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A low-cost stand-alone platform
for measuring motor behavior across
developmental applications

Andrea Cavallo,1,2 Nathan C. Foster,1 Karthikeyan Kalyanasundaram Balasubramanian,3 Andrea Merello,3

Giorgio Zini,3 Marco Crepaldi,3,* and Cristina Becchio1,4,*

SUMMARY

Motion tracking provides unique insights into motor, cognitive, and social devel-
opment by capturing subtle variations into how movements are planned and
controlled. Here, we present a low-cost, wearable movement measurement plat-
form, KiD, specifically designed for tracking the movements of infants and chil-
dren in a variety of natural settings. KiD consists of a small, lightweight sensor
containing a nine-axis inertial measurement unit plus an integrated processor
for computing rotations. Measurements of three-dimensional acceleration using
KiD compare well with those of current state-of-the-art optical motion capture
systems. As a proof of concept, we demonstrate successful classification of
different types of sinusoidal right arm movements using KiD.

INTRODUCTION

Children’s behavior is dynamic, complex, and highly variable, both within and across individuals. This pre-

sents challenges for both quantifying it and connecting it with neural development (Adolph, 2016). Since

the inception of developmental psychology, researchers have pursued methods to robustly and accurately

measure infants’ and toddlers’ changing behavior. Over the last decade, the increasing availability of high-

resolution, high-speed optical cameras has opened the possibility to capture and quantify behavior at an

unprecedented level of detail. Optical motion capture systems estimate the 3D position of retroreflective

markers placed on the actor’s body via triangulation from multiple, static, calibrated infrared 2D cameras,

and provide submillimeter accuracy and precision. Combining optical motion capture with machine

learning methods of movement analysis has led to breakthroughs in dissecting the sensorimotor and

cognitive processes associated with the planning and control of upper limb-reaching movements in

both typical and atypical development (e.g., Cavallo et al., 2021; Crippa et al., 2015; Vabalas et al.,

2020). However, the requirement for a highly controlled environment, together with the high costs,

constrain the routine use of optical (e.g., van der Kruk and Reijne, 2018; van Schaik and Dominici, 2020) mo-

tion capture systems in developmental settings.

In recent years, miniaturization of inertial measurement units (IMUs) has paved the way toward an alterna-

tive approach to motion capture, inertial motion tracking. IMUs are typically composed of micro-acceler-

ometers, micro-gyroscopes, and micro-magnetometers to measure linear accelerations, angular velocity,

and angular orientation within 3D space. Owing to their capability to directly measure body segment

movement in any environment with no restrictions on capture volume, as well as being comparatively easier

to use and more economical than optical systems (Iosa et al., 2016), IMUs are being increasingly used in

health care, ergonomics, sport, entertainment, and industry, with a variety of commercial IMU-based solu-

tions available for stand-alone data collection (e.g., Chambers et al., 2015; Reenalda et al., 2016).

The deployment of IMU platforms in developmental settings presents opportunities for non-intrusive data

collection of motor behavior in in-field or in-clinic applications (Campolo et al., 2012; Taffoni et al., 2012).

However, the application of IMUs to characterize the motion profiles of children and infants has so far been

limited (Busser et al., 1997; Plötz et al., 2012). One reason is the lack of out-of-the-box solutions designed to

address the constraining, and often conflicting, requirements of inertial motion tracking in developmental

settings. For example, to ensure a natural movement regime, sensors must operate wirelessly and be small

and lightweight, which puts a restriction on battery size and longevity. The likelihood of tiredness for young
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children and infants (and restlessness in older children) requires that procedures for data acquisition and

transfer be easy and fast. Moreover, to allow for extra breaks or protocol modifications (often needed in

infant research), the experimenter should be able to interface with the device remotely to control the acqui-

sition process.

In the present study, we capitalized on IMU sensors to develop a low-cost, wearable, movement measure-

ment platform, KiD, that addresses these requirements (Figure 1). The key features of KiD are (1) the soft

feel, unobtrusive ergonomic design, and small form factor; (2) the ultra-low-power and low-latency radio

transmission and high inertial quantities sampling rate; (3) the versatile, easy-to-use, graphical user inter-

face (GUI) designed to allow users to remotely control data acquisition and transfer, including online event

labeling; and (4) the basic set of functions, developed in MATLAB, to support offline data analysis without

any prior programming experience. Importantly, both the GUI and the MATLAB functions can be run on a

standard computer.

With the rationale of establishing the potential of KiD as a stand-alone platform for reliable and fast quan-

titative motion analysis in real-world settings, we verified the capability of KiD to track and process sinusoi-

dal arm movements in a sample of 20 school-aged children. The value of precisely tracking sinusoidal arm

movements to uncover kinematic laws of motion and their systematic violations have been demonstrated in

both typical (e.g., Schaal and Sternad, 2001) and atypical populations (e.g., Cook et al., 2013). We evaluated

the accuracy of KiD against a ‘‘gold-standard’’ optical motion capture system in reconstructing wrist accel-

eration profiles of sinusoidal movements performed with the right hand. We also applied classification al-

gorithms to provide a proof of concept that KiD data can accurately differentiate between multiple move-

ment patterns of children.

Figure 1. Overview of the KiD platform

(Upper panel) The KiD platform being worn by a child while performing an elliptical movement, and exploded view of the KiD tracking unit.

(Lower panel) Overview of the KiD user interface (UI), and block diagram of the potential use of KiD as a stand-alone platform for measuring motor behavior

across developmental applications.
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RESULTS

KiD design

KiD platform utilizes a wearable, battery-powered device, incorporating an IMU comprising a three-axis

accelerometer, a three-axis gyroscope, and a three-axis compass, which outputs rotation data in quater-

nion form. The tracking unit, encapsulated in a protective silicone outer casing, can be secured around

the wrist or ankle with a hook-and-loop fastener. The compact, deliberately inconspicuous design and

the light weight ensure that the device is comfortable and non-distracting to infants’ and children’s motor

performance. The device is micro-controlled and comprises a Li-Po battery charger. An internal flash mem-

ory permits the storage of high-fidelity inertial data (sampling frequency up to 200 Hz) to be transferred to

external devices both through an on-board Bluetooth low-energymodule and a wiredmicro-USB interface.

A set of customMATLAB functions (MathWorks, Natick, MA) is provided to support the analysis of KiD data

(see STAR methods for a detailed description of the KiD platform). A block diagram of the device is shown

in Figure 1.

KiD reliability as a stand-alone platform

To establish the potential of KiD as a stand-alone platform for monitoring the dynamic motion of hu-

man limbs, we compared acceleration profiles measured by KiD with acceleration data captured by an

optical motion capture system (Vicon Motion Systems Ltd.; hereafter MoCap). KiD data and MoCap

data were collected simultaneously from 20 children (aged 7–11 years) performing four types of sinu-

soidal right arm movements (Figure 2A; STAR Methods). As shown in Figure 2B, acceleration profiles

measured by KiD and MoCap showed a nearly perfect visual overlap across the four types of

movement.

To quantify the similarity between themagnitude of motion acceleration (Am) measured using KiD andMo-

Cap, we estimated intraclass correlation coefficients (McGraw andWong, 1996) for consistency—the extent

to which Ammeasured by KiD and MoCap retain positive correlation, regardless of differences in absolute

values—and absolute agreement—the extent to which KiD and MoCap yield similar absolute values of Am

separately for each type of movement (see STAR methods for details about data analyses). Across move-

ment types, consistency values ranged from 0.981 to 0.999 (Table S1). Absolute agreement values were also

close to 1, indicating near-perfect agreement between the absolute values of Am recorded using KiD and

Figure 2. Similarity between the magnitude of motion acceleration measured using KiD and MoCap during horizontal, vertical, elliptical, and

figure eight movements

(A) Representation of movement performed by an exemplar participant.

(B) Magnitude of motion acceleration (Am) measured by KiD and MoCap across samples of an exemplar participant.

(C) Scatterplot of the Am measured by MoCap against the Am measured by KiD across individual participants at intervals of 10% of the normalized

movement time. Each dot represents the average acceleration for each subject. Black line represents the line of equality between MoCap and KiD

acceleration. Red line is a trend line (least squares line) passing through the observed values.
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MoCap (Table S1 and Figure 2C). Overall, these results indicate the potential for using KiD to quantitatively

assess acceleration profiles of different types of movements.

Classification of types of movement

To verify the capability of our device in identifying specific movement patterns, we applied a machine-

learning-based classifier on KiD tri-axis motion acceleration (Ax, Ay, Az) to classify different types of

movements (horizontal, vertical, elliptical, and figure eight). For comparison, we trained and tested

the same classifier on MoCap tri-axis motion acceleration data (see STAR methods). Classifier perfor-

mance on MoCap data achieved near-perfect classification accuracy (mean G SEM = 0.991 G 0.004; p

value after 100 permutations <0.001; Figures 3A and 3B). Classification performance on KiD data was

also near perfect (mean G SEM = 0.989 G 0.004; p value after 100 permutations <0.001; Figures 3D

and 3E).

To substantiate the similarity between acceleration patterns measured using KiD and MoCap, we next

trained the classifier to distinguish movement types on MoCap data and tested its classification ability

on KiD data (and vice versa, trained the classifier on KiD data and tested it on MoCap data) using a

cross-classification approach (Kaplan et al., 2015). The accuracies obtained from the two directions of

cross-classification were again near perfect (MoCap-KiD cross-classification accuracy: mean G SEM =

Figure 3. Classification of movement types

(A) Confusion matrix of SVM classifier trained and tested on MoCap data. Rows represent the percentage of true movement-type labels. Columns represent

the percentage of predicted movement-type labels.

(B) Permutation null distribution obtained by classifying MoCap with shuffled movement-type labels. The permutation null distribution is represented by the

gray histograms. The red line represents the observed accuracy.

(C) Confusion matrix of SVM classifier trained on MoCap data and tested on KiD data.

(D) Confusion matrix of SVM classifier trained and tested on KiD data.

(E) Permutation null distribution obtained by classifying KiD with shuffledmovement-type labels. The permutation null distribution is represented by the gray

histograms. The yellow line represents the observed accuracy.

(F) Confusion matrix of SVM classifier trained on KiD data and tested on MoCap data.
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0.974 G 0.006, p value after 100 permutations <0.001; KiD-MoCap cross-classification accuracy: mean G

SEM = 0.982 G 0.006, p value after 100 permutations <0.001; Figures 3C and 3F).

DISCUSSION

IMU is a powerful technology with a wide range of applications in rehabilitation, ergonomics, industry,

sports training, and entertainment.We proposed a wearable IMU-based platform, KiD, designed for devel-

opmental applications. To establish the capability of KiD as a stand-alone platform for tracking accelera-

tion profiles, we compared the performance of KiD against that of an optical marker-based motion capture

system (MoCap) during performance of sinusoidal arm movements. Experimental results revealed near-

perfect agreement between the magnitude of motion acceleration measured using KiD and MoCap.

The capability of tri-axis acceleration KiD data to identify movement types was also near perfect, as it

was for MoCap. Moreover, the movement-specific acceleration patterns measured through KiD and Mo-

Cap largely overlapped, as demonstrated by successful cross-classification from KiD to MoCap (and vice

versa). Combined, these analyses demonstrate that KiD can be reliably used for easy and fast quantitative

assessments of motion profiles in real-world settings.

In the future, we plan to extend our approach to examine the capability of KiD in identifying more subtle

patterns within and between neurotypical children and children diagnosed with neurodevelopmental dis-

orders such as autism. Kinematic studies have already shown that individuals with autism spectrum disor-

ders conducting sinusoidal arm movements move differently—specifically, with greater jerk, velocity and

acceleration—relative to typical individuals (Cook et al., 2013). Moreover, autism-related kinematic differ-

ences have been documented in the development of prospective control of grasping (Cavallo et al., 2018).

When combined with machine learning approaches, these differences may be able to serve as objective

markers of autism (e.g., Cavallo et al., 2021; Crippa et al., 2015; Vabalas et al., 2020) and ultimately improve

the standard of diagnosis and treatment (Torres and Donnellan, 2015). However, despite the increasing

recognition that motion tracking provides unique insights into typical and atypical motor, cognitive, and

social development, the use of motion capture in the clinical landscape remains specialist. In the United

Kingdom and Ireland, for example, in 2020 there were only 13 gait laboratories accredited by the Clinical

Movement Analysis Society (CMAS; https://cmasuki.org/laboratories/). Our platform is dramatically lower

in cost than optical motion capture and does not require specialized equipment or training. By making mo-

tion tracking more accessible, easy to use, and cost effective, while maintaining measurement accuracy,

KiD holds a great deal of promise for the greater use of motion measurements (including the possibility

for remote data collection) in the assessment of the treatment of developmental disorders (Bisi et al.,

2017; Lander et al., 2020).

Limitations of the study

We evaluated the capability of the KiD platform in identifying whole-arm movements performed by typi-

cally developing children. For a robust deployment of KiD in real-world and clinical settings, future studies

should establish the capability of KiD in identifying movement patterns over a wider range of motor activ-

ities and populations. Also, for in-clinic applications, future studies will have to demonstrate the feasibility

of using KiD, in conjunction with machine learning approaches, for developing protocols and deriving met-

rics that can detect clinically meaningful changes in function (e.g., disease-specific changes in upper- or

lower-limb kinematics) and inform the efficacy of intervention (e.g., by evaluating function before and after

intervention).
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed and will be fulfilled by the Lead contact,

Cristina Becchio (cristina.becchio@iit.it).

Materials availability

This study did not generate new unique reagents or materials.

Data and code availability

The data supporting themain findings of this study are available for download fromMendeley data: https://

data.mendeley.com/datasets/dzdcw2rw5k/1. The code supporting the main findings of this study is based

on public available tools listed in the Key Resource Table. KiD User Interface and customMatLab functions

developed to support collection, processing and analyses of KiD data will be made available by the Lead

contact upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We report results about movement traces collected from 20 children (5 females) aged 7-11 years (mean G

SD = 9.5G 1.2 years.months). All participants were right-handed, had normal or corrected to normal vision,

and no history of developmental or neurological disorders. The research protocol was approved by the

local ethics committee (Comitato Etico Regionale Liguria) and was in accordance with the principles of

the revised Helsinki Declaration (WorldMedical Association, 2013). Parents provided written informed con-

sent after receiving a detailed description of the study.

METHOD DETAILS

Design of the wearable device

The KiD platform utilises a wearable, battery-powered wristband-type tracker that records and stores iner-

tial data on an internal memory. All the internal devices composing the KiD (electronics and battery) are

placed inside a plastic enclosure (35 x 20 x 10 mm), which is further encapsulated within a protective silicone

outer casing (40 x 25 x 15 = 15000 mm3) for a total weight of 15 g. The KiD can thus be secured around the

wrist or ankle with a hook-and-loop fastener. The shape, dimensions, weight and functionalities of the KiD

have been specifically conceptualized and designed for applications with infants and children in both lab-

oratory and ecological settings. In particular, the external silicone case is designed with a double purpose:

i) ensure that KiD is comfortable and non-distracting to children by covering any light emitted by the de-

vice; ii) enable immediate technical intervention in case of electronic failure during data collection.

Internally, the KiD platform is equipped with a commercial micro-controller unit (STM32L476, STMicroelec-

tronics), an Inertial Measurement Unit (IMU, MPU-9250, Invensense) with a three-axis accelerometer, a

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Data supporting main findings This paper Mendeley Data: https://doi.org/10.17632/dzdcw2rw5k.1

Software and Algorithms

Vicon Nexus Vicon Motion Systems Ltd UK https://www.vicon.com/products/software/

nexus; RRID:SCR_015001

MATLAB MathWorks Inc https://it.mathworks.com/products/matlab.

html; RRID:SCR_001622

Python Python software foundation http://www.python.org/; RRID:SCR_008394
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three-axis gyroscope, a three-axis compass and an integrated processor that computes rotation data in

quaternion form, a Bluetooth low energymodule (BGM123, Bluegiga), a LiPo battery charger/voltage regu-

lator (BQ24230, Texas Instruments) and an on-board Quad Serial Peripheral Interface (Quad-SPI) flash

memory (S25FL256SAGNFI001, Spansion/Cypress). The micro-controller unit, which runs FreeRTOS

(https://www.freertos.org), is in charge of acquiring data from the IMU, handling Bluetooth radio and flash

memory and interfacing to the LiPo charger to monitor battery drain. The micro-controller is powered at

3.3V from the LiPo charger/voltage regulator while its main clock is 80MHz for a Cortex-M4 ARM core.

The measuring range provided by the IMU is configurable fromG 2G (G 19.61m/s2; optimal for measuring,

with high resolution, fine motor movements) to G 8G (G 78.45m/s2; optimal for measuring quick move-

ments), while the ranges of gyroscope and compass are G 2000�/s and G 4912mT, respectively. Bluetooth

low energy (BLE) module implements physical radio, Generic Attribute Profile (GATT) services and enables

on-board passive antennas without requiring external components. BLE module keeps the KiD battery size

small while guaranteeing a capacity adequate for a typical recording session with children and infants (> 2.5

consecutive hours of recording). All the Bluetooth chips have a unique MAC address to access them. This

makes each single KiD simply distinguishable in experimental settings that require the contemporary use of

multiple platforms (e.g. data collection from more than one limb, or simultaneous collection from multiple

children). The LiPo charger module recharges the LiPo battery using the energy provided by a micro USB

port and generates DC regulated voltage for all the on-board modules. The flash memory of the KiD (256

Mb) saves the IMU data and can also store markers sent by the user through the BLE module. The data

stored on the internal memory can be transferred to external devices by means of both the Bluetooth

connection and a micro USB connection embedded on the device. A diagram of the KiD device is shown

in Figure 1.

The KiD platform is complemented by a User Interface (UI) that supports the direct ad-hoc data transfer

between the KiD and a personal computer, both via Bluetooth or micro USB. Moreover, the UI allows users

to monitor the device status and the connectivity strength, and to send markers during data acquisition,

with a latency lower than 7.5 ms. The main commands that can be sent to the KiD via the UI are:

START: To begin the acquisition process (store the IMU values to the memory).

STOP: To pause the acquisition process.

MARK: To store markers on to the memory during acquisition process.

DOWNLOAD: to download and save the data on an external device,

ERASE: To erase the KiD memory.

A set of custom MATLAB functions (MathWorks, Natick, MA) has also been developed to support analyses

of KiD data. They allow the user to: i) upload KiD data to the MATLAB environment; ii) identify the markers

sent during data acquisition and use themarkers to segment the data; iii) apply a low-pass Butterworth filter

to the data, with the full possibility to personalize the cut-off frequency; iv) convert inertial data from KiD

coordinates into world coordinates; v) synchronize KiD and motion capture (MoCap) data by means of

cross-correlation analyses (in case of KiD and MoCap simultaneous recordings).

Both the UI and the MATLAB functions can be run on a standard PC. The use of MATLAB functions needs

minimal programming experience. In addition to functions, a MATLAB script has been written in order to

allow users to run the functions in a semi-automatic way, where only the filename containing raw KiD data

needs to be specified by the user.

Dataset of children’s hand motions

Participants were instructed to perform four types of right-hand movements: horizontal, vertical, elliptical

and figure-eight.

Horizontalmovements: participants were instructed to conduct simple horizontal sinusoidal (left and right)

right arm movements of about 40 cm amplitude.
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Vertical movements: participants were instructed to conduct vertical sinusoidal (up and down) right arm

movements of about 50 cm amplitude.

Elliptical movements: participants were instructed to perform elliptical sinusoidal right arm movements. A

drawing of an ellipse (of major axis 22.5 cm and minor axis 15.1 cm) was provided on a stand in front of the

child as template. Movements were accompanied by an auditory tone which encouraged participants to

move at approximately the same rate.

Figure-eight movements: participants were instructed to perform figure-eight sinusoidal right arm move-

ments. As for elliptical movements, a drawing of a figure-eight curve was provided on a stand in front of

participants and movements were accompanied by an auditory tone.

For all movement types, the starting position was upright, with the right arm stretched out at approximately

90� with respect to the medio-lateral axis of the trunk. After a training phase, participants completed ten

cycles of each type of movement (for horizontal/vertical movement, moving from left/up to right/down and

returning made up a cycle; for elliptical and figure-eight movements, completing the shape made up a cy-

cle). The order of movements was pseudorandomized across participants.

KiD data were collected simultaneously with MoCap data. To do so, participants wore KiD on the right wrist

and, affixed to KiD, a retroreflective-marker (6.5 mm in diameter). An optical motion capture system equip-

ped with eight infrared cameras (Vicon, Vicon Motion Systems Ltd., UK) was used. Both KiD and MoCap

data were collected at a sampling rate of 200 Hz (compass at 15 Hz).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data processing

After data collection, both KiD and MoCap data were run through a low-pass Butterworth filter with a 6 Hz

cutoff. The accelerometer data of the KiD where converted from device coordinates into world coordinates

by means of the rotation matrix obtained from the quaternion. In this way, independently from the orien-

tation of the KiD, left-right movements of the arm resulted in accelerations on the x-axis, up-down move-

ments resulted in accelerations on the z-axis, and backward-forward movements resulted in accelerations

on the y-axis. The same reference systemwas used for acceleration data computed as the second derivative

of position using MoCap. After rotation, x-, y-, z-acceleration (Ax, Ay, Az) and acceleration magnitude (Am)

were computed for both KiD and MoCap data.

Data analysis

We synchronized KiD and MoCap by computing cross-correlation between vectors of Am. The Am vector

of MoCap was kept fixed and the Am vector of KiD was shifted (lagged) until the best correlation between

the two vectors was obtained. The resulting sample-lag was then used to cut the initial Am samples of the

KiD. Finally, to obtain vectors of the same length, the final Am samples of the longest vector were cut. Ax,

Ay and Az vectors were cut and synchronized using the same sample-lag obtained from Am. After synchro-

nization, Ax, Ay, Az and Amof both KiD andMoCapwere segmented in order to obtain, for eachmovement

series, 10 vectors, each of them representing accelerations of a movement cycle. The final dataset then

consisted of a total of 800 movements (20 participants x 4 movement types x 10 cycles). For each cycle, ac-

celerations were expressed with respect to normalized (%) cycle duration and resampled at intervals (time-

bins) of 10% of the normalized cycle duration.

Agreement between KiD and MoCap

In order to evaluate agreement between KiD andMoCap, we computed Intra-class Correlation Coefficients

(ICCs, McGraw andWong, 1996) of Am.We averaged for each time-bin Am across the tenmovement cycles

of each participant, separately for each movement type. Next, we used ICCs to compute consistency and

absolute agreement.

Consistency was defined as:

Consistency =
MSR � MSE

MSR
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Absolute agreement was defined as:

Absolute agreement =
MSR � MSE

MSR +
MSC� MSE

n

WhereMSR is the mean square for rows,MSE is the mean square error,MSC is the mean square for columns

and n is the number of observations.

We assessed the significance of consistency and absolute agreement under the null hypothesis of ICC =

0 using F statistic. Bonferroni adjusted p-values were computed to control for type-1 error deriving from

multiple comparisons.

Classification of type of movement

We computed classification of type of movement (horizontal, vertical, elliptical, figure-eight) from acceler-

ation data (Ax, Ay, Az) based on a linear Support Vector Machine (SVM), separately for KiD and MoCap

data. Models were trained, validated, and tested by means of a 10-fold nested cross-validation (CV) pro-

cedure. At each iteration of the 10-fold procedure, we split data in order to obtain a test set of 80 move-

ment cycles (i.e., 4 cycles for each participant, 1 for each type of movement). Hyper-parameters were tuned

on the reduced training set by recursively selecting 80 cycles for the validation set. The model was then

tested on the remaining fold.

To further assess the similarity between acceleration patterns obtained using KiD and MoCap, we tested

the ability of an SVM classifier trained on MoCap acceleration data to classify movement type using KiD

acceleration data (and vice versa, train on KiD and test on MoCap; i.e. cross-classification) (Kaplan et al.,

2015).

In all analyses, we assessed model performance using classification accuracy. We assessed the significance

of classification accuracy against chance with permutation statistics. The chance-level null-hypothesis dis-

tribution of these statistics was created by computing classification accuracy after randomly permuting the

task labels associated to movement repetitions (100 random permutations).
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