cells. These T-cells can enter the circulation, cross the blood brain barrier (BBB) and patrol the brain parenchyma. Extracellular
α-synuclein, released from dopamine neurons, will also activate microglia (red dotted arrow). Microglia will expose α-synuclein on MHC class II. When patrolling
T-cells meet antigen presenting microglia they may be reactivated, which in turn may lead to increased brain inflammation. Meninges: P, pia mater; A, arachnoidea;
D, dura mater; (2) CD4+ T-cells could be primed in the gut. Local pathology, such as inflammation, may cause α-synuclein to misfold and aggregate in gut neurons.
This misfolded α-synuclein could be secreted (black filled arrow) and end up in MHC class II on APCs. This will prime CD + T-cells, which then may gain access to
the brain via the circulation in the same manner as T-cells primed in cervical lymph nodes. The finding of α-synuclein reactive T-cells in the blood of PD patients is
consistent with scenarios (1) and (2). (3) Misfolded α-synuclein can be trans-synaptically taken up by the vagus nerve and retrogradely transported to the dorsal
motor nucleus of the vagus (black dotted arrows). As this nucleus is not directly interconnected with the SNc, α-synuclein can reach SNc through trans-synaptical
and retrograde spread via several brain regions. Thus, misfolded α-synuclein from gut neurons may cause templating in dopamine neurons, leading to aggregation of
α-synuclein in dysfunctional neurons, inflammation, and ultimately neuronal death.

brains could first and foremost depend on transsynaptic spread
of pathological α-synuclein from the gut to the brain, i.e., it may
not involve brain infiltration of T-cells (Figure 3).

Indeed, hyperphosphorylated α-synuclein (at S129) has been
shown to be located in gut neurons before the start of motor
symptoms in PD patients, but not in healthy controls (Shannon
et al., 2012; Hilton et al., 2014). However, whether α-synuclein
aggregation in the gut is unique for PD could be questioned,
because also in healthy individuals phosphorylated α-synuclein
in gut neurons has been observed (Böttner et al., 2012; Gray et al.,
2014). In line with this, a recent meta-analysis estimated that the

specificity for detecting α-synuclein in gut neurons in PD patients
vs. controls was about 0.8 (Bu et al., 2019), meaning that 20% of
controls displayed α-synuclein labeling of gut neurons. Moreover,
when comparing the presence of α-synuclein in the gut and the
brain in patients with incidental PD (regarded as a prodromal
of PD), none of the cases showed α-synuclein only the gut and
not the brain (Adler and Beach, 2016). This further questions
whether the gut is an initial site of production of aberrant
α-synuclein. The possibility exists that α-synuclein could be
transported bidirectionally in the vagus nerve, indicating that
aberrant α-synuclein found in gut neurons in PD patients could
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originate from the brain (Breen et al., 2019). Furthermore,
α-synuclein has been detected in the vagus nerve (Beach et al.,
2010) and two studies noted that vagotomy decreased the risk
of PD (Svensson et al., 2015; Liu et al., 2017), but this was
not found in another study (Tysnes et al., 2015). Neither the
presence of α-synuclein in the vagus nerve nor the reported effect
of vagotomy on PD risk can be taken as evidence of gut-to-
brain spread, at least as an initial event. First, vagotomy could
affect an initial vagal transport of α-synuclein from brain to gut
neurons. This would thereby reduce a secondary triggering of gut
T-cell responses that would otherwise have been transmitted to
the brain, enhancing brain inflammation and neurodegeneration.
Second, vagotomy disturbs the physiological regulation of the
vagal nerve on peripheral inflammation (Matteoli et al., 2014),
obscuring the α-synuclein relation to PD development.

Thus, there are uncertainties as to whether gut-to-brain
transmission of pathological α-synuclein via the vagus nerve may
start brain inflammation and neurodegeneration. However, as
discussed above increased levels of pro-inflammatory cytokines
in the blood of PD patients have been detected, suggesting
that the parkinsonian immune system has responded to tissue
damage and/or foreign or altered molecules, such as pathological
α-synuclein. Moreover, the blood levels of cytokines correlate
with the clinical stage of the disease, emphasizing a role for
peripheral inflammation in PD progression (Reale et al., 2009).
Interestingly, there is evidence for local inflammation in the gut
in patients with PD. Increased levels of the pro-inflammatory
cytokines TNF-α, IL-1β, IL-6, and IFN-γ have been found
in colon biopsies in PD compared to controls (Devos et al.,
2013). The cytokine levels were negatively correlated with disease
duration, suggesting that bowel inflammation is an early event in
PD. Supporting this is the finding that aggregation of α-synuclein
in gut neurons is associated with increased intestinal leakiness to
pro-inflammatory bacterial products in patients newly diagnosed
with PD (Forsyth et al., 2011). Such tissue pathology and
inflammatory changes could lead to activation of T-cells in the
gut. Indeed, CD4+ T cells are present in the colon of patients
with PD and more so in patients with constipation than in those
without constipation (Chen et al., 2015). The above mentioned
findings show that the gut is subjected to inflammation and
α-synuclein aggregation in PD, but whether this is an initial event
triggering PD pathogenesis and its role in disease progression
remains to be proven (Figure 3).

Evidence From Pharmaco-Epidemiological Studies
The question is if data from studies on the inflammatory
bowel diseases (IBD) ulcerative colitis and Crohn’s disease can
be used to throw light on PD pathogenesis. Data from such
studies can contribute in two ways: They can clarify (1) the
association between gut inflammation and PD, and (2) indirectly
the role of T-cells in PD; if primed T-cells play an active
role in neurodegeneration one should expect that peripheral
acting immunosuppressant agents used in the treatment of
IBD will slow or halt PD progression. Concerning the first
question, three studies have noted that patients with IBD
show increased likelihood of developing PD (about 20–30%
increased risk of PD as compared with non-IBD individuals;

Peter et al., 2018; Villumsen et al., 2019; Weimers et al.,
2019). On the other hand, one study showed the opposite,
i.e., reduced risk of PD (about 15% reduced risk of PD
as compared with non-IBD individuals; Camacho-Soto et al.,
2018). When it comes to the second question, certain types
of immunosuppressant have been shown to give reduced risk
of developing PD. One study observed this for corticosteroids
and inosine monophosphate dehydrogenase (IMDH) inhibitors
(e.g., azathioprine), but not for anti-TNF-α therapy (Racette
et al., 2018). In contrast, Peter et al. (2018) concluded that
TNF-α blockade was associated with reduced risk of PD. In
Racette et al. (2018) they included patients newly diagnosed
with PD and a random selection of controls without PD. The
authors identified how many persons in the two groups who
were prescribed with some of seven types of immunosuppressant
until a year before inclusion in the study. Only corticosteroids
and IMDH inhibitors showed a potential to reduce the risk
of PD, with the latter drug being the most effective (35%
reduction in PD incidence). This is interesting because IMDH
inhibitors block DNA synthesis preferentially in T-lymphocytes
(Thomas et al., 2005), and as this class of drugs does not cross
the blood brain barrier, they may work through dampening
peripheral T-cell mediated inflammation. The study by Peter
et al. (2018) noted that there was a decreased incidence
of PD among the inflammatory bowel disease patients who
took anti-TNF-α therapy. Despite this effect there was an
increase in PD risk in the entire IBD population, where
the risk of ulcerative colitis was similar to that of Crohn’s
disease. The latter result is in conflict with data in Villumsen
et al. (2019) and Weimers et al. (2019), where the PD risk
was significantly higher among patients with ulcerative colitis
compared to those with Crohn’s disease. In addition, in the
Swedish study (Weimers et al., 2019) the effect disappeared when
the authors adjusted for the numbers of medical visits. Although
these epidemiological/pharmacoepidemiological studies indicate
that there is a possible association between inflammation in
the gut and development of PD and that certain types of
immunosuppressants may reduce the incidence of PD, there are
clear discrepancies. These cast uncertainty on the results.

It should also be mentioned that non-steroid anti-
inflammatory drugs (NSAIDs) have been extensively examined
for neuroprotective effects. Experimental PD models have
shown somewhat confliction results. Acetyl salisylate and
ibuprofen have been reported to be neuroprotective in MPTP
mouse models of PD (Aubin et al., 1998; Swiątkiewicz et al.,
2013). However, using the same model, recently ibuprofen
given alone was not protective (only when given along with a
metalloprotease inhibitor) (Costa et al., 2020). Likewise, results
from epidemiological studies are somewhat conflicting. Two
meta-analyses concluded that ibuprofen could slightly lower
the risk of PD (Samii et al., 2009; Gagne and Power, 2010).
However, later this has not been verified in meta-analyses
including a larger number of studies (Ren et al., 2018; Poly et al.,
2019). There are no randomized clinical trials investigating the
effect of NSAIDs. Likewise, rosacea patients who have used
tetracyclines appear to have a reduced risk of PD (Egeberg et al.,
2016). As mentioned above, tetracyclines may work to reduce
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inflammation, but in clinical trials using minocycline there was
no effect on PD progression (NINDS Net-PD Investigators, 2008;
Parashos et al., 2014).

Clinical Randomized Trials Investigating
the Effect of Anti-inflammatory Agents
The only way to answer the question about whether targeting
inflammation can rescue dopamine neurons from dying in PD
patients is to conduct proper randomized clinical trials. As
mentioned above, several clinical trials testing anti-inflammatory
drugs have been performed, but none have shown any significant
neuroprotective effect (NINDS Net-PD Investigators, 2008;
Parashos et al., 2014; NINDS Exploratory Trials in Parkinson
Disease (NET-PD) FS-ZONE Investigators, 2015). This may be
related to the trial design or to the possibility that the drugs
in question were not potent enough or simply that targeting
inflammation is not sufficient to change the course of PD. Of
note is that one recent trial showed promising results using
the glucagon-like peptide 1 receptor (GLP1R) agonist exenatide
(Athauda et al., 2017). The authors reported that the drug
improved motor function in PD patients compared to those given
placebo. This is interesting because in a recent experimental study
using two different PD models another type of GLP1R agonist
(NLY01) was shown to have anti-inflammatory effects in the
brain (Yun et al., 2018). By stimulating GLP-1Rs on microglia
NLY01 prevented dopamine neuronal death in the PD animals.
This happened in a cascade involving astrocytes as effector toxic
cells (Yun et al., 2018). However, in the clinical PD setting it
cannot be concluded that GLP1R agonists have neuroprotective
effects, because there are several uncertainties and shortcomings
with the exenatide study (Athauda et al., 2017): (1) It could not
be determined if the effect was due to a symptomatic effect or
if it represented neuroprotection. The drug effect was evident
after quite a short time (12 weeks) and did not increase thereafter
(48–60 weeks). (2) More importantly, the patients treated with
exenatide had already reached a rather advanced disease stage
with an average disease duration of 6.5 years. This is a stage where
one should expect little or no effect of neuroprotective strategies
(see discussion above). (3) The number of included PD patients
was very low (30 in the exenatide group/30 in the placebo group).
These numbers were based on a power analysis prior to the start
of the study. In this calculation the authors used a difference
of 5.8 points in the motor part of the Movement Disorders
Society Unified Parkinson’s Disease Rating Score (MDS-UPDRS)
between the treatment and placebo group. However, this is far
too high a score, because motor symptoms in PD progress with
about 1.5 point per year (Post et al., 2011; Lilleeng et al., 2014).
This means that the maximum expected difference to be observed
between the GLP1R agonist and placebo would be about 1.5
MDS-UPDRS points during the duration of the study (48 weeks).
Altogether, these factors make it difficult to conclude about
neuroprotection. In future trials newly diagnosed PD patients
should be enrolled instead of patients with a marked disease
progression. It is pivotal to study patients at the earliest possible
stage, when there is a greater chance that the patients have vital
dopamine neurons, which could benefit from the therapy. Next,

the number of PD patients should be high enough to give a
sufficient power to detect statistical differences. Given a study
duration of 2 years, a sample size of about 250 patients is needed
to detect a difference of 3.0 MDS-UPDRS points between two
groups (treatment and placebo), assuming SD of 9 MD-UPDRS
points (Post et al., 2011; Lilleeng et al., 2014) and a significance
level of 5% (two-sided).

CONCLUSION

There is ample evidence from human PD studies that microglia
are activated early in the disease process and in any case within
3 years from diagnosis. It could be that microglia activation is
among the initial inflammatory events that takes place in PD.
This means that starting treatment with inhibitors of microglia
activation at an early PD stage may be effective in slowing down
or stop further neurodegeneration. It would be exciting to see
data from studies further testing the effect of GLPR1 agonists.
A phase II study using NLY01 is now recruiting (NCT04154072;
clinicaltrials.com). This study is promising, because it will include
a high number (n = 240) of newly diagnosed PD patients.
However, the study duration is only 36 weeks, which may be too
short to detect any neuroprotective effect (because the clinical
worsening will be very small in the course of 36 weeks). This
could be handled by an open extension of the trial. Despite
that the knowledge about the significance of adaptive immunity
and T-cell responses for PD pathogenesis is still rather limited,
another option could be to block the access of T-lymphocytes
to the PD brain. This may be achieved by repurposing drugs
known to be disease modifying in multiple sclerosis. Along
this line, testing also drugs that can broadly dampen peripheral
inflammation, such as anti-TNF-α drugs or IMDH inhibitors
may hold a promise. But as these drugs have some serious side
effects there are ethical concerns with such studies. Whether
Tregs play a role in the degeneration of dopamine neurons is
also largely unknown. But from the discussion above it could
be a rationale for testing agents that may increase the level of
functional Tregs and supress production of autoreactive T-cells.
Such a drug could be glatiramer acetate, which is approved
for treatment of multiple sclerosis (Prod’homme and Zamvil,
2019). At last, the important question is if inflammation plays a
sufficient pathogenetic role in neurodegeneration that interfering
with it will significantly alter disease progression. So far there
are no human studies directly showing this. But along with
data suggesting that inflammation is present in the brains of
PD patients from an early disease stage, and even at prodromal
stages, a wealth of data from experimental PD models show
neuroprotection of anti-inflammatory treatments. This strongly
suggests that inflammatory cascades do have an important impact
on development of neurodegeneration in PD. This justifies
initiating more clinical trials on inflammation in PD.
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