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Abstract 

Background:  Malaria and helminths share the same geographical distribution in tropical Africa. Studies of the 
interaction of helminth and malaria co-infection in humans have been few and are mainly epidemiological, with 
little information on cellular immune responses. This study aimed to determine Cytokine profiles among patients 
co-infected with Plasmodium falciparum malaria and soil borne helminth attending Kampala International University 
Teaching Hospital (KIU).

Methods:  A case control study of 240 patients were recruited at KIU teaching hospital. Patients with Plasmodium fal-
ciparum malaria were 55 (22.9%) and those with soil-borne helminths were 63 (26.3%). The controls were 89 (37.1%), 
while those co-infected with Plasmodium falciparum malaria and soil-borne helminths were 33 (13.8%). Cases were 
defined as having a positive blood smear for P. falciparum malaria, those with helminths or co-infections of the two. 
Negative controls were those with a negative blood smear for P. falciparum malaria and those with no stool parasitic 
infections. Patients presenting with signs and symptoms of malaria or those suspected of having helminths were 
recruited for the study. A panel of five cytokines (IFN-γ, TNF-α, IL-6, TGF-β and IL-10) were assayed from plasma sam-
ples in patients with and without Plasmodium falciparum malaria, patients with and without helminth, and then those 
co-infected with the two diseases diagnosis was done using thick blood smears stained with 10% Giemsa and stool 
examination was done following the Kato Katz technique following standard procedures.

Results:  The prevalence of Plasmodium falciparum malaria by sex was 28 (11.7%) and 27 (11.3%) in male and female 
respectively. The overall prevalence of soil borne helminth was 26.3%, and among those harbouring helminths, 13.8% 
were co-infected with Plasmodium falciparum. Cytokine levels significantly differed across Plasmodium falciparum 
malaria, soil borne helminth infected patients and health controls for IFN-γ (P = 0.023), IL-10 (P = 0.008) and TGF-β 
(P = 0.0001). Cytokine levels significantly differed across Plasmodium falciparum malaria, soil borne helminth infected 
patients and patients co-infected with Plasmodium falciparum malaria and soil borne helminth for IL-10 (P = 0.004), 
IL-6 (P = 0.011) and TGF-β (P = 0.003).

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Allergy, Asthma & Clinical Immunology

*Correspondence:  bwanikarichardatkiu@gmail.com 
1 School of Biomedical Sciences, Department of Microbiology, Kampala 
International University, Western Campus, Ishaka, Box 71, Bushenyi, 
Uganda
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13223-018-0235-z&domain=pdf


Page 2 of 9Bwanika et al. Allergy Asthma Clin Immunol  (2018) 14:10 

Background of this study
Malaria remains a global burden with approximately 
584,000 deaths among an estimated 198 million cases 
annually [1]. The biggest disease burden is mainly 
encountered among children in sub-Saharan Africa [1, 
2]. This scenario is further complicated by the overlap-
ping distribution of parasitic diseases in the tropics [3, 4] 
among which malaria-helminths co-infections are com-
mon [3, 5, 6]. It is estimated that half a billion people in 
the developing world harbour one or multiple helminths 
[7]. Malaria and helminths co-infections are mainly 
driven by poverty, tropical environment, water bodies 
and poor control measures among others [8]. Compelling 
evidence from the few studies that have investigated the 
effect of malaria-helminths co-infections suggests that 
an interaction between the two diseases might influence 
the clinical outcome of the involved diseases. However, 
inconsistencies about the clinical outcome of these inter-
actions on malaria are common, both protective and det-
rimental effects have been reported [9, 10]. It has been 
reported previously that helminths increase vulnerability 
to malaria [11, 12], increase malaria parasitemia [13, 14], 
with a subsequent increase in malaria disease severity 
[15, 16].

However, in other related studies no apparent effect of 
helminths co-infections on malaria risk or disease sever-
ity were observed [17–19]. On the contrary, in other stud-
ies concurrent helminths infections have been associated 
with low malaria incidence [20], decreased parasitemia 
[20, 21], protection from cerebral malaria [22], nephron 
protective effects [20–22], and a reduction in malaria 
disease severity [11, 20–24]. Although the underlying 
mechanisms responsible for these varying responses are 
not well characterized, compelling evidence suggests that 
host inflammatory cytokines might be key players.

Malaria infections are generally characterized by a T 
helper 1 (Th1) response predominated by a number of 
pro-inflammatory cytokines with a gradual shift to Th2 
response as the disease progresses [25, 26]. Pro-inflam-
matory cytokines like IFN-γ and TNF-α have been 
demonstrated to play critical roles early in the infec-
tion [27, 28]. Conversely, if pro-inflammatory cytokines 
are not regulated by counter inflammatory cytokines 
like IL-10 and TGF-β, the resulting pathology is exacer-
bated [29]. On the other hand, helminths infections are 

characterized by a strong Th2 immune response [30, 31] 
dominated by an up-regulation of counter inflamma-
tory cytokines like IL-10 and TGF-β [32, 33]. Therefore, 
it is likely that during poly-parasitism if the counter bal-
ance between the Th1 and Th2 immune responses is not 
achieved, the clinical course of involved diseases might 
be altered. It’s proposed that host cytokines might be 
partly involved in driving the clinical outcome of malaria-
helminths co-infections. However, literature on how 
these interactions influence the host cytokine profiles is 
still scarce with the few available studies reporting con-
tradictory findings [29]. With such inconsistences, the 
questions as to whether co-infections impact on malaria 
incidence, clinical outcome and disease severity have 
not been conclusively addressed. Furthermore, although 
cytokine responses have been extensively described in P. 
falciparum and soil borne helminth infection separately 
[34], few studies have looked at systemic cytokine level 
concentration in co-infection of malaria and soil borne 
helminth parasites. We therefore, determined Cytokine 
profiles (IFN-γ, TNF-α, IL-6, TGF-β and IL-10) asso-
ciated with Plasmodium falciparum malaria and soil 
borne helminth co-infections among patients attending 
Kampala International University Teaching Hospital in 
Uganda.

Methods
Study design
A case–control study was conducted at Kampala Interna-
tional University Teaching Hospital Out Patients Depart-
ment (OPD) in Bushenyi district. Cases were defined as 
having a positive blood smear for P. falciparum malaria, 
those with helminths or those co-infected with both dis-
eases. Negative controls were those with a negative blood 
smear for P. falciparum malaria and those with no stool 
parasitic infections. Patients presenting with signs and 
symptoms of malaria or those suspected of having hel-
minths were recruited for the study. From each patient 
and control, 5  ml of venous blood was collected into 
EDTA vacutainers. Malaria diagnosis and parasite quan-
tification was done using Giemsa stained thin and thick 
blood smears [35]. Stool examination was done follow-
ing the Kato Katz technique [36] and worm burden cat-
egorized following WHO guidelines [37]. For statistical 
analyses, cases were categorized as those with malaria 
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or helminths alone and those co-infected with both 
malaria and helminths, these were compared with health 
controls.

Upon recruitment into the study, a detailed clinical 
history was sought from each patient. Physical exami-
nation of patients was performed by a medical office. 
Data recorded on the clinical form included the patient’s 
demographic characteristics, clinical presentation, and 
perceived onset of illness. Children with other stool para-
sitic infections, those on anti-helminthic and malarial 
treatment were excluded from the study.

Collection of blood samples
For immunological assays, 5  ml blood were collected 
from each patient in EDTA vacutainers and centrifuged 
for 10  min at 3000g using an Eppendorf centrifuge. 
Plasma was subsequently aliquoted and stored at − 20 °C 
in the hospital laboratory refrigerator until further analy-
sis. Samples were later transported in an ice cold box to 
immunology and molecular biology laboratory at the 
College of Veterinary Medicine, Animal Resources and 
Biosecurity (COVAB), Makerere University for cytokine 
assay analysis.

Blood smear for malaria diagnosis
Upon recruitment, P. falciparum diagnosis was done 
using thin and thick blood smears stained with 10% 
Giemsa. Parasite evaluation was done by microscopic 
examination of 200 fields at 100× magnification and par-
asite density expressed as number of parasites/µl [35].

Cytokine assays
Panels of both pro-inflammatory and counter inflam-
matory cytokines (IFN-, TNF-, TGF-β, IL-6, IL-10,) 
were assayed from plasma samples using solid phase 
sandwich enzyme-linked immunosorbent assay (Bio-
Rad, UK) assay following manufacturer’s instructions as 
previously described [38]. All assays were done in trip-
licate. Values of cytokine concentrations were extrapo-
lated from standard curves obtained from recombinant 
cytokine standards using Graph Pad version 6 statistical 
software.

Stool collection and evaluation
Stool samples were collected in dry leaky proof plastic 
bottles and approximately 3 g were used. Stool examina-
tion was done following the Kato Katz technique [36] and 
worm burden categorized following WHO guidelines 
[37].

Statistical analyses
All data were anonymized prior to analysis using Graph 
Pad Prism version 6.0. All numerical variables was 

summarized using mean and standard error of the mean 
(SEM). Before analysis of cytokine data, deviation from 
normality was tested using D’Agostino-Pearson nor-
mality test. Because none of the cytokines presented a 
normal distribution, data were presented as medians. 
Comparisons between groups were done using Kruskal–
Wallis non parametric test followed by Dunn’s post-test 
at a significant level (P < 0.05).

Results
Patient’s characteristics
In this study a total of 240 patients were recruited. The 
mean age of patients was 7.6 ± 3.0 years with a sex ratio 
of 1.1 (male: female). Patients with Plasmodium falcipa-
rum malaria were 55 (22.9%) and those with soil-borne 
helminths were 63 (26.3%). The controls were 89 (37.1%), 
while those co-infected with Plasmodium falciparum 
malaria and soil-borne helminths were 33 (13.8%) as 
shown in Table  1. The intensity of Plasmodium falcipa-
rum malaria by sex was 28 (11.7%) and 27 (11.3%) in male 
and female respectively. Severe Plasmodium falciparum 
was detected in only 4 (4.5%) patients as compared to 
those with moderate 8 (9.1%) and low parasite intensity 
76 (86.4%). Plasmodium falciparum intensity according 
to sex was 42 (47.7%), 3 (3.4%) and 4 (4.5%) for low, mod-
erate and severe respectively in males and 34 (38.6%), 5 
(5.7%) and 0 (0.0%) for low, moderate and severe respec-
tively in females.

Prevalent soil‑borne helminths
The overall prevalence of soil-borne helminths was 63 
(26.3%). Among those harbouring helminths, 33 (13.8%) 
were co-infected with Plasmodium falciparum. The most 
prevalent soil-borne helminths observed was Ascaris 
lumbricoides, 72 (75.0%) followed by hookworms, 20 
(20.8%). Mixed infection were only of Ascaris lumbri-
coides and hookworms with a prevalence 4 (4.2%). No 
Trichuris trichiura infections were observed in the study 
population. Among the helminths co-infections, Ascaris 
lumbricoides had the highest prevalence 26 (78.8%) as 
compared to hookworms 7 (21.2%). No significant differ-
ences were observed in soil-borne helminths across sex 
(P > 0.05, Table 1).

Cytokine expression in Plasmodium falciparum malaria 
and soil‑borne helminths
In order to identify cytokines that are associated with 
either Plasmodium falciparum malaria or soil borne 
helminth infections, cytokines from each group of 
patients were compared with health controls. The results 
showed that cytokine levels significantly differed across 
groups for IFN-γ (P = 0.023, Fig. 1a), IL-10 (P = 0.008, 
Fig. 1b) and TGF-β (P = 0.0001, Fig. 1c). No Significant 
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differences were observed for TNF-α (P = 0.368, Fig. 1d) 
and IL-6 (P = 0.329, Fig. 1e).

When median plasma IFN-γ, IL-10 and TGF-β lev-
els were compared across groups, the results showed 
that Plasmodium falciparum malaria infected individual 
expressed significantly higher (P  <  0.05) levels of IFN-γ 
(47.7 pg/ml) as compared to health controls (8.8 pg/ml) 
and soil borne helminths infected individuals (22.8  pg/
ml, Fig. 1a). When IL-10 levels were similarly compared 
soil borne helminths infected individuals expressed 
higher levels of IL-10 (73.86 pg/ml) as compared to Plas-
modium falciparum malaria (33.64  pg/ml) and healthy 
individuals (26.09 pg/ml, Fig. 1b). When median plasma 
cytokine levels of TGF-β were compared across groups, 
the results showed that soil borne helminths infected 
individuals showed higher levels (P  <  0.05) of TGF-β 
(2338  pg/ml) as compared to Plasmodium falciparum 
malaria infected individuals (772  pg/ml) and healthy 
controls (424.6 pg/ml, Fig. 1c). No significant differences 
across groups were noted for TNF-α and IL-6 cytokines 
levels (Fig. 1d, e respectively).

Cytokine expression in Plasmodium falciparum malaria 
and soil‑borne helminths co‑infection
In order to find the effect of harbouring both soil-borne 
helminths and Plasmodium falciparum malaria concur-
rently, cytokine levels for co-infected individuals were 
compared with those with either Plasmodium falciparum 
malaria or soil-borne helminths alone. Results showed 
that cytokine levels significantly differed across groups 
for IL-10 (P =  0.004, Fig.  2a), IL-6 (P =  0.011, Fig.  2b) 
and TGF-β (P = 0.003, Fig. 2c). No Significant differences 
were observed for IFN-γ (P = 0.347, Fig. 2d) and TNF-α 
(P = 0.167, Fig. 2e).

When median plasma cytokine levels were compared 
across groups, the results showed that co-infected indi-
viduals expressed significantly (P  <  0.05) higher levels 
of IL-10 (304  pg/ml) as compared to Plasmodium falci-
parum malaria infected individuals (11.57  pg/ml) and 
soil borne helminths infected individuals (77.01  pg/ml, 
Fig.  2a). When median plasma cytokine levels of IL-6 
were compared across groups, the results showed that 
co-infected individuals showed higher (P  <  0.05) levels 
of IL-6 (100.9  pg/ml) as compared to Plasmodium fal-
ciparum malaria infected individuals (63.7  pg/ml) and 
soil borne helminths infected individuals (45.37  pg/ml, 
Fig. 2b). Similarly, when TGF-β levels were similarly com-
pared soil borne helminths infected individuals expressed 
higher (P  <  0.05) levels of TGF-β (2338  pg/ml) as com-
pared to Plasmodium falciparum malaria (772.7  pg/ml) 
and co-infected individuals (939.2 pg/ml, Fig. 2c). No sig-
nificant differences across groups were noted for IFN-γ 
and TNF-α cytokines levels (Fig. 2d, e respectively).

Discussion
The over prevalence of soil borne helminth was (26.3%). 
This is in range with what has been reported previously 
in Uganda [39], Tanzania [40] and Ethiopia [4]. Preva-
lence studies of soil borne helminths since 2009 have 
indicated that of Ascaris lumbricoides, and the hook-
worm species are common infections in Bushenyi district 
among the soil borne helminths [39]. This is in agree-
ment with our finding were Ascaris lumbricoides had 
the highest prevalence (75.0%) followed by hook worms 
(20.8%). In this study no Trichuris trichiura infections 
were detected, similarly to what was observed by Agwu 
et al. [39] in Bushenyi district. In this study, the Plasmo-
dium falciparum malaria prevalence was (22.9%) lower 

Table 1  Patient’s baseline characteristics

Low (1–10 parasites per 100 thick film fields), Moderate (11–100 parasites per 100 thick film fields), Severe (1–10 parasites per each thick film field)

Male Female Total P value

Soil-borne helminths 30 (12.5%) 33 (13.8%) 63 (26.3%) 0.539

 Ascaris lumbricoides 38 (39.6%) 34 (35.4%) 72 (75.0%)

 Hookworms (Ancylostoma duodenale and Necator americanus) 13 (13.5%) 7 (7.3%) 20 (20.8%)

 Trichuris trichiura 0 (0%) 0 (0%) 0 (0%)

 Mixed infections (Ascaris lumbricoides + Hookworms) 0 (0%) 4 (4.2%) 4 (4.2%)

Plasmodium falciparum parasitaemia 28 (11.7%) 27 (11.3%) 55 (22.9%) 0.362

 Low 42 (47.7%) 34 (38.6%) 76 (86.4%)

 Moderate 3 (3.4%) 5 (5.7%) 8 (9.1%)

 Severe 4 (4.5%) 0 (0.0%) 4 (4.5%)

Co-infections 21 (8.8%) 12 (5.0%) 33 (13.8%) 0.479

 Ascaris lumbricoides + Plasmodium falciparum 15 (42.3%) 11 (36.5%) 26 (78.8%)

 Hookworms + Plasmodium falciparum 6 (14.3%) 1 (6.9%) 7 (21.2%)
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than that reported in previous studies in Uganda 27% [2]. 
This could probably be because of the difference in the 
sample size. However, our findings compare well with the 
earlier report from southwest Uganda [19] that reported 
a prevalence of 23%. Results from this study are in range 

with a previous study by Shapiro et al. [19] who reported 
a prevalence of 15% among malaria helminth co-infected 
individuals in Uganda, 14% was reported in Zambia [35, 
41] and 13% was reported in Kenya (Rutagwera et al. [6]). 
However this is not in range with a similar study done 

Fig. 1  Plasma cytokine profiles in Plasmodium falciparum malaria cases, soil borne helminths and normal controls for IFN-γ (a), IL-10 (b), TGF-β (c), 
TNF-α (d) and IL-6 (e). Graphs show median level with interquartile range. Letters above the bars indicate significant difference between the groups 
(Dunn’s post-test, P ≤ 0.05)
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Fig. 2  Plasma cytokine profiles in Plasmodium falciparum malaria cases, soil borne helminths and co-infections for IL-10 (a), IL-6 (b), TGF-β (c), IFN-γ 
(d) and TNF-α (e). Graphs show median level with interquartile range. Letters above the bars indicate significant difference between the groups 
(Dunn’s post-test, P ≤ 0.05)
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in Tanzania where they reported a prevalence among 
malaria helminth co-infected to be 26% [6]. Among the 
helminths co-infections, Ascaris lumbricoides had the 
highest prevalence (78.8%) and results from this study are 
in range with other studies done elsewhere in Madagas-
car which reported that among the helminths co-infec-
tions, Ascaris lumbricoides had the highest prevalence of 
77% [14]. In our study, Plasmodium falciparum malaria 
infected individual expressed significantly higher levels 
of IFN-γ (47.7  pg/ml) as compared to health controls 
(8.8  pg/ml) and soil borne helminths infected individu-
als (22.8 pg/ml). This is in agreement with a study done 
in south East Asia and elsewhere which reported that 
Plasmodium falciparum malaria expressed higher IFN-γ 
levels (Doolan et  al. [27]; Luty et  al. [42]). These higher 
levels of IFN-γ have been associated with protective 
role of the cytokine against P. falciparum malaria [27, 
35]. This effect has been attributed to the monocyte-
macrophage activating capacity of IFN-γ, with rapid 
killing of the malarial blood-stage parasites by reactive 
oxygen and nitrogen intermediates [43, 44]. Also animal 
models of malaria have been associated with increased 
production of IFN-γ which has been associated with a 
favourable outcome of the disease [26]. Soil borne hel-
minths infected individuals expressed higher levels of 
IL-10 (73.86  pg/ml) as compared to Plasmodium falci-
parum malaria (33.64  pg/ml) and healthy individuals 
(26.09  pg/ml). This is probably because IL-10 is a key 
anti-inflammatory cytokine protective against helminth 
infections that cause inflammation [45]. Also soil borne 
helminths infected individuals expressed the highest lev-
els of TGF-β (2338  pg/ml) as compared to Plasmodium 
falciparum malaria infected individuals (772 pg/ml) and 
healthy controls (424.6 pg/ml). This is probably because 
TGF-β has been attributed to wound healing of the intes-
tinal mucosa during tissue repair caused by helminths in 
the gut [32, 46]. TNF-α and IL-6 levels showed no sig-
nificant difference across groups and this is in agreement 
with previous studies done by Franca and colleagues that 
reported that TNF-α and IL-6 cytokines are not associ-
ated with Plasmodium falciparum malaria and soil borne 
helminths infected individuals [47]. This is probably 
because the TNF-α is a key cytokine in cerebral malaria 
[48] and probably the patients we examined that time 
none had cerebral malaria. Also the higher levels of IL-10 
and TGF-β expressed in soil borne helminths infected 
individuals could have down regulated the production 
of TNF-α levels [30, 49]. Lack of significant difference 
across groups in IL-6 could probably be because the IL-6 
is not involved in modulation of the disease both in Plas-
modium falciparum malaria infected individuals and 
soil borne helminths infected individuals. Co-infected 

individuals expressed significantly higher levels of IL-10 
(304  pg/ml) as compared to Plasmodium falciparum 
malaria infected individuals (11.57 pg/ml) and soil borne 
helminths infected individuals (77.01  pg/ml). Results 
from this study are in agreement with a previous study 
by Hartgers who reported high expression of IL-10 in 
co-infected individuals [50]. Up regulation of IL-10 in 
co-infections is probably indicative that co-infected 
individuals don’t lose the protective role of the IL-10 
against soil borne helminths during infection. This is in 
agreement with the role of gut helminth in modulation 
of TH2 cytokine like responses that lead to worm expul-
sion [51, 52]. Co-infected individuals expressed higher 
levels of IL-6 (100.9 pg/ml) as compared to Plasmodium 
falciparum malaria infected individuals (63.7 pg/ml) and 
soil borne helminths infected individuals (45.37  pg/ml). 
This is because IL-6 has been shown to possess both pro 
and anti-inflammatory features [53, 54]. Soil borne hel-
minths infected individuals expressed higher levels of 
TGF-β (2338  pg/ml) as compared to Plasmodium fal-
ciparum malaria (772.7  pg/ml) and co-infected indi-
viduals (939.2  pg/ml).This down regulation of TGF-β in 
co-infections is indicative that co-infected individuals 
lose the protective role of TGF-β against soil borne hel-
minths during infection. IFN-γ and TNF-α levels showed 
no significance across groups. This is probably because 
the higher levels of IL-10 in co-infections and soil borne 
helminths down regulates IFN-γ by supressing T cells 
from producing IFN-γ hence the decrease [24, 44]. Also 
TGF-β may down regulates production of TNF-α in soil 
borne helminths [33]. And lastly TNF-α is probably not 
involved in modulation of malaria, soil borne helminth 
and co-infections of both diseases.

Conclusion
In conclusion, our study demonstrates an up-regulation 
of IFN-γ during Plasmodium falciparum malaria and an 
up-regulation of IL-10 and TGF-β during soil borne hel-
minth infections. We further show an up-regulation of 
IL-10 and IL-6 during co-infections of Plasmodium fal-
ciparum and soil borne helminth infections and a down-
regulation of TGF-β during co-infections of Plasmodium 
falciparum and soil borne helminth infections. However, 
how these cytokines may influence the clinical outcome 
of the diseases involved calls for further investigations.
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