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Abstract: The COVID-19 pandemic is a global challenge that impacted 200+ countries. India ranks in
the second and third positions in terms of number of reported cases and deaths. Being a populous
country with densely packed cities, SARS-CoV-2 spread exponentially. India sequenced ≈0.14% iso-
lates from confirmed cases for pandemic surveillance and contributed ≈1.58% of complete genomes
sequenced globally. This study was designed to map the circulating lineage diversity and to under-
stand the evolution of SARS-CoV-2 in India using comparative genomics and population genetics
approaches. Despite varied sequencing coverage across Indian States and Union Territories, isolates
belonging to variants of concern (VoC) and variants of interest (VoI) circulated, persisted, and diversi-
fied during the first seventeen months of the pandemic. Delta and Kappa lineages emerged in India
and spread globally. The phylogenetic tree shows lineage-wise monophyletic clusters of VoCs/VoIs
and diversified tree topologies for non-VoC/VoI lineages designated as ‘Others’ in this study. Evo-
lutionary dynamics analyses substantiate a lack of spatio-temporal clustering, which is indicative
of multiple global and local introductions. Sites under positive selection and significant variations
in spike protein corroborate with the constellation of mutations to be monitored for VoC/VoI as
well as substitutions that are characteristic of functions with implications in virus–host interactions,
differential glycosylation, immune evasion, and escape from neutralization.

Keywords: COVID-19; SARS-CoV-2; lineage diversity; evolutionary dynamics; virus bioinformatics;
India; variant of concern; variant of interest; spike; phylogeny

1. Introduction

The COVID-19 (coronavirus disease 2019) pandemic has spread around the world,
impacting 200+ countries. As of 30 August 2021, there are 230,418,451 reported cases
and 4,559,229 deaths globally (WHO reference: https://covid19.who.int/; Last accessed
30 October 2021). With 32,695,030 cases and 440,533 deaths, India is the second worst hit
country (next to the USA) for number of reported cases and ranks at the third position in
terms of number of deaths (next to the USA and Brazil).

Ever since detection of the first case of COVID-19 on 31 December 2019 in Wuhan,
China, the virus has spread all over the world (WHO reference: https://www.who.int/
emergencies/disease-outbreak-news/item/2020-DON229; Last accessed 30 October 2021).
The first confirmed case of COVID-19 in India was reported on 27 January 2020 from
Kerala [1]. Reports of multiple introductions of the virus due to global travel are pub-
lished [2–4]. Being a populous country with densely packed cities, cases of COVID-19
increased exponentially in India in 2020. The respiratory route of virus transmission, high
reproductive number, and superspreading events were responsible for its spread to rural
communities and amongst all age groups. Two waves corresponding to an upsurge of
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cases have been reported in India during 2020 and 2021 (https://www.mohfw.gov.in/;
Last accessed 30 October 2021).

The SARS-CoV-2 nomenclature has evolved during the course of the pandemic. GI-
SAID (https://www.gisaid.org/; Last accessed 30 October 2021) [5], NextStrain (https:
//nextstrain.org/ncov/gisaid/global; Last accessed 30 October 2021) [6], and PANGOLIN
(Phylogenetic Assignment of Named Global Outbreak LINeages; https://cov-lineages.
org/resources/pangolin.html; Last accessed 30 October 2021) [7] proposed unique lineage
nomenclatures. Subsequently, the WHO (https://www.who.int/en/activities/tracking-
SARS-CoV-2-variants/; Last accessed 30 October 2021) designated lineage labels such as
variants of concern (VoC: Alpha, Beta, Gamma and Delta) and variants of interest (VoI:
Eta, Iota, Kappa, Lambda and Mu) based on considerations such as prevalence, trans-
missibility, detrimental change in epidemiology, increase in virulence, change in clinical
disease presentation, and decrease in the effectiveness of available diagnostics, vaccines,
and therapeutics (as of 1 September 2021). Assignments of VoC and VoI are also being
reviewed periodically by the WHO and CDC (https://www.cdc.gov/coronavirus/2019
-ncov/variants/variant-info.html; Last accessed 30 October 2021). All the four nomencla-
ture systems for SARS-CoV-2 are dynamic and are updated to accommodate an expanse of
diversity over a period of time.

In order to characterize SARS-CoV-2 in various parts of India and to understand
lineage diversity and distribution, genome sequencing has been carried out since the
onset of the pandemic [8–12]. Several genome sequencing studies were performed to
characterize SARS-CoV-2 isolates sampled in various States and Union Territories (UTs) of
India. The predominance of the B.1.1.7 (Alpha) lineage was detected amidst the presence
of multiple other lineages in the state of Karnataka [13], and symptomatic cases have
been attributed to the spread in the state at the beginning of the pandemic [14]. Genomic
sequencing and haplotype analysis revealed three major introductions of SARS-CoV-2 in
the state of Kerala, which were followed by multiple outbreaks leading to local spread [11].
The predominance of lineages 20A and 20D in the state of Gujarat with the nucleotide
substitutions C28854T in N-gene and G25563T in Orf3a were observed to be prominent in
deceased patients [15]. The mutational landscape of SARS-CoV-2 isolates was characterized
from 200 genomes sampled from the southern state of Telangana during March–July 2020,
which helped identify mutations in non-structural proteins and revealed the predominance
of the 20B lineage [10]. The state of Maharashtra reported the prevalence of B.1.1.7 (Alpha),
B.1.617.1 (Kappa), and emergence of B.1.617.2 (Delta), which outcompeted other circulating
lineages [16]. Evidence of re-infections by lineages 19A, 20A, and 20B have been reported
in Maharashtra [17]. The national capital and UT of Delhi reported several outbreaks in
2020 and 2021 [3]. The Delta variant displaced Alpha and all other variants due to its high
transmissibility and immune evasion, thus causing reinfections [12,18].

Genomes of SARS-CoV-2 isolates sequenced in India are deposited in the global
archives, GISAID [5], and GenBank [19]. The results of genomic characterization were used
to understand the virus evolution, lineage diversification, antigenic variation, and character-
ization of emerging mutations in various genomic regions [10,20,21]. Genome sequencing
activities initiated by various laboratories funded by the national and state government
agencies were followed by the institution of Indian SARS-CoV-2 Consortium on genomics
(INSACOG) funded by the Government of India (https://dbtindia.gov.in/insacog; Last
accessed 30 October 2021).

The majority of studies reported from India pertain to the sequencing of regional
and/or national isolates and their downstream analysis. This study is an effort to con-
solidate the genetic diversity of SARS-CoV-2 across India using data driven approaches.
This study is designed to systematically analyze variants of concern (VoC) and variants
of interest (VoI), circulating in India with reference to sequencing coverage, evolutionary
dynamics, population stratification, and comparative genomics in order to gain insights
into the functional implications of observed variations with an emphasis on spike protein.

https://www.mohfw.gov.in/
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2. Materials and Methods
2.1. State-Wise Distribution of SARS-CoV-2 Isolates Sequenced from INDIA

Complete genome sequences of 45,273 SARS-CoV-2 samples isolated from vari-
ous States and UTs of India were retrieved from the GISAID database available as of
15 August 2021 (https://www.gisaid.org/; Last accessed 30 October 2021) [5]. Associated
metadata were used for curation. Entries with PANGO lineage assignments, geographic
location (States/UTs), and date information as dd-mm-yy/mm-yy were retained, leading
to 42,989 entries (Dataset_1; Supplementary File S1). The entries were annotated with
WHO nomenclature with respect to lineages, variants of interest (VoI), and variants of
concern (VoC).

Plots were generated to depict month-wise distribution of VoCs and VoIs for Indian
States and UTs for Dataset_1 using packages ggplot 0.11.5 and plotnine 0.8.0 (https://pypi.
org/project/ggplot/, https://pypi.org/project/plotnine/; Last accessed 30 October 2021)
in Python (scripts submitted as Supplementary File S2).

2.2. Evolutionary Dynamics of SARS-CoV-2 Isolates from India Using Complete Genomes

High-quality complete genome sequences of 11,864 isolates of SARS-CoV-2 sam-
pled from India (available as of 26 May 2021) were retrieved from the GISAID database
(11,193 entries) and GenBank (671) which was termed Dataset_2 (Supplementary file S3).
Lineages were assigned to these entries using NextClade (https://clades.nextstrain.org/; Last
accessed 30 October 2021) [6]. PANGO lineages were assigned to 671 entries retrieved from
the GenBank (https://www.ncbi.nlm.nih.gov/genbank/; Last accessed 30 October 2021)
as these were missing in GenBank records. Dataset_2 with all lineage labels is pro-
vided (Supplementary File S3). A set of non-redundant genomes were identified us-
ing the standalone version of CD-HIT [22], resulting in 6,859 entries and termed as
Dataset_3 (Supplementary File S4). Seven reference genome sequences identified by GI-
SAID (EPI_ISL_466615, EPI_ISL_539548, EPI_ISL_418345, EPI_ISL_406862, EPI_ISL_412974,
EPI_ISL_403932, and EPI_ISL_601443; Table 1) were added to Dataset_3.

Table 1. Details of the SARS-CoV-2 reference sequences (global) used for phylogenetic analysis. Note:
* Exact date of isolation is not available for this entry.

Accession ID GISAID Clade Pango Lineage Country of Isolation Date of Isolation

EPI_ISL_466615 GR B.1.1.1 England 26 June 2020

EPI_ISL_539548 GV B.1.177 Spain 26 June 2020

EPI_ISL_418345 GH B.1 Canada February 2020 *

EPI_ISL_406862 G B.1 Germany 28 January 2020

NC_045512.2 L B Wuhan, China 30 December 2019

EPI_ISL_412974 V B.2 Italy 29 January 2020

EPI_ISL_403932 S A Guangdong, China 14 January 2020

EPI_ISL_601443 GRY B.1.1.7 England 20 September 2020

Multiple sequence alignment (MSA) of genomes was carried out using MAFFT
v7.475 [23] with Wuhan (NC_045512.2) as the reference genome. The genome alignment
was trimmed to remove UTRs using SEED 2 [24]. Recombination detection analysis was
carried out using RDP5 [25] with a stringent p-value cutoff of 0.005 and positive prediction
using at least 3 methods.

The nucleotide substitution model was selected using ModelTest based on the BIC
criterion [26]. A maximum likelihood (ML)-based phylogenetic tree was built using a
light version of IQ-TREE [27] in standalone mode. Molecular clock behavior was tested
using TempEst [28]. A permutation test (with 10,000 permutations) was carried out us-
ing the ‘wPerm’ package (https://cran.r-project.org/web/packages/wPerm/index.html;
Last accessed 30 October 2021) available in R (http://www.R-project.org/; Last accessed
30 October 2021) [29] to examine the significance of correlation coefficient between root-

https://www.gisaid.org/
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to-tip distance and time of isolation. The genome-wide nucleotide substitution rate
(NSR) was estimated using BEAST v1.10.4 with a relaxed clock model and lognormal
distribution [30]. GTR+I+gamma was used as a nucleotide substitution model. A con-
stant size growth model was used as a demographic model. Markov Chain Monte
Carlo (MCMC) simulations were run for 1 billion steps and sampled every 10,000 steps.
Tracer v1.6 (http://tree.bio.ed.ac.uk/software/tracer/; Last accessed 30 October 2021) was
used for assessing convergence and iTOL software (https://itol.embl.de/; Last accessed
30 October 2021) was used for the visualization of phylogenetic trees.

Parsimoniously informative (PI) sites from MSA (Dataset_3) were retrieved using
MEGAX [31]. Linkage disequilibrium was calculated using the LIAN package [32] with
10,000 replicates. Population stratification was studied using the STRUCTURE program [33]
and parallelSTRUCTURE package [34] capable of utilizing multi-core computing architec-
ture. The previously described protocols were used for STRUCTURE runs [35,36]. Two sets
of burn-in and burn lengths (150,000–300,000; 200,000–400,000) were used, and optimal
clusters were chosen based on Evanno’s method [37] as implemented in the STRUCTURE
HARVESTER [38] tool.

The PI sites obtained for complete genomes, spike, and RdRp genes were sub-
jected to principal component analysis (PCA) using the ADEgenet package v2.1.4 [39]
(https://cran.r-project.org/web/packages/adegenet/index.html; Last accessed 30 October
2021) available in R4.1.1 software (https://cran.r-project.org/bin/windows/base/; Last
accessed 30 October 2021). The PCA plots were generated using the software Minitab v17.1
(https://www.minitab.com/en-us/support/downloads/; Last accessed 30 October 2021).
The MSA of complete genomes, spike and RdRp sequences were analyzed to estimate
Shannon entropy using the tool SHIAT v1.1 [40].

2.3. Analyses of Spike gene and Protein Sequences of SARS-CoV-2 Isolates from India

Nucleotide sequences belonging to the spike gene of Indian SARS-CoV-2 isolates were
retrieved from Dataset_2 (Supplementary File S3) to analyze the diversification of spike
across various lineages for a duration of 17 months (January 2020–May 2021) as well as to
identify sites under selection in various States and UTs of India. The spike gene sequences
containing ambiguous base(s) were removed, and the resultant dataset was designated as
Dataset_4 (Supplementary File S5), which includes 9538 sequences.

Sequences in Dataset_4 were delineated further based on the States/UTs from which
these isolates were sampled. A set of non-redundant spike gene sequences were curated
for every State and UT using the standalone version of CD-HIT, resulting in 3363 entries
pan India. Separate MSA of the spike gene sequences was carried out for every State/UT
using the MAFFT program available in SEED 2. Sites under positive selection in the spike
gene (State/UT wise) were delineated with a p-value cutoff of 0.05 for SLAC, FEL [41],
and MEME [42], whereas the cutoff was 0.9 for FUBAR [43] methods, which are available
in the Datamonkey server [44].

The amino acid sequences corresponding to Dataset_4 were aligned to identify variable
sites. The frequencies of substitutions at every position with reference to the Wuhan
isolate were obtained. Substitutions listed for VoC and VoI as defined by the WHO were
retrieved (source: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.
html; accessed on 1 September 2021) and compared with sites under selection.

The sites under selection were mapped on various domains such as the S1 N-terminal
domain (NTD), receptor binding domain (RBD), SD1 and SD2 sub-domains, S1–S2 furin
cleavage site, and S2 region as well as on a 3D structure of the spike protein (PDB ID:
7DF3; cryo-EM structure solved at resolution of 2.7Å) [45] using Biovia Discovery Studio
software v17.1.0.16143 (https://www.3ds.com/products-services/biovia/products/; Last
accessed 30 October 2021). The sites under selection that are part of experimentally vali-
dated B- and T-cell epitopes were curated as of 25 October 2021 from the IEDB database
(https://www.iedb.org/; last accessed: 30 October 2021) [46] using a positive assay cutoff
of 4 assays.

http://tree.bio.ed.ac.uk/software/tracer/
https://itol.embl.de/
https://cran.r-project.org/web/packages/adegenet/index.html
https://cran.r-project.org/bin/windows/base/
https://www.minitab.com/en-us/support/downloads/
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
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3. Results
3.1. SARS-CoV-2 in India

India contributed 45,277 genome sequences of SARS-CoV-2 isolates during January
2020 to July 2021, of which 42,989 sequences (95%) are included in our study (Dataset_1;
Supplementary File S1) based on the availability of PANGO lineage information, month
and year of isolation, and geographic location in terms of States/UTs. The distribution of
genomes sequenced from the cases reported in various States/UTs of India is shown in
Figure 1a. A lineage-wise prevalence of isolates sequenced at a pan-India scale is depicted
in Figure 1b.

As can be seen from Figure 1a, the highest sequencing coverage is seen for the states
of Maharashtra followed by Telangana, West Bengal, and Gujarat, whereas among the UTs,
Delhi has the highest sequencing coverage. The lineage-wise distribution of sequenced
isolates from India indicates the presence of Alpha (9%), Beta (1%), Delta (43%), Eta (<0.1%),
Gamma (<0.1%), Iota (<0.1%), and Kappa (10%) lineages (Figure 1b). The “Others” lineages
(37%) include all isolates that do not belong to the WHO nomenclature of VoI and VoC
that are sequenced in India. There are 290 distinct PANGO lineages, and their descendants
are grouped as Others. These include lineage A and its descendants (≈1%), B and its
descendants (98.9%; excluding Alpha, Beta, Delta, Eta, Iota, and Kappa), and descen-
dants of C, L, P, and R (0.09%; excluding Gamma), indicating that B and its descendants
dominate sequenced isolates from India, indicating their national prevalence (Dataset_1;
Supplementary File S1).
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Figure 1. (a): Map of India depicting distribution of SARS-CoV-2 genomes sequenced from cases
(shown in brackets) reported from the States and Union Territories (UTs) during January 2020 to
July 2021. Two letter codes are used to label States and UTs. The number following the State/UT
labels indicates the number of sequenced genomes. Note: States/UTs and their codes are as follows.
Andaman and Nicobar Islands: AN; Andhra Pradesh: AP; Arunachal Pradesh: AR; Assam: AS; Bihar:
BR; Chhattisgarh: CG; Chandigarh: CH; Dadra and Nagar Haveli and Daman and Diu: DNHDD;
Delhi: DL; Goa: GA; Gujarat: GJ; Himachal Pradesh: HP; Haryana: HR; Jharkhand: JH; Jammu
and Kashmir: JK; Karnataka: KA; Kerala: KL; Ladakh: LA; Lakshadweep: LD; Maharashtra: MH;
Meghalaya: ML; Manipur: MN; Madhya Pradesh: MP; Mizoram: MZ; Nagaland: NL; Odisha: OD;
Punjab: PB; Puducherry: PY; Rajasthan: RJ; Sikkim: SK; Tamil Nadu: TN; Tripura: TR; Telangana: TS;
Uttarakhand: UK; Uttar Pradesh: UP; West Bengal: WB. Cases from DNHDD are as of 23 October
2021 and therefore marked with *. (b): Prevalence of WHO designated variants of concern (VoC) and
variants of interest (VoI) based on pan-India genome sequencing coverage.

The frequency distribution of isolates with respect to lineage data, geographic locations
(States and UTs), and time of isolation is shown as Figure 2a–c. These plots indicate that the
state of Maharashtra sequenced isolates since the onset of the pandemic (January 2020). The
states West Bengal, Gujarat, Karnataka, Telangana, and Uttar Pradesh in addition to UTs of
Delhi, Jammu, Kashmir, and Chandigarh have good sequencing coverage (starting from
February–April 2020 until 15 August 2021) as compared to the rest of the country. Figure 2
also shows the presence of lineages Alpha, Beta, Delta, Eta, Iota, Gamma, and Kappa in
addition to all Others (which includes lineages that are not designated as VoI and VoC) in
most of the States/UTs during the pandemic with varying proportions.
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Figure 2. (a–c): Frequency distribution of VoC and VoI circulating in various States and UTs of India during 17 months
(January 2020–July 2021) of the SARS-CoV-2 pandemic. Note: X-axis denotes month of isolation and Y-axis denotes variant
count scaled to log 2.

3.2. Evolutionary Dynamics of SARS-CoV-2 in India

Population genomics and phylogenomic studies require granular data of high res-
olution. Therefore, curated complete genome sequences of 11,864 isolates (Dataset_2;
Supplementary File S3) were screened further to obtain a set of non-redundant genomes con-
sisting of 6859 entries. The equivalence of WHO lineages with the clade definitions of NextClade
and GISAID is provided for Dataset_3 (Supplementary File S4). Overall, the predominance
of NextClade lineages 20A, 20B, and 21A was observed, which corresponds to GISAID
clades G, GR, and GRY in the pan-India dataset. However, no data corresponding to WHO
lineages Gamma and Iota (NextClade: 20J/501Y.V3 and 21F; GISAID: G, GR (Gamma),
GH (Iota)) are part of our study, as they were eliminated during curation due to poor
sequencing coverage and quality.

MSA of these sequences with reference genomes was carried out, and UTRs were
trimmed. Recombination detection analysis confirmed a lack of recombination in Indian
SARS-CoV-2 isolates.

The Maximum Likelihood (ML) tree generated using the GTR+I+gamma substitution
model shows lineage-wise clustering of data (Figure 3) where Alpha (green), Delta (red),
and Kappa (magenta) are seen as monophyletic taxa. Tree topologies are supported with
>70% bootstrap values (not displayed). Others (gray) include all isolates that are not
identified as VoI and VoC and are observed to have diversified into multiple branches.
The members that are part of the diversified tree topologies of Others refer to the isolates
of SARS-CoV-2 that emerged from several introductions of SARS-CoV-2 in India from
various countries (spatial) and at different time points (temporal), which are sampled from
multiple States/UTs. The presence of branches depicting the emergence of Beta (blue)
and Eta (yellow) provide evidence for lineage diversification from the sub-groups that are
designated as Others (gray) in this analysis.
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Figure 3. Phylogenetic tree derived using the Maximum Likelihood method for complete genome
sequences (6859) of various SARS-CoV-2 lineages labeled as variants of concern and variants of
interest. Lineages that are not designated as VoC/VoI are labeled as Others. Color codes: Alpha
(green), Beta (blue), Delta (red), Kappa (magenta), Eta (yellow), and Others (gray). The Wuhan isolate
(NC_045512.2) is denoted as a circle (black), and reference genomes are denoted with triangles (black).

Root-to-tip regression analysis (Supplementary Figure S6) carried out for the complete
genome-based phylogenetic tree revealed a high positive correlation (0.7) between root-to-
tip distance and time of isolation. A permutation test rejected the null hypothesis of no
correlation between root-to-tip distance and time of isolation with p < 0.001. The R2 for the
fitted line of regression indicated the significance of the fit.

Phylodynamic studies of Indian SARS-CoV-2 data using BEAST with a constant
growth model were carried out to understand the evolution of the virus in India during
January 2020 to May 2021. The genome-wide nucleotide substitution rate (NSR) computed
for Indian SARS-CoV-2 data is estimated to be 6.73 × 10−2 subs/site/year (95% HPD
5 × 10−3, 7 × 10−2). The maximum clade credibility tree (not shown) substantiates the
emergence of Delta and Kappa in India along with the circulation of various lineages.
Among the VoCs, Alpha is the first to be sampled (2020.93; second week of December
2020) followed by Beta and Delta (2020.96; third week of December 2020), Eta and Kappa
(2020.97; third week of December 2020), and Zeta (2020.98; fourth week of December 2020).
Designation of the PANGO lineage P.2 as Zeta stands canceled as per the WHO guidelines
as of 1 September 2021.

MSA of complete genomes (Dataset_3) helped identify a total of 2618 parsimoniously
informative (PI) sites across all ORFs of Indian isolates of SARS-CoV-2. PI sites were used
to carry out PCA using whole genome data (Figure 4a) as well as for spike (Figure 4b) and
RdRp (Figure 4c) genes.
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Figure 4. Cluster plots generated using Principal Component Analysis (PCA) of SARS-CoV-2:
complete genome data (a); spike gene (b) and RdRp gene (c) for VoCs and VoIs designated as 1
(Alpha), 2 (Beta), 3 (Delta), 4 (Kappa), 5 (Eta), and 6 (Others).

A genome-based PCA scatter plot generated for the first three PCs (accounting for
99.71% variance) revealed three major clusters, wherein Alpha (1) clustered independently.
Delta (3) and Kappa (4) formed clusters next to the clusters formed by Beta (2), Eta (5),
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and Others (6). A few members of Alpha (1) and Others (6) are away from their respective
clusters and therefore appear to form a continuum (Figure 4a). A spike-based PCA scatter
plot (Figure 4b) for the first three PCs (accounting for 99.36% variance) shows three distinct
clusters corresponding to Alpha (1), Others (6), and a cluster inclusive of Beta (2), Delta (3),
Kappa (4), and Eta (5). An RdRp-based PCA scatter plot (Figure 4c) for the first three PCs
(accounting for 99.25% variance) shows three clusters with Alpha (1), Others (6), and a
cluster inclusive of Beta (2), Delta (3), Kappa (4), and Eta (5). However, points representing
members of Beta (2), Delta (3), Kappa (4), and Eta (5) are distinct. A few members of
Others (6) are away from its representative cluster and are equidistant from Others and
Alpha clusters. The information content for complete genome, spike, and RdRp in terms of
Summed Shannon Entropy Scores (SSES) are 62.43, 41.85, and 6.65, respectively. The ratio
of SSES for genome to RdRp is 9.4 and spike to RdRp is 6.3.

Genome-wide PI site analysis revealed low linkage disequilibrium (IS
A = 0.003),

which makes the data amenable for population structure analyses using the STRUCTURE
program. A major peak obtained at K = 6 indicated the presence of six clusters (C1–C6),
each representing a subpopulation (Figure 5).
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Figure 5. A plot of posterior probability for a given value of K vs. associated standard deviation
(∆K) to determine the optimal number of clusters representing the complete genome data of Indian
SARS-CoV-2 isolates.

The presence of a second peak at 8 showed a further stratification of Kappa isolates.
The isolates belonging to all the lineages were observed to have varying proportions of
admixture, and based on the extent of admixture, these members were observed to cluster
in C1–C6 (Supplementary File S7). The members belonging to individual clusters showed
varying degrees of admixture with membership scores ranging from 0.93 (highest) and
0.05 (lowest) indicative of non-homogeneous clusters (C1–C6), with isolates belonging
to more than one lineage. Clustering based on major membership scores (>0.8) indicates
that 382 isolates (96%) of the Alpha lineage correspond to C1 along with 14 isolates (4%)
of Others. Similarly, C2 comprises of 169 isolates (18%) of Kappa and 756 isolates (82%)
of Others; C3 includes 714 isolates (99%) of Others and only 4 isolates (1%) of Kappa;
C4 comprises of 40 isolates (5%) of Beta, 117 isolates (13%) of Delta, 20 isolates (2%)
of Eta, 195 isolates (23%) of Kappa, and 491 isolates (57%) of Others; C5 comprises of
6 isolates (1%) of Kappa and 783 isolates (99%) of Others; the majority of C6 includes
744 isolates (93%) of Delta and 53 isolates (7%) of Others. Overall, the members of the
Kappa lineage are observed to be distributed across C2–C5, whereas the majority of Delta
lineage isolates are part of C6 with a few isolates in C4. An admixture was observed in all
the clusters that include members of various lineages. Thus, three clusters identified with
PCA analysis were further resolved into six clusters using both phylogeny and population
stratification studies.
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3.3. Positive Selection and Mapping Mutations on 3D Structure of Spike Protein

As reported earlier, every State and UT had a prevalence of various lineages as the
pandemic progressed (Figure 2a–c). Overall, 86 codon sites (of the total 1273 codons)
were found to be under positive selection, leading to non-synonymous substitutions in
Indian isolates belonging to various lineages. Of 86 sites, P681, E484, G142, and T95 are
observed in at least 10 States/UTs and are common to Alpha, Delta, and Kappa variants
sampled in India; of these, E484 is also sampled in Beta, Eta, and Gamma variants in India
(Supplementary File S8).

The sites under selection were found to be distributed across the entire spike protein.
They are part of signal peptide (#1), S1_N’ terminal domain (#36), S1_receptor-binding
domain (#13), sub-domain 1/2 (SD1/SD2), S1/S2 cleavage region (#9), and S2 region (#27).
Figure 6a,b show the mapping of sites under selection according to sequence and 3D
structure (PDB ID: 7DF3) [45], respectively. Functional annotations of sites under selection
are provided (Supplementary File S9).
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(PDB ID: 7DF3). Note: Sites are color coded as B-cell epitopes (blue), T-cell epitopes (yellow), common
to T- and B-cell epitopes (green), Others (magenta), and substitutions to be monitored in VoC/VoI (red).
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The accessible surface area (ASA) of spike trimer (PDB ID: 7DF3) was computed,
and amino acids having ASA > 25% were termed accessible, which revealed that 48 residues
(of 86 sites under selection) are present on the surface and 22 residues are partially buried
(ASA < 25%). Of the 86 sites under selection, 38 and 45 mapped to experimentally validated
T- and B-cell epitopes, respectively, and 20 sites are common to both T- and B-cell epitopes.
Of these 20 sites, eight are partially buried. It is interesting to note that the substitutions
sampled in sites under selection (N440H/I/K/S/Y, L441I/M/R/V/Y, D442E/F/N/V/Y,
S443A/C/F/L/Y and K444F/I/L/M/N/Y) that belong to RBD are continuous, hypervari-
able, and are part of multiple experimentally validated conformational B-cell epitopes and
T-cell epitopes (CD4) as per IEDB records. Two ACE-2 binding site residues E484Q/K/D
and N501Y/T/S are found to be under selection. A total of 16 sites under selection could
not be mapped onto 3D structures due to missing coordinates (Supplementary File S9).

The sites P681, E484, G142, and T95 were under selection in 19, 13, 12, and 11 States/UTs,
respectively. The selection site P681R/H/L is a part of the SD1/SD2 and S1/S2 cleavage
domains where Pro is replaced by Arg (positively charged), His (positively charged upon
protonation), and Leu (hydrophobic and aliphatic). P681R/H/L substitution is observed
in 19 States/UTs and has been sampled in Alpha, Delta, and Kappa in India. This site is a
part of an experimentally validated linear B-cell epitope. The site E484D/K/Q is part of
S1_RBD and is a part of 31 B-cell conformational epitopes. The mutation E484K is acidic to
basic substitution and alters the charge. This site, sampled in 13 States/UTs, is present in
Alpha, Beta, Delta, Eta, Gamma, and Kappa variants observed in Indian isolates. The site
G142D/S/- is a part of S1_NTD as well as that of three conformational B-cell epitopes and
several T-cell (CD4 and CD8) epitopes, which was experimentally validated. Substitution
of the flexible and hydrophobic Gly residue by a negatively charged Asp and hydrophilic
Ser will impact the property profile as well as the local conformation of spike protein.
This site is found in isolates sampled in Alpha, Delta, and Kappa variants from 12 States.
The deletion at this site is observed in Kappa. The site T95I/S is a part of S1_NTD and a
confirmed T-cell epitope. The substitution of Thr with Ile will impact hydrophilicity. It is
prevalent in 11 States/UTs and is sampled in Alpha, Delta, and Kappa variants in India
(Supplementary Files S8 and S9).

In addition to the sites under positive selection in various States and UTs, MSA helped
to identify 460 variable sites (totaling to 546 sites) in spike protein of Indian isolates. Of these,
17 variable sites that are functionally important and are sampled with significant fre-
quency but are not under selection include S12F, K77T/M/R/N, R78M/S, F157(DEL)/S/L,
Q218H/E, V341I, A344T, K417N/T, N439K/I/T, V445F/I/Y/G/C, G446V/A, Y453F, L455F,
A520S, A701T/V/S, S982A, and V1230L/M (Supplementary File S10).

These 17 significantly variable sites are part of signal peptide (#1), S1_N’ terminal
domain (#4), S1_receptor-binding domain (#9), and S2 region (#3). No significantly vari-
able site was found to be part of the SD1/SD2 and S1/S2 cleavage region. The compu-
tation of ASA revealed that of the 17 variable sites, seven are exposed on the surface
(ASA > 25%), eight are partially buried, and the remaining two residues could not be
mapped on the 3D structure (PDB ID: 7DF3) [45]. Of these, 13 and 11 residues are part
of experimentally validated B- and T-cell epitopes, respectively, and eight are common to
both types of epitopes. Sites K417, G446, Y453, and L455 are part of the ACE-2 binding site
(Supplementary File S10).

The N-linked glycosylation sites of spike protein that are under selection in Indian
data include N657S (confirmed) and T20N (potential gain due to substitution), whereas
the O-linked glycosylation site observed to be under selection is T678I/A. Four N-linked
sites (N282, N616, N709, and N1074) are also observed to be variable (though with low
frequency) in Indian isolates. The O-linked glycosylation sites (T323I/A and T678I/A) are
seen to vary in Indian isolates (Supplementary Files S9 and S10). The sites under selection
and significant variation reported in our study are a subset of mutations attributed to
respective VoC and VoI (Table 2).
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Table 2. List of sites in spike protein that are under positive selection or significantly variable, which
map to substitutions sampled in VoC/VoI. Highly variable sites are shown as grey filled rows.

Codon Observed Substitutions Substitution Attributed to VoC/VoI

19 I, R T19R (Delta)

20 A, I, N T20N (Gamma)

26 H, L, S P26S (Gamma)

69 S, Y, - H69- (Alpha, Eta)

80 A, G, H, N, Y D80A (Beta)

95 I, S T95I (Delta, Kappa)

138 H, Y D138Y (Gamma)

142 D, S, - G142D (Delta, Kappa)

154 K E154K (Kappa)

157 S, L, - F157- (Delta), F157S (Alpha)

215 G, H, Y D215G (Beta)

222 S, V A222V (Delta)

417 N, T K417N (Beta), K417T (Gamma)

452 M, Q, R L452R (Delta, Kappa)

478 I, K T478K (Delta)

484 D, K, Q E484K (Alpha)

501 S, T, Y N501Y (Alpha, Beta, Gamma)

570 D, S, V A570D (Alpha)

681 H, L, R P681H (Alpha), P681R (Delta and
Kappa)

701 T, V, S A701V (Beta)

716 I T716I (Alpha)

950 H, N D950N (Delta)

982 A S982A (Alpha)

1071 E, H, L Q1071H (Kappa)

1118 H, Y D1118H (Alpha)

1191 N K1191N (Alpha)

4. Discussion

India ranks in second position with 15% of global prevalence in terms of total number
of reported COVID-19 cases (based on WHO situation reports as on 30 August 2021;
https://covid19.who.int; Last accessed 30 October 2021) and contributed ≈1.58% of com-
plete genomes sequenced globally (based on GISAID statistics as on 30 August 2021).
India has sequenced ≈0.14% of isolates from the confirmed cases through initiatives of
various virology laboratories that are funded by the Central and State Governments. These
independent sequencing efforts were followed by the Pan-India network, INSACOG initia-
tive, funded by the Government of India (https://dbtindia.gov.in/insacog; Last accessed
30 October 2021).

Sequencing coverage varies across India with representation from every State and UT
(Figure 1a). The lineage-wise prevalence of isolates belonging to Alpha, Beta, Delta, Eta,
Gamma, Iota, and Kappa, sequenced pan India, depicts how different lineages circulated
during the pandemic and clearly indicates the emergence, decline, and sustained circulation
of lineages in India (Figure 1b). In addition to VoCs and VoIs, the data of all other PANGO
lineages that are in circulation in India are designated as Others in our study. As expected,

https://covid19.who.int
https://covid19.who.int
https://dbtindia.gov.in/insacog
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Delta predominates all lineages due to its emergence in India, higher transmissibility, as
well as the scaling up of sequencing efforts that coincided with the onset of the second
wave. Previous study involving whole genome sequencing and analysis of ≈3000 whole
genome sequences characterized from 20 states during January–September 2020 revealed
the circulation of GR and GH clades (designated by GISAID) in India [9].

The mapping of high-resolution genomic data sequenced from various States and
UTs revealed that although the extent of sequencing is highly variable, the presence of
various SARS-CoV-2 lineages was observed during the pandemic at different time points
(Figure 2a–c). This can be attributed to the importation/exportation of the SARS-CoV-2
isolates due to global/local travel, superspreading events, and limited awareness of COVID-
appropriate behavior. Sequencing and analysis of ≈100 genomes of SARS-CoV-2 sampled
across India reported multiple introductions from Europe, the USA, the Middle East, and
Southeast and Central Asia, along with evidence for local transmission [3]. An independent
study that analyzed data from the state of Gujarat for a period of six months pertaining to
the first wave of the pandemic also reported more than 100 introductions of isolates to be
responsible for the rapid spread of disease [47]. A report on the spread of VoCs (Alpha,
Beta, and Gamma) and Kappa (VoI) in India along with their prevalence in various States
as of March 2021 was documented recently [48].

The whole genome phylogenetic analysis reported in this study (Figure 3) further
substantiates multiple introductions from other countries as well as the circulation of
SARS-CoV-2 lineages across various States and UTs of India as evident from lineage-wise
monophyletic clusters of VoCs, with the exception of a few isolates belonging to Alpha
and Beta, which clustered with Others. The lineage designated as Others was observed
to diversify into multiple tree topologies, which is in accordance with respective PANGO
lineages, as expected. The phylogenetic clusters were independent of geographic proximity
and time of isolation, which can be attributed to introductions due to global and interstate
travel as well as urban to rural migration in India.

Although recombination is responsible for the evolution and diversification of Beta coro-
naviruses, there are only early indications of potential recombination for SARS-CoV-2 [49].
Recent reports of recombination in isolates belonging to Alpha (B.1.1.7) from the United
Kingdom have been observed [50]. In the present study, no significant evidence for recom-
bination has been observed in the Indian isolates. However, improved sequencing coverage
of co-infection cases might help to identify recombination events, if any, in the future.

Regression analysis (root-to-tip distance) based on complete genomes of pan India
isolates (Dataset_3; Supplementary File S4) depicted temporal signals. Similar observa-
tions have been reported earlier [51,52]. The NSR estimated using complete genomes of
Indian isolates (6.73 × 10−2 subs/site/year; 95% HPD: 5 × 10−3 to 7 × 10−2) is higher as
compared to that reported for Southeast Asia data (1.44 × 10−3 subs/site/year; 95% HPD
1.292 × 10−3 to 1.613 × 10−3) and global (representative) VoC isolates (6.5 × 10−4 subs/site/year;
95% HPD 0.58 − 0.77 × 10−3) [51–53]. The estimated NSR in Indian data is higher than the
NSR of known RNA viruses and similar to that reported for viroids [54]. An increase in the
sampling duration of Markov Chain Monte Carlo simulations might help to generate better
NSR estimates; however, the size of the data and computation time required to estimate
NSR poses challenges. Simulations were carried out with 1 billion steps that showed a
mean rate convergence value of 500, which is in the required range >200. A higher value
of NSR could also be attributed to the inclusion of samples over a period of 17 months
(January 2020 to May 2021) that included the earliest isolate from Wuhan (12 January 2020;
designated as Others) and the most recent isolate (7 May 2021; Delta).

The estimated date of emergence of both Delta and Kappa is reported as October 2020.
However, our estimates for the emergence of Delta and Kappa are in the third week of
December 2020. An investigation pertaining to the deferred date of estimation in our
analysis revealed that the earliest samples of Delta isolated from the state of Madhya
Pradesh (Collection date: 7 September 2020) was not included in the present analysis,
as it was submitted to GISAID on 9 June 2021 (ID: 2461258). The earliest entry of Delta
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in the curated dataset used for analysis is 12 December 2020, which corroborates with
the estimated date of emergence of Delta in our study. Similarly, the first entry of Kappa
in GISAID was recorded on 3 March 2020, for which genome data were deposited in
April 2021. The latest entry of Kappa in the curated dataset used in this study is for
1 December 2020, which corroborates with the estimated date of emergence of Kappa in
India as estimated in our study. The gap in actual vs. estimated dates of emergence of
Delta and Kappa can be attributed to a lack of periodic surveillance, lag in sequencing,
and delay in data submissions.

The clustering patterns for VoIs and VoCs for spike and RdRp genes obtained by PCA
were similar as compared to those derived from complete genomes. The SSES and their
ratios explain the within and between variation associated with PCA clusters obtained for
genome, spike, and RdRp. The outcome of exploratory PCA was further resolved using fine-
level population stratification analysis into six clusters based on major membership scores.
The isolates of Alpha clustered independently in both PCA and STRUCTURE analysis.
In PCA plots, isolates of Delta clustered with Kappa (whole genome); with Kappa, Beta
and Eta (Spike and RdRp), whereas the majority of Delta isolates formed an independent
cluster in STRUCTURE analysis. The PCA outcome also indicates the relatedness of Delta
and Kappa, as both diversified from the B.1.617 lineage. Isolates belonging to Kappa
show membership to multiple clusters in STRUCTURE analysis, which is indicative of its
overall higher variability and is also seen in the clustering pattern of Kappa isolates in the
phylogenetic tree. All the clusters obtained using STRUCTURE included a small proportion
of isolates with mixed ancestry (membership scores to more than one cluster). However,
cluster C4 was characteristic with all Beta and Eta isolates, along with 12% of Delta and
28% of Kappa based on major membership scores. The clustering of multiple VoCs can be
explained on the basis of the presence of a significant proportion of shared variable sites.
The phylogenetic tree (Figure 3) also corroborates these observations wherein a subcluster of
Delta is seen in proximity to a few Kappa isolates. These analyses together hint at adaptive
variations, conferring distinct advantages in terms of increased transmissibility, reduced
latency, and antigenic variation to SARS-CoV-2 isolates, some of which subsequently
evolved to be designated as VoC and VoI.

The mapping of 86 sites under positive selection and 17 sites with significant variations
in spike protein helped identify substitutions that are part of mutations specific to VoC and
VoI (Table 2). However, a prior study reported positive selection in non-structural genes
and absence of the same in spike based on an analysis of ≈3000 whole genome sequences
characterized from 20 states sampled during January–September 2020 [9]. Subsequently,
an independent study reported multiple sites under positive selection in the spike gene
using representative data [55], and 10 sites reported in their study overlap with the outcome
of this study.

The substitutions T20N, A222V, and Q677H/R are under selection in Indian isolates
that are associated with either N- or O-linked glycosylation. The spike protein has three
O-linked and 22 N-linked experimentally validated glycosylation sites, of which N343 is
conserved [56,57]. Variations have been observed in the Indian and global data at these
sites, which hints at differential glycosylations of the spike protein. Additional studies
are required to validate the glycosylation of the spike protein and its implications in the
context of antigenic variation in general and epitope masking in particular. A222V is the
second most frequent amino acid substitution in global data next to D614G [58]. A222V is
a significant substitution associated with the Delta variant and is also sampled with high
frequency in Kappa isolates in India. The site Q677H/R is a convergent substitution that
is sampled in Indian and global Delta, Eta, and Kappa variants. This site is close to the
polybasic furin cleavage site [59].

Sites under selection are distributed over the entire spike protein, the S1 region con-
taining NTD and RBD, which was observed to harbor a maximum number of sites under
selection (Figure 6a,b) and significantly variable sites. These two domains are functionally
important not only for maintaining a trimer conformation of spike and mediating host–
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receptor interactions but also as a predominant antigenic region with evidence for several
monoclonal and polyclonal antibody binding sites, neutralizing sites as well as CD4 and
CD8-responsive regions [60,61]. The variable sites N439K and Y453F, L455F and E484K are
known to escape neutralization by therapeutic antibodies REGN10987 and REGN10933,
respectively [62–64]. The mutations E484K/Q, L452R, and S494P escape neutralization by
LY-CoV555 antibodies, whereas K417N/T are escape mutants of LY-CoV016 [18,65–67]. It is
important to note that L452R, E484K/Q (ACE-2 binding site), and S494P are under selection
in Indian isolates (Supplementary File S9). Additionally, the reduced neutralizing antibody
response for other monoclonal antibodies and escape from cellular immune response in
case of HLA-24 for L452R substitution has been reported [16,68,69]. Previous studies have
reported reduced binding or escape from neutralization from four clinically approved thera-
peutic monoclonal antibodies, specifically for isolates of the Delta lineage. The substitutions
in the Delta lineage were found to be responsible for the complete loss of neutralization by
NTD-specific monoclonal antibodies and partial and/or complete loss by the RBD- and
non-RBD-specific monoclonal antibodies [18,67]. The site under selection T478K reported
in this study, attributed to the Delta lineage, is a major contributor to the neutralization
site of multiple monoclonal antibodies [70]. V341 and A344 are antibody-binding sites
for the VIR-7831 antibody, and we observed V341I and A344T substitutions. Similarly,
A344 and K444 are binding residues of the antibody VIR-7832 [62], and Indian isolates
are found to have A344T and K444N/R/M/I/F/L/Y substitutions that might negatively
impact antibody binding affinity, which needs to be investigated. V341, A344, and K444 are
neutralizing antibody-binding sites for antibody S309 [71], and the substitutions observed
in Indian isolates include V341I, A344T, and K444N/R/M/I/F/L/Y. Similarly, N439 is crit-
ical for binding to antibody VHH-72 [62], and N439K substitution was sampled in Indian
isolates. The variable sites N439K/I/T, V445F/I/Y/G/C, and G446V/A are flanking a seg-
ment under selection consisting of N440H/I/K/S/Y, L441I/M/R/V/Y, D442E/F/N/V/Y,
S443A/C/F/L/Y, and K444F/I/L/M/N/Y, and therefore, the mutations in the region
439–446 need to be monitored, as it is a major antigenic site that is part of the binding
sites of several neutralizing antibodies as well as experimentally validated T-cell epitopes,
conferring both humoral and cellular immunity [72] (Supplementary Files S9 and S10).
A significantly large number of antibodies recognize the regions at the periphery of the
ACE-2 binding site, and therefore, the substitutions at those sites in VoCs impact the
binding of antibodies without any impact on ACE-2 binding efficiency [67].

The impact of naturally occurring substitutions on the vaccine-mediated neutraliza-
tion of VoIs and VoCs has been systematically studied using pseudo virus constructs [73,74].
The substitutions L452R (sampled in Delta and Kappa), E484K (sampled in Alpha, Beta,
Gamma, and Eta), and N501Y (sampled in Alpha, Beta, Gamma, and Delta), which were ob-
served to be under selection in Indian SARS-CoV-2 isolates, are reported to impact vaccine-
mediated neutralization titers when tested for mRNA-1273 (Moderna) and BNT162b2
(Pfizer) vaccines [73–78]. E484Q (present in Kappa) has been observed to reduce neu-
tralization when tested against BNT162b2 (Pfizer), but its impact is relatively lower as
compared to E484K [78]. The substitutions L452R and N501Y have been predicted to
impact the neutralization of ChAdOx1 (Covishield) and BBV152 (Covaxin) vaccines [79].
The significantly variable site K417N independently does not impact the efficacy of the
vaccines mRNA-1273 (Moderna), BNT162b2 (Pfizer), and Sputnik V, but the same mutation
in combination with E484K and N501Y (observed in Beta) is reported to provide an immune
escape advantage when tested for mRNA-1273 (Moderna), BNT162b2 (Pfizer), and Sputnik
V vaccines [73–77,80]. However, the substitution K417T in combination with E484K and
N501Y (present in Gamma) showed limited reduction in neutralization as compared to the
Beta variants when tested against the BNT162b2 vaccine [74,77]. The vaccines ChAdOx1
(Covishield), BBV152 (Covaxin), and Sputnik V are licensed in India.

In conclusion, this study provides an account of pan-India diversity of SARS-CoV-2
using complete genome data, which were sequenced for the purpose of pandemic surveil-
lance and deposited in public domain databases. Although the sequencing coverage varied
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significantly across India, genomic data from every State and UT have been generated.
Isolates belonging to all known VoCs and VoIs such as Alpha, Beta, Delta, Eta, Gamma,
Iota, and Kappa were in circulation at different time points. Phylogenetic analysis and
evolutionary dynamics depicted a lack of spatio-temporal clustering of isolates as expected
during the pandemic. Indian isolates of SARS-CoV-2 are observed to harbor mutations in
various genomic regions, and the substitutions in the spike protein in particular explain the
potential impact on various functions including antigenic diversity and immune escape.
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390/v13112238/s1, Supplementary file S1: List of GISAID IDs with metadata of SARS-CoV-2 sequences
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15 August 2021), Supplementary file S2: Python script for generating States/UT wise plots of WHO
designated VoC and VoI., Supplementary file S3: Curated GISAID and GenBank IDs and associated
metadata of SARS-CoV-2 genome sequences from India (Dataset_2: 11,864 entries; as of 26 May 2021),
Supplementary file S4: List of GISAID and GenBank IDs for non-redundant SARS-CoV-2 genomes
from India used for evolutionary analysis (Dataset_3: 6859 entries), Supplementary file S5: List of
GISAID and GenBank IDs corresponding to Spike gene data (Dataset_5: 9538), Supplementary file S6:
Regression plot for Root-to-tip distances vs time of isolation of SARS-CoV-2 isolates from India.,
Supplementary file S7: Bar plot of fine level population structure of SARS-CoV-2 isolates from India.,
Supplementary file S8: Sites under positive selection in spike gene sequences belonging to SARS-CoV-
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in spike gene sequences belonging to SARS-CoV-2 isolates from India, Supplementary file S10: Func-
tional annotations of significantly variable sites in spike protein sequences belonging to SARS-CoV-2
isolates from India.
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