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Co‑expression network analysis identifies 
a gene signature as a predictive biomarker 
for energy metabolism in osteosarcoma
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Abstract 

Background:  Osteosarcoma (OS) is a common malignant bone tumor originating in the interstitial tissues and occur-
ring mostly in adolescents and young adults. Energy metabolism is a prerequisite for cancer cell growth, proliferation, 
invasion, and metastasis. However, the gene signatures associated with energy metabolism and their underlying 
molecular mechanisms that drive them are unknown.

Methods:  Energy metabolism-related genes were obtained from the TARGET database. We applied the “NFM” algo-
rithm to classify putative signature gene into subtypes based on energy metabolism. Key genes related to progression 
were identified by weighted co-expression network analysis (WGCNA). Based on least absolute shrinkage and selec-
tion operator (LASSO) Cox proportional regression hazards model analyses, a gene signature for the predication of OS 
progression and prognosis was established. Robustness and estimation evaluations and comparison against other 
models were used to evaluate the prognostic performance of our model.

Results:  Two subtypes associated with energy metabolism was determined using the “NFM” algorithm, and signifi-
cant modules related to energy metabolism were identified by WGCNA. Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) suggested that the genes in the significant modules were enriched in kinase, immune 
metabolism processes, and metabolism-related pathways. We constructed a seven-gene signature consisting of 
SLC18B1, RBMXL1, DOK3, HS3ST2, ATP6V0D1, CCAR1, and C1QTNF1 to be used for OS progression and prognosis. 
Upregulation of CCAR1, and C1QTNF1 was associated with augmented OS risk, whereas, increases in the expression 
SCL18B1, RBMXL1, DOK3, HS3ST2, and ATP6VOD1 was correlated with a diminished risk of OS. We confirmed that 
the seven-gene signature was robust, and was superior to the earlier models evaluated; therefore, it may be used for 
timely OS diagnosis, treatment, and prognosis.

Conclusions:  The seven-gene signature related to OS energy metabolism developed here could be used in the early 
diagnosis, treatment, and prognosis of OS.

Keywords:  Gene signature, Energy metabolism, Least absolute shrinkage and selection operator, Osteosarcoma, 
Prognosis biomarker, Weighted co-expressed network analysis
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Introduction
Osteosarcoma (OS) is one of the most common malig-
nant bone tumors. It appears mainly in adolescents and 
young adults (overall incidence: 0.3–0.4/100,000 indi-
viduals/year) [1, 2]. As with other sarcomas, OS origi-
nates from the interstitial tissues. It is characterized 
by the formation of osteoid tissue and osteoid- and 
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spindle-shaped stromal cells in immature bones [3, 
4]. The main clinical treatments for patients with OS 
include local surgery, chemotherapy, and radiotherapy. 
Substantial improvements have been made in the clini-
cal response and survival rate of OS [5]. About 70% 
of all patients with OS can be cured [6]. However, OS 
prognosis remains poor especially among patients with 
metastatic disease or tumor recurrence. In these cases, 
the overall survival rate is only ~ 20% [7]. Despite 
advances in surgical technique and targeted therapy, 
optimal treatment outcomes in OS are still negatively 
impacted by tumor immunity, infection, complica-
tions, and low survival rates. Thus, new predictive and 
prognostic approaches are urgently needed to improve 
survival in patients with OS.

High-throughput technology, gene microarray chips, 
and large-scale RNA-seq transcriptome data have been 
widely used to identify prognostic genes for various can-
cers, elucidate oncogenic mechanisms, and improve can-
cer treatment [8, 9]. Energy metabolism is an important 
marker of cancer cell metastasis and invasion [10]. It 
enables tumor cells to generate ATP, maintain the redox 
balance, and sustain the macromolecular biosynthetic 
processed required for cell growth, proliferation, and 
migration [11]. Recent empirical evidence has demon-
strated that there is a metabolic symbiosis between gly-
colysis and oxidative phosphorylation (OXPHOS) in OS 
[12]. Lactate and pyruvate formed in glycolysis may be 
transferred to the TCA cycle and used as intermediate 
substrates for ATP generation [13, 14]. OS cells may also 
utilize the ketones released by adjacent cells during free 
fatty acid catabolism to liberate metabolic energy [15]. 
Thus, a new energy metabolism-related gene signature 
could be invaluable in the prediction of OS metastasis 
and invasion.

Weighted gene co-expression network analysis 
(WGCNA) is a systematic biological method that delin-
eates correlations between genes and clinical traits [16]. 
It identifies highly correlated genes to investigate poten-
tial biological functions [17, 18]. Here, a new seven-
gene signature associated with OS energy metabolism 
was established via a WGCNA algorithm and a least 
absolute shrinkage and selection operator (LASSO) Cox 
regression. This seven-gene signature was validated and 
confirmed to be superior to other predictive models of 
the same type. It served as a biomarker that was signifi-
cantly associated with OS metastasis. Our findings may 
advance the study of OS prognosis, as they revealed that 
energy metabolism is a potential therapeutic control 

point in this disease. The research path taken in the pre-
sent study is outlined in Fig. 1.

Results
Identification of the energy metabolism molecular 
subtypes in OS
The “NFM” algorithm [19] was used to identify the 
molecular subtypes of energy metabolism in OS sam-
ples with 587 identified energy metabolism-related 
genes [20]. As shown in Fig. 2a, the energy metabolism 
molecular subtypes of OS were detected in the TAR-
GET database using cophenetic, dispersion and silhou-
ette algorithm indicators. The expression levels of the 
energy metabolism-related genes in the two molecular 
subtypes are shown in Fig.  2b. Patient mortality was 
significantly higher in the C1 group than the C2 group. 
We also determined that the prognosis for C1 was 
worse than that for C2. Figure 2c shows significant dif-
ferences between these molecular subtypes (log-rank 
P = 0.032). Using the same parametric analysis as for 
the TARGET data, we ran the “NMF” algorithm on the 
GEO dataset GSE21257 and found similarities between 

Fig. 1  Flow diagram of data preparation, processing, analysis, and 
validation in the present study
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them. Both were partitioned into two groups. As shown 
in Fig.  3, there were significant differences between 
subtypes in terms of prognosis (log-rank P = 0.033).

Detection of significant modules in the molecular subtypes
WGCNA was performed on the genes in the TARGET 
database to screen for modules that were significantly asso-
ciated with the energy metabolism molecular subtypes in 
OS [21] (Fig. 4). There were no outliers in the sample clus-
tering (Fig.  4a). A value of five was the lowest power for 
the 0.9 scale-free topology network index. It was screened 
out in order to plot a hierarchical clustering tree (Fig.  4b, 
c). Similar clusters were merged into new modules using 
the following settings: height = 0.5, deepSplit = 2, and min-
ModuleSize = 80. Twenty-three modules with similar con-
nected gene patterns were obtained (Fig. 4d). As shown in 
Fig. 4e, correlations of each module with patient gender, age, 
ethnicity, and Clusters1 and 2 were analyzed. The strong-
est association was found between the lightyellow module 
and Cluster 1, and between the pink module and Cluster 2. 
Therefore, the lightyellow (140 genes) and pink (352 genes) 

modules were selected for the subsequent analyses (Addi-
tional file 1: Table S1 and Additional file 2: Table S2).

Gene Ontology (GO) and pathway enrichment analysis
GO and KEGG functional enrichment analyses of 
the genes in the lightyellow and pink modules were 
performed using the “ClusterProfiler” package in R 
(Additional file 3: Table S3, Additional file 4: Table S4, 
Additional file 5: Table S5, Additional file 6: Table S6). 
As shown in Fig. 5a, the genes in the lightyellow mod-
ule were enriched in 293 GO terms closely related to 
kinase activity. They were also enriched in the Ras and 
Rap1 signaling pathways and ECM-receptor inter-
action (Fig.  5b). The genes in the pink module were 
enriched in 567 GO terms and 263 KEGG terms. 
The top 20 GO terms (Fig.  5c) were related mainly to 
immune metabolism processes such as neutrophil-
mediated immunity, and ATP hydrolysis-coupled pro-
ton transport. The KEGG analysis suggested that the 
top 20 significantly enriched pathways were related to 

Fig. 2  Molecular subtype classification according to energy metabolism in TARGET Database. a Consensus map of NMF clustering. b Heatmap of 
energy metabolism-related gene expression by molecular subtype. c Prognosis survival curve by molecular subtype

Fig. 3  Molecular subtype classification according to energy metabolism in GSE21257. a Consensus map of NMF clustering. b Heatmap of energy 
metabolism-related gene expression by molecular subtype. c Prognosis survival curve of molecular subtype
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tumorigenesis, including the mTOR and TNF signaling 
pathways (Fig. 5d).

LASSO Cox regression and energy metabolism signature
A univariate Cox proportional hazard regression model 
was applied to screen for significant differences in the final 

Fig. 4  Co-expression network analysis. a Sample clustering analysis. b, c Analysis of network topology showing that it met the scale-free topology 
threshold of 0.9 when β = 5. d Clustering dendrogram of genes based on topological overlap. e Heatmap displaying correlations and significant 
differences between gene modules and clinical phenotypes

Fig. 5  Functional enrichment analysis of lightyellow and pink modules. a Top 20 GO terms in lightyellow module. b Top 20 KEGG terms in 
lightyellow module. c Top 20 GO terms in pink module. d Top 20 KEGG terms in pink module
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prognoses. Sixty-five significant genes were obtained of 
which the top 20 are listed in Table 1. LASSO Cox regres-
sion was performed on all 65 significant OS-related genes. 
As shown in Fig.  6a, the trajectory of each independent 
variable was analyzed. As λ increased, the number of inde-
pendent coefficients tended to decline towards zero. A 
threefold cross-validation was run to build the model and 
the confidence interval under each λ was analyzed. The 
model was optimal when λ = 0.101608. Thirteen genes with 
λ = 0.101608 were chosen as the final targets (Fig. 6b) and 
subjected to multivariate Cox survival analysis. Seven genes 
with the lowest AUC (156.28) were retained and integrated 

into the final model (Fig. 6c; Table 2). The RiskScore was 
calculated for the seven-gene signature as follows:

The scoring formula for each sample is the sum of the 
aforementioned gene expression value multiplied by the 
ordinal. We set the optimal threshold calculated from the 
5-year AUC as the classification effect in the TARGET 
training set. As shown in Fig. 7a, the death sample sur-
vival time significantly decreased with increasing patient 
RiskScore. Most of the individuals who died were in the 
high-risk group. The expression levels of CCAR1 and 
C1QTNF1 increased with risk value. Thus, upregula-
tion of either of these genes is associated with high risk 
of death. In contrast, the expression levels of SCL18B1, 
RBMXL1, DOK3, HS3ST2, and ATP6VOD1 decreased 
with increasing risk value. Therefore, upregulation of 
these genes is correlated with low risk and all five of them 
are protective. Figure  7b shows the ROC curve for all 
seven genes. The AUC was > 0.74. As shown in Fig.  7c, 
36 patients were classified into the low-risk group and 
40 were assigned to the high-risk group. There was a sig-
nificant difference between these two groups (log-rank 
P < 0.001; HR = 19.87).

Validation of gene signature robustness
To validate the robustness of the gene signature, we cal-
culated the RiskScore for the expression level of each 
sample in the validation set. The RiskScore distribution 
is shown in Fig.  8a. The expression level of the seven-
gene signature increased with risk value. These findings 
are consistent with the training set in which the expres-
sion levels of CCAR1 and C1QTNF1 also increased 
with risk value. Therefore, high expression and high risk 
were associated with these two genes and both were risk 

RiskScore7 = −1.2514 × expSLC18B1− 1.476× expRBMXL1

+ 1.5145× expC1QTNF1− 1.3606× expDOK3

+ 1.1638× expCCAR1− 0.7127× expHS3ST2

− 2.186× expATP6V0D1.

Table 1  Top 20 significant lncRNA screened by  univariate 
Cox regression analysis

Symbol P-value HR Low 95% CI High 95% CI

NUBP1 1.32E−05 0.256 0.138 0.472

PDZD11 0.00023 0.274 0.138 0.546

ATP6V0D1 0.00037 0.380 0.223 0.648

NTAN1 0.00064 0.391 0.228 0.670

TMEM8A 0.00136 0.372 0.203 0.681

FOLR2 0.00176 0.664 0.513 0.858

GRN 0.00247 0.565 0.390 0.818

BLVRA 0.00347 0.429 0.243 0.757

NPC2 0.00387 0.582 0.403 0.840

RBMXL1 0.00398 0.372 0.190 0.729

DOK3 0.00414 0.532 0.346 0.819

APBB1IP 0.00427 0.615 0.440 0.858

GPX1 0.00497 0.547 0.359 0.833

FCER1G 0.00673 0.684 0.519 0.900

TWF2 0.00675 0.459 0.261 0.806

PLEKHO2 0.00729 0.464 0.265 0.813

CHCHD10 0.00817 0.596 0.406 0.875

HS3ST2 0.00819 0.541 0.343 0.853

TAGLN 0.00884 0.650 0.470 0.897

SELPLG 0.00933 0.635 0.451 0.894

Fig. 6  Constructing seven-gene-based classifier by LASSO Cox 
regression model. a Trajectory of each independent variable. 
Horizontal axis represents log of independent variable λ. Vertical 
axis represents coefficient of independent variable. b Three fold 
cross-validation of tuning parameter in LASSO model

Table 2  Information for  seven-gene signature screened 
by LASSO Cox regression

Symbol Coef P value HR Low 95% CI High 95% CI

SLC18B1 − 1.2514 0.13982 0.2861 0.05433 1.5065

RBMXL1 − 1.476 0.09257 0.2286 0.04093 1.2762

C1QTNF1 1.5145 4.08E−05 4.5473 2.20564 9.3749

DOK3 − 1.3606 0.03348 0.2565 0.07318 0.8991

CCAR1 1.1638 0.1236 3.2021 0.72794 14.0852

HS3ST2 − 0.7127 0.13179 0.4903 0.19404 1.2389

ATP6V0D1 − 2.186 0.00587 0.1124 0.02373 0.5322
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factors. In contrast, the expression levels of SLC18B1, 
RBMXL1, DOK3, HS3ST2, and ATP6V0D1 decreased 
with increasing risk value. There was a correlation 
between high expression and low risk for these five genes 
and all of them were protective factors. ROC analysis of 
the prognostic RiskScore classification was performed 
using the “timeROC” package in R. As shown in Fig. 8b, 
the model had a high AUC value (0.87). Figure  8c sug-
gested that according to classification of all TARGET 
sets, 38 patients were scored as low-risk and 46 patients 
were rated as high-risk. There were significant differ-
ences between these risk groups (log-rank P < 0.0001; 
HR = 17.92). The external GEO dataset GSE21257 was 
analyzed by the same method as above to verify the 
model robustness. It generated the same results as the 
TARGET validation and training sets, namely, CCAR1 
and C1QTNF1 were risk factors, whereas SLC18B1, 

RBMXL1, DOK3, HS3ST2, and ATP6V0D1 were protec-
tive factors (Fig. 9a). Figure 9b depicts that the model had 
a high AUC value (0.73). Based on the GSE21257 data, 37 
patients were classified as low-risk and 16 patients were 
classified as high-risk, and again the difference between 
the groups was significant (log-rank P = 0.011; HR = 2.84) 
(Fig.  9c). The foregoing results indicate that the seven-
gene signature was highly robust. In addition, the exter-
nal dataset GSE16091 validated results suggested this 
seven-gene signature had a high AUC value (0.7); 10 
patients and 24 patients were classified into low-risk 
and high-risk groups, respectively (log-rank P = 0.02664; 
HR = 3.218) (Fig. 10).

Gene signature model evaluation
To identify the relationship between the RiskScore for 
the seven-gene signature and the immune and matrix 

Fig. 7  Evaluation of robustness of seven-gene signature in TARGET training datasets. a RiskScore, survival time and status, and expression of 
seven-gene signature. b ROC curve of seven-gene signature. c K–M prognosis curve of seven-gene signature
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scores, the ImmuneScore, StromalScore, and tumor 
purity were calculated separately for each sample [22]. 
There were significant differences between the high-
risk and low-risk samples in the TARGET training set 
in terms of ImmuneScore, StromalScore, and tumor 
purity. Similar results were obtained for the GSE21257 
dataset (Fig.  11). To confirm the independence of the 
seven-gene signature model in a clinical setting, we 
systematically analyzed the clinical information in the 
TARGET, TARGET training, and GSE21257 valida-
tion datasets including age, gender, metastasis, and 
seven-gene signature model grouping information 
(Table 3). One-way Cox regression analysis of the TAR-
GET training set revealed that the high-risk group and 
metastasis were significantly associated with survival. 
The corresponding multivariate Cox regression analy-
sis revealed that only the high-risk group (HR = 28.89; 
95% CI 6.25–133.4; P = 1.63E−05), age, and metastasis 

were significantly associated with survival. A one-way 
Cox regression analysis of the TARGET set demon-
strated that the high-risk group and metastasis were 
significantly associated with survival. Similarly, the 
multivariate Cox regression analysis showed that only 
the high-risk group (HR = 21.07; 95% CI 4.87–91.21; 
P = 4.5E−05) and metastasis were significantly asso-
ciated with survival. One-way and multivariate Cox 
regression analysis of the GSE21257 validation set 
indicated that the high-risk group was significantly 
associated with survival. The aforementioned analyses 
confirmed that the seven-gene signature is an inde-
pendent standalone prognostic indicator with good 
predictive performance and clinical application utility.

Gene set enrichment analysis (GSEA)
GSEA was performed on the significantly enriched path-
ways in the high- and low-risk groups in the TARGET 

Fig. 8  Evaluation of robustness of seven-gene signature in TARGET validation datasets. a RiskScore, survival time and status, and the expression of 
seven-gene signature. b ROC curve of seven-gene signature. c K–M prognosis curve of seven-gene signature
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set. The enriched pathway selection threshold was 
P < 0.05, and significantly enriched pathways are listed in 
Table 4. The high-risk group was mainly associated with 

metabolic pathways including NITROGEN METABO-
LISM and LINOLEIC ACID METABOLISM, whereas 
the low-risk group was enriched mainly in receptor-
related pathways, such as B CELL RECEPTOR SIGN-
ALING, CHEMOKINE SIGNALING, and TOLL LIKE 
RECEPTOR SIGNALING.

Comparative study of other risk models
We compared published OS-related models with that 
used in the present study. We determined the differ-
ences between the high- and low-risk groups in terms 
of OS prognosis. As shown in Fig. 12a, b, the ROC and 
K–M curves (PMID: 31333788) indicated that the 3-year 
AUC was 0.75 (P = 0.00024). Moreover, the OS progno-
sis for the four-pseudogene signature (PMID: 31146489) 

Fig. 9  Evaluation of robustness of seven-gene signature in GEO validation. a RiskScore, survival time and status, and the expression of seven-gene 
signature. b ROC curve of seven-gene signature. c K–M prognosis curve of seven-gene signature

Fig. 10  Evaluation of robustness of seven-gene signature in 
GSE16091. a ROC curve of seven-gene signature. b K–M prognosis 
curve of seven-gene signature
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demonstrated that the 3-year AUC value was 0.93 
(P < 0.0001) (Fig. 11c, d). In addition, the ROC and K–M 
curves in PMID: 31090103 and PMID: 30604867 sug-
gested the 3-year AUC were 0.81(P = 0.00088) and 0.81 
(P = 0.00594), respectively. Comprehensive comparative 
studies disclosed that the seven-gene signature in the 
present study was superior to the eight-gene signature 
(PMID: 31333788) and had predictive power similar to 
that of the four-pseudogene signature (PMID: 31146489). 
Thus, the model constructed in the present study has 
superior performance to the previously published models 
against which it was compared.

Discussion
OS is a bone tumor that occurs mainly in teenagers and 
young adults. It originates from primitive transformed 
mesenchymal cells. Energy metabolism is an important 
indicator of osteosarcoma cell proliferation, metasta-
sis, and invasion. In the present study, a comprehensive 

bioinformatics analysis identified a seven-gene signature 
associated with OS energy metabolism. This gene signa-
ture was significantly associated with OS progression and 
prognosis.

The “NMF” algorithm was run to partition the sam-
ples into glycolysis and OXPHOS energy metabolism 
categories. Recent investigations found that the relation-
ship between glycolysis and OXPHOS is cooperative and 
competitive [23]. As OXPHOS is attenuated, glycolysis 
may be enhanced to increases energy generation. When 
OXPHOS function is in equilibrium, it regulates glyco-
lysis and maintains the energy balance [24]. Fantin et al. 
[25] reported that when LDH-A was inhibited in cancer 
cells, OXPHOS was enhanced to compensate for glyco-
lysis suppression and ATP reduction. Pacheco-Velazquez 
et al. [26] proposed that MCF-7 cells are equally depend-
ent on OXPHOS and glycolysis for ATP generation.

WGCNA is a systematic biological algorithm revealing 
the associations between genes and clinical phenotypes. 

Fig. 11  Estimation of seven-gene signature. a Distributions of StromalScore in high and low-risk groups in TARGET training dataset. b Distributions 
of ImmuneScore in high and low-risk groups in TARGET training dataset. c Distributions of ESTIMATEScore in high and low-risk groups in TARGET 
training dataset. d Distributions of StromalScore in high and low-risk groups in GSE21257 training dataset. e Distributions of ImmuneScore in high 
and low-risk groups in GSE21257 training dataset. f Distributions of the ESTIMATEScore in high and low-risk groups in GSE21257 training dataset
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It has been widely used to screen for diagnostic and prog-
nostic biomarkers of Alzheimer’s disease, breast can-
cer, osteoarthritis, and Dupuytren’s contracture. In the 

present study, WGCNA identified 23 modules of which 
the lightyellow and pink were highly associated with 
molecular subtypes related to OS energy metabolism. A 

Table 3  Univariate and  multivariate Cox regression analyses, prognosis-related clinical factors, and  clinical 
independence

Variables Univariate analysis Multivariable analysis

HR 95% CI of HR P value HR 95% CI of HR P value

TARGET training datasets

 7-gene risk score

  Risk score (high/low) 19.87 4.67–84.42 3.11E−04 28.89 6.25–133.4 1.63E−05

  Age 0.99 0.90–1.09 0.83 1.12 1.00–1.24 0.048

  Gender (male/female) 0.57 0.25–1.27 0.17 0.57 0.24–1.33 0.19

  Metastatic vs non-metastatic 4.18 1.92–9.10 0.0003 5.34 2.21–12.95 0.0002

TARGET datasets

 7-gene risk score

  Risk score (high/low) 17.29 4.10–72.96 1.04E−04 21.07 4.87–91.21 4.54E−05

  Age 0.99 0.91–1.07 0.81 1.08 0.98––1.19 0.098

  Gender (male/female) 0.76 0.36–1.60 0.47 0.76 0.35–1.64 0.48

  Metastatic vs Non-metastatic 4.74 2.27–9.89 3.42E−05 5.69 2.54–12.76 2.36E−05

GSE21257 validation datasets

 7-gene risk score

  Risk score (high/low) 2.84 1.23–6.55 0.014 2.76 1.18–6.46 0.0186

  Age 1.0007 0.99–1.003 0.602 1 0.99–1.003 0.787

  Gender (male/female) 1.4 0.58–3.34 0.44 1.39 0.56–3.41 0.468

Table 4  KEGG pathways significantly enriched in high and low-risk groups

Name Size ES NES NOM FDR FWER
P-val P-val P-val

KEGG_NITROGEN_METABOLISM 23 0.497 1.539 0.037 0.470 0.8

KEGG_LINOLEIC_ACID_METABOL ISM 29 0.573 1.572 0.044 0.745 0.753

KEGG_PEROXISOME 78 − 0.483 − 1.871 0.002 0.151 0.176

KEGG_CHEMOKINE_SIGNALING_ PATHWAY​ 185 − 0.443 − 1.785 0.006 0.144 0.32

KEGG_FC_GAMMA_R_MEDIATED_GOCYTOSIS 95 − 0.479 − 1.821 0.006 0.119 0.244

KEGG_LEUKOCYTE_TRANSENDO THELIAL_MIGRATION 115 − 0.475 − 1.850 0.008 0.109 0.195

KEGG_PATHOGENIC_ESCHERICHI A_COLI_INFECTION 55 − 0.521 − 1.883 0.010 0.200 0.162

KEGG_LYSOSOME 119 − 0.568 − 1.956 0.010 0.167 0.081

KEGG_LEISHMANIA_INFECTION 69 − 0.608 − 1.866 0.012 0.118 0.178

KEGG_VIRAL_MYOCARDITIS 68 − 0.557 − 1.757 0.012 0.166 0.384

KEGG_ENDOCYTOSIS 178 − 0.378 − 1.581 0.017 0.317 0.729

KEGG_SNARE_INTERACTIONS_INICULAR_TRANSPORT 38 − 0.496 − 1.630 0.022 0.295 0.631

KEGG_GLUTATHIONE_METABOLI SM 48 − 0.455 − 1.648 0.025 0.283 0.605

KEGG_TOLL_LIKE_RECEPTOR_SI GNALING_PATHWAY​ 101 − 0.411 − 1.567 0.032 0.329 0.752

KEGG_ANTIGEN_PROCESSING_A ND_PRESENTATION 79 − 0.518 − 1.661 0.033 0.282 0.575

KEGG_COMPLEMENT_AND_COAG ULATION_CASCADES 69 − 0.457 − 1.590 0.037 0.318 0.715

KEGG_B_CELL_RECEPTOR_SIGNA LING_PATHWAY​ 74 − 0.427 − 1.591 0.037 0.339 0.714

KEGG_NOD_LIKE_RECEPTOR_SIG NALING_PATHWAY​ 61 − 0.454 − 1.598 0.037 0.351 0.703

G_ACUTE_MYELOID_LEUKEMA 57 − 0.445 − 1.548 0.041 0.316 0.782
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GO analysis disclosed that the genes in these two mod-
ules were enriched mainly for protein kinase A, DNA 
metabolism, and Wnt protein-binding pathways and 
the transcription coactivator, kinase regulator, ATPase, 
and proton transmembrane transport activity pathways. 
Kinases catalyze the transfer of phosphate groups from 
high-energy, phosphate-donating molecules to specific 
substrates. Takahashi et al. [27] used siRNA and the small 
molecule inhibitor CX-4945 to show that upregulation 
of casein kinase 2 (CK2) was important for the growth 
of human osteosarcoma cells. Zhu et  al. [28] reported 
that the checkpoint kinase inhibitor AZD7762 promoted 
apoptosis and mitotic catastrophe in osteosarcoma cells. 
ATPase decomposes ATP into ADP and free phosphate 
ion and releases energy. Meszaros et  al. [29] found that 
Ca2+-ATPase inhibitors suppress ATP- and thrombin-
Ca2+ in OS cells. KEGG enrichment analysis showed 
that the genes in the lightyellow and pink modules par-
ticipated in osteoclast differentiation, the mTOR, TNF, 
and Ras signaling pathways, and the focal adhesion-
related metabolic pathways. Osteoclast differentiation is 
involved in bone formation and originates in mesenchy-
mal stem cells. Gobin et al. [30] suggested that the PIDK 
inhibitor BYL719 inhibited and promoted osteoclast dif-
ferentiation. The mTOR pathway is the entry point for 
OS treatment. It regulates cell growth, increases cell pro-
liferation, and suppresses autophagy [31]. Perry et al. [32] 
used complementary genomics to identify OS-related 
genomic events. They found that inhibition of the mTOR 
pathway could be exploited for OS therapy. Focal adhe-
sion is a key regulator of multi-cellular signaling path-
ways in cell proliferation, cycle regression, migration, 
apoptosis, and survival [33]. Hu et  al. [34] assessed the 
effects of the small-molecule focal adhesion inhibitor 
PF562271 on OS cells and showed that it diminished OS 
cell volume, weight, and angiogenesis and concluded that 
inhibition of focal adhesion could therefore be a target 
for OS treatment.

As the lightyellow and pink modules were screened by 
WGCNA, a systematic LASSO Cox regression estima-
tion was performed, which compresses the coefficients 
and conserves the original data. The LASSO Cox regres-
sion screened seven genes that were then used to con-
struct a seven-gene signature with the lowest AUC value. 
This seven-gene signature was validated by robustness 

and estimation evaluations, and by comparing it to 
other models from independent external datasets with 
the TARGET training dataset. These analyses revealed 
the clinical significance of the signature in CCAR1, and 
C1QTNF1 (risk factor), and in SLC18B1, RBMXL1, 
DOK3, HS3ST2, and ATP6V0D1 (protective factors). 
Metastasis and invasion information for clinical biop-
sies or surgical samples may be obtained by quantify-
ing the expression level of each gene in this seven-gene 
signature. Genes within this signature may participate 
in cancer development and progression. CCAR1 (cell 
division cycle and apoptosis regulator protein 1) is an 
intermediate in regulatory transduction. It is involved in 
transcriptional regulation, apoptosis, autophagy, and cell 
progression and/or proliferation. CCAR1 is a biomarker 
of hepatocellular carcinoma [35]. RBMXL1 (RNA bind-
ing motif protein) encodes a splicing protein that sup-
presses tumor proliferation, and promotes apoptosis in 
gastric and breast cancer [36, 37]. DOK3 (downstream of 
tyrosine kinase 3) is an adaptor protein that plays a vital 
role in the negative feedback regulation of PTK-mediated 
signaling loops and suppresses the cellular proliferation 
[38]. HS3ST2 (heparan sulfate-glucosamine 3-sulfotrans-
ferase 2) encodes an enzyme that [39] participates in cell 
proliferation, apoptosis, autophagy, and other processes 
associated with cancer [40]. ATP6V0D1 (V-type proton 
ATPase subunit d1) acidifies various intracellular com-
partments in cancer cells and generates transport pro-
cess energy [41]. Han et al. [42] suggested that C1QTNF1 
(complement C1q tumor necrosis factor-related protein 
1) acts on the miR-221-3p/SOCS3 axis to modulate the 
JAK/STAT signaling pathway and alter HCC cell behav-
ior and tumor proliferation. SLC18B1 (MFS-type trans-
porter SLC18B1) has not yet been functionally linked to 
cancer, but we suggest it could be a viable target for OS 
treatment.

In conclusion, we used comprehensive bioinformatics 
techniques to define a novel and effective biomarker for 
the prediction of the clinical progression, development, 
invasion, and metastasis of OS. WGCNA and LASSO 
Cox regression analyses were performed to screen for a 
seven-gene signature comprised of SLC18B1, RBMXL1, 
DOK3, HS3ST2, ATP6V0D1, CCAR1, and C1QTNF1 
and associated with OS energy metabolism. Validations 
were performed on independent external datasets and 

(See figure on next page.)
Fig. 12  Comparative analysis of other models. a AUC curve of eight-gene signature (PMID: 31333788) in TARGET training dataset. b K–M curve 
of eight-gene signature (PMID: 31333788) in TARGET training dataset. c AUC curve of four-pseudogene signature (PMID: 31146489) in TARGET 
training dataset. d K–M curve of four-pseudogene signature (PMID: 31146489) in TARGET training dataset. e AUC curve of ten-gene signature 
(PMID: 31090103) in TARGET training dataset. f K–M curve of ten-gene signature (PMID: 31090103) in TARGET training dataset. g AUC curve of 
nineteen-pseudogene signature (PMID: 30604867) in TARGET training dataset. h K–M curve of 19-pseudogene signature (PMID: 30604867) in 
TARGET training dataset
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revealed that the seven-gene signature was superior to 
the other models evaluated. Here, a seven-gene signa-
ture related to OS energy metabolism was constructed to 
forecast the outcome of this cancer. Moreover, this sig-
nature contains genes that provide potential targets for 
innovative and effective OS therapeutic strategies.

Methods
Data collection and processing
Human metabolic pathways were downloaded from the 
Reactome Database (http://react​ome.org/) [43]. A total of 
587 genes were obtained from 11 metabolic-related path-
ways (Table 5). RNA-seq expression and clinical follow-
up data for osteosarcoma were obtained from the public 
database TARGET (https​://ocg.cance​r.gov/) [44]. There 
were 274 patients with clinical information and ~ 101 
patients with RNA-seq data. TPM data gene length and 
sequencing depth (M scale RNA-seq data), were applied 
in this study. The following steps were performed on 
the 101 patients with RNA-seq data. (1) Samples lack-
ing clinical information and/or DFS < 30 were discarded. 
(2) Normal tissue sample data were removed. (3) Genes 
with FPKM values of 0 in 50% or more of the samples 
were eliminated. (4) The expression profile of the genes 
involved in energy metabolism were retained. The gene 
expression profile of GSE21257 and its related clinical 
data were downloaded from the Gene Expression Omni-
bus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/), 
and we also included the data from pre-chemotherapy 
biopsies of 53 patients with OS. The following steps were 
performed on the GSE21257 data [45]. (1) The normal 
tissue sample data were removed. (2) The chip probe was 
mapped to the human genome using the Bioconductor 
package in R. (3) The expression profiles of the energy 
metabolism-related genes were retained (Table 6).

Identification of energy metabolism molecular subtypes 
in OS
The OS samples were clustered with 587 energy metab-
olism-related genes using a non-negative matrix cluster-
ing algorithm (NMF) [46]. The “NMF” package in R was 
applied using the standard “burnet” for 50 iterations, 
setting the k cluster range from 2 to 10, determining the 
average contour with the common member matrix, and 
setting the minimum number of subclass members to 
ten. Based on the cophenetic correlation, dispersion, sil-
houette, and other indicators, the optimal cluster number 
was established at two [47].

Table 5  Energy metabolism-related pathways in the Reactome Database

Metabolic pathways from Reactome PathwayID Gene count

Biological oxidations R-HSA-211859 216

Metabolism of carbohydrates R-HSA-71387 290

Mitochondrial fatty acid beta-oxidation R-HSA-77289 37

Glycogen synthesis R-HSA-3322077 16

Glycogen metabolism R-HSA-8982491 27

Glucose metabolism R-HSA-70326 90

Glycogen breakdown (glycogenolysis) R-HSA-70221 15

Glycolysis R-HSA-70171 71

Pyruvate metabolism R-HSA-70268 31

Pyruvate metabolism and Citric Acid (TCA) cycle R-HSA-71406 55

Citric acid cycle (TCA cycle) R-HSA-71403 22

Sum 11 871

Table 6  Clinical information for pre-processed dataset

Characteristic TARGET training 
datasets (n = 76)

TARGET all 
datasets 
(n = 84)

GSE21257 
(n = 53)

Age (years)

 ≤ 18 59 66 35

 > 18 17 18 18

Survival status

 Living 50 55 30

 Dead 26 29 23

Gender

 Female 33 37 19

 Male 43 47 34

Metastatic

 Metastatic 19 21 34

 Non-metastatic 47 53 19

http://reactome.org/
https://ocg.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
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Constructing a dynamic weighted gene co‑expression 
network
In the present study, a WGCNA co-expression algo-
rithm was run to mine co-expressed coding genes and 
co-expression modules. The expression profiles for the 
coding genes were extracted from the TPM data in the 
TARGET database. The samples were clustered hierar-
chically to eliminate outliers. The “WGCNA” package in 
R was used to construct a weighted co-expression net-
work [48], which was aligned with the scale-free network. 
The log(k) of the node with connection degree k was 
negatively correlated with the log(P(k)) of the probabil-
ity of the occurrence of the node. The correlation coef-
ficient setting was > 0.9. The co-expression modules were 
screened out. The gene modules were detected by aver-
age-linkage hierarchical clustering based on a topologi-
cal overlap matrix (TOM)-based dissimilarity measure 
(1-TOM) [49]. Here, module size 80, height 0.5, deep-
Split 2, and certain highly similar modules were merged. 
After associating the modules with clinical traits, those 
with the highest Pearson’s correlation coefficients were 
regarded as significant for the subsequent analyses.

Gene Ontology (GO) and pathway enrichment analyses
The Gene Ontology (GO) database (http://geneo​ntolo​
gy.org/) [including biological process (BP), cell com-
ponent (CC), and molecular function (MF) terms] was 
used to identify biological mechanisms based on high-
throughput genome or transcriptome data [50]. The 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database (http://www.kegg.jp/) [51] served to iden-
tify the systematic functions and biological relevance of 
candidate targets. In the present study, the “clusterPro-
filer” package in R (http://bioco​nduct​or.org/packa​ges/
clust​erPro​filer​) [52] was run to conduct GO and KEGG 
pathway enrichment analyses of the genes in the sig-
nificant modules and identify the underlying biological 
mechanisms.

LASSO Cox regression and energy metabolism signature
An energy metabolism signature was constructed based 
on gene expression levels and associations with energy 
metabolism molecular subtypes. About 90% of the 84 
samples from the TARGET Database were randomly 
selected as the training set for the signature model. The 
information for all samples in training set is shown in 
Table  6. The “survfit coxph function” package [53] in R 
was run to generate a univariate Cox proportional hazard 
regression model and expanded for the genes in signifi-
cant modules and for the survival data. P < 0.05 was the 
threshold.

Least absolute shrinkage and selection operator 
(LASSO) estimates compression [54]. It shrinks the 

subset by compressing the original coefficients. It has 
been broadly applied to the survival analysis of high-
dimensional data. In the current study, a LASSO Cox 
regression model was built to target the genes signifi-
cantly associated with energy metabolism. A threefold 
cross-validation was performed for tuning parameter 
selection. The calculated partial deviance met the mini-
mum criteria. A multivariate Cox survival analysis was 
run on significant genes. Those retained had the lowest 
the area under the curve (AUC) value and comprised 
the final gene signature for energy metabolism. To plot 
receiver operating characteristic (ROC) curves and com-
pute the AUC, we ran the “pROC” package in R.

Validation of gene signature robustness
To validate gene signature model robustness, the train-
ing set model and coefficient were applied to all genes 
in the TARGET Database and the external GEO dataset 
GSE21257 and GSE16091 [55]. The “RiskScore” was cal-
culated for each sample based on the gene expression 
levels in the validation set samples (TARGET database, 
GSE21257, and GSE16091). The “timeROC” package in 
R (http://cran.r-proje​ct.org/web/packa​ges/timeR​OC) 
[56] was run to analyze the ROC of the “RiskScore” for 
prognostic classification. Survival analyses of the data 
from the TARGET database and external GEO dataset 
GSE21257 and GSE16091 were performed with the “sur-
vival” package in R (http://bioco​nduct​or.org/packa​ges/) 
[57]. Univariate survival was estimated by the Kaplan–
Meier univariate survival method. P < 0.001 was consid-
ered significant.

Gene signature model evaluation
To identify the relationship between the RiskScore of the 
gene signature model and the immune and matrix scores, 
the “estimate” package in R calculated the immune and 
stromal scores and the tumor purity for each sample. To 
identify the independence of the gene signature model in 
clinical applications, the relevant HR and 95% CI were 
evaluated via the signal factor and multivariate Cox 
regression in the TARGET training and validation sets 
and GSE21257.

Gene set enrichment analysis (GSEA)
GSEA (http://softw​are.broad​insti​tute.org/gsea/index​.jsp) 
[58] explored the biological functions of the gene signa-
ture based on the energy metabolism status (high-risk 
vs. low-risk groups). The annotated gene set c2.cp.kegg.
v6.0.symbols was selected as a reference. Gene size ≥ 10, 
P < 0.05, and |Enrichment Score (ES)| > 0.40 were set as 
the cut-off criteria.

http://geneontology.org/
http://geneontology.org/
http://www.kegg.jp/
http://bioconductor.org/packages/clusterProfiler
http://bioconductor.org/packages/clusterProfiler
http://cran.r-project.org/web/packages/timeROC
http://bioconductor.org/packages/
http://software.broadinstitute.org/gsea/index.jsp
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Comparative study of other risk models
Pertinent references were searched, and two related pub-
lished risk models were selected including an eight-gene 
(PMID: 31333788) [45], a four-gene (PMID: 31146489) 
[59], a ten-gene (PMID: 31090103) [60], and a nineteen-
gene (PMID: 30604867) [61] signature risk model. To 
make the models comparable, a multi-factor Cox regres-
sion was run and the RiskScore of the training set sam-
ples was recalculated according to the corresponding 
genes in the model of the present study. The ROCs of the 
cited (literature) models were determined. Based on the 
optimal threshold, the samples were divided into high- 
and low-risk groups and their relative impacts on OS 
prognosis were determined.
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