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Abstract: A microRNA (miRNA) detection platform composed of a rolling circle amplification (RCA)
system and an allosteric deoxyribozyme system is proposed, which can detect miRNA-21 rapidly and
efficiently. Padlock probe hybridization with the target miRNA is achieved through complementary
base pairing and the padlock probe forms a closed circular template under the action of ligase; this
circular template results in RCA. In the presence of DNA polymerase, RCA proceeds and a long
chain with numerous repeating units is formed. In the presence of single-stranded DNA (H1 and
H2), multi-component nucleic acid enzymes (MNAzymes) are formed that have the ability to cleave
substrates. Finally, substrates containing fluorescent and quenching groups and magnesium ions are
added to the system to activate the MNAzyme and the substrate cleavage reaction, thus achieving
fluorescence intensity amplification. The RCA–MNAzyme system has dual signal amplification
and presents a sensing platform that demonstrates broad prospects in the analysis and detection of
nucleic acids.

Keywords: signal amplification; deoxyribozyme; rolling-circle amplification; miRNA detection

1. Introduction

The term “nucleic acids” is a general one covering both deoxyribonucleic acid (DNA)
and ribonucleic acid (RNA). Nucleic acids are biological macromolecular compounds
formed by the polymerization of many nucleotide monomers and form the building blocks
of all known forms of life. DNA plays an extremely important role in carrying genetic
information, genetic mutations of organisms and the biosynthesis of proteins. RNA plays
an important role in protein synthesis. MicroRNA (miRNA) is a class of non-coding, single-
stranded RNA with a length of approximately 22 nucleotides encoded for by endogenous
genes. miRNAs are involved in post-transcriptional gene expression regulation in animals
and plants [1]. In terms of biological mechanisms, miRNA is actively secreted by tumor
cells and can act as a tumor marker. As tumor cells form and decay, miRNA expression
varies [2]. Therefore, the expression level of each miRNA represents information about
human health or disease at a certain time. Numerous miRNAs have been linked to
various diseases in humans including cancer [3], human immunodeficiency viruses [4],
diabetes [5] and Alzheimer’s disease [6]. Therefore, disease prediction can be achieved via
miRNA detection.

There are many different miRNAs in the human body however, they are present in
extremely low levels and accurate detection is challenging. Numerous miRNA detection
methods have been proposed and traditional methods include Northern blotting [7], mi-
croarrays [8] and real-time, fluorescence-based quantitative polymerase chain reaction
(RT-PCR) [9]. Although Northern blotting requires relatively simple equipment, the sensi-
tivity and specificity is inadequate. Microarray-based methods usually require separation,
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labeling and purification of samples prior to hybridization; therefore, the process is com-
plicated and sample purification costs are high. The sensitivity and specificity of RT-PCR
methods have been improved and operation is relatively simple; however, the reaction
requires precise temperature control and expensive equipment.

In recent years, increasing numbers of miRNA sensor systems have been reported.
These new strategies have considerably improved the sensitivity and specificity of miRNA
detection. Examples of such new strategies include colorimetric methods [10–12], electro-
chemical detection [13–15] and fluorescence-based detection. The advantages of fluores-
cence detection methods include high detection sensitivity, reduced influence of temper-
ature and improved selectivity. Therefore, fluorescence detection is widely used for the
detection of miRNA.

The detection of miRNA is challenging as it is present in low concentrations; therefore, sig-
nal amplification strategies are required. Numerous signal amplification strategies have been
introduced for miRNA detection such as hybridization chain reaction (HCR) [16,17], catalytic
hairpin assembly (CHA) [18,19], strand displacement amplification reaction (SDA) [20,21]
and rolling circle amplification reaction (RCA). The method reported herein utilizes RCA.

RCA is an isothermal signal amplification technique. Generally, the reaction is initiated
via hybridization of the primer and the padlock probe. Following hybridization, a ligase is
added into the system to close the padlock probe into a loop and form a circular template.
This short-stranded nucleic acid, which is complementary to the probe, serves as a primer
to amplify the DNA reaction. After the polymerase and 2′-deoxynucleotide-5′-triphosphate
(dNTPs) are added, the short-stranded nucleic acid is continuously amplified and the
formation of a long, single-stranded DNA with repeat sequences is achieved. Due to the
formation of several repeating units, RCA achieves the signal amplification effect [22]. Sig-
nal amplification using RCA can, in theory, amplify the signal 109 times [23]. Zhuang et al.
pioneered the combined use of RCA and CHA to form deoxyribozymes for the detection
of miRNAs [24].

Deoxyribozymes are single-stranded DNA fragments with catalytic functions synthe-
sized via in vitro molecular evolution. Joyce et al. reported that a synthetic deoxyribonu-
cleotide catalyzed the cleavage of specific RNA sequences [25]. Compared with traditional
RNases, deoxyribozymes have many advantages: (1) Traditional RNases are susceptible
to temperature and lose their activity at high or low temperatures, but deoxyribozymes
are not affected by temperature. (2) Deoxyribozyme synthesis is relatively simple and
low cost. (3) The DNAzyme sensing system has good selectivity and can independently
design sequences to catalyze specific units. Therefore, deoxyribozymes offer promise in
biosensing applications for the detection of DNA [26], RNA [27] and proteins [28]. Usually,
RNA-cutting DNAzymes include a catalytic core region and two substrate binding arms
that bind to the substrate through complementary base pairing and in the presence of
magnesium ions (Mg2+) substrate cleavage occurs. Mokany et al. modified the structure
of a previously reported nucleic acid-cleaving DNAzyme to divide the original catalytic
core into two parts and added an effector recognition arm. DNAzymes of this structure
are called multi-component nucleic acid enzymes (MNAzymes) [29]. The addition of an
effector recognition arm results in improved combination of the catalytic core area and
effectors, ultimately leading to improved substrate cleavage efficiency. Such MNAzymes
have been utilized in biosensor design and as nanomachine components [30–32].

In this study, a strategy combining RCA with MNAzymes is presented for the detection
of miRNA-21 using dual signal amplification. The design strategy is as follows: miRNA-21
drives the RCA reaction and, once complete, this promotes the formation of MNAzymes.
The subsequent addition of Mg2+ results in cleavage of the substrate and as the two sides of
the substrate contain fluorescent and quenching groups, the fluorescence intensity increases
following substrate cleavage.
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2. Materials and Methods
2.1. Reagents and Materials
2.1.1. Materials

Tris buffer solution (1 mol L−1, pH 8.0), dNTP mixture (25 mmol L−1) and RNase
inhibitor were purchased from Solarbio Life Sciences (China). Sodium chloride and mag-
nesium chloride were purchased from Macklin Biochemical Co., Ltd (Shanghai, China).
The microRNA, padlock probe and three oligonucleotides (Table 1) were synthesized and
HPLC-purified by Sanggon Biotech Co., Ltd. (Shanghai, China). Ultrapure water was
purchased Dongsheng Biotech Co., Ltd. (Guangzhou, China). T4 DNA ligase, phi29 poly-
merase, exonuclease I (EXO I) and bovine serum albumin (BSA) were purchased from New
England Biolabs (Ipswich, MA, USA).

Table 1. Sequences of the oligonucleotides used in this study.

Name Sequence(5′-3′)

Padlock probe pCTGATAAGCTACGAATGGCGTTATGCCTCAATTAGAAGTC
TTATGCGAAAGCGTGACGGCTAATGGACTGCAGTCAACATCAGT

MiR-21 UAG CUU AUC AGA CUG AUG UUG A
MiR-16 UAG CAG CAC GUA AAU AUU GGC G

Mut-miR-21 UAG CUU AAC AGA CUG AUG UUG A
H1 TC AAT TAG A AAG CAC CCA TGT TAC TCT
H2 GAT ATC AGC GAT CTT AG TCT TATG

Substrate BHQ-1-AGA GTA TrAG GAT ATC-FAM

2.1.2. Instrumentation

Fluorescence measurements were performed using a Model RF-6000 fluorescence
spectrophotometer (Shimadzu, Japan). A 5’6-fluorescein (FAM) fluorescence dye was used
with excitation and emission wavelengths of 494 nm and 520 nm, respectively.

2.2. Experimental Procedures
2.2.1. Circular Probe Fabrication

A 2.5 µL padlock probe (20 nmol L−1) was hybridized with miRNA (an appropriate
amount, the dosage of miRNA-21 in the optimized test conditions was 50 pM)by heating
at 95 ◦C for 5 min and then slowly cooling to room temperature for more than 15 min.
Next, 1 µL of T4 DNA ligase buffer (10×), 200 U of T4 DNA ligase and 20 U of RNase
inhibitor were added to the hybridization system and H2O was added to a final volume of
10 µL. The system was held at 37 ◦C for 2 h and then the reaction was terminated using a
temperature of 65 ◦C for 10 min. Finally, 1 µL of EXO I was added to the solution and the
system was held at 37 ◦C for 1 h, then the reaction was terminated using a temperature of
80 ◦C for 15 min. Formation of the closed circular probe was then achieved.

2.2.2. RCA Reaction

The RCA reaction system consisted of 11 µL of circular probe (using miRNA as primer
to initiate rolling circle amplification reaction and the dosage of miRNA-21 in the optimized
test conditions was 50 pM), 2.5 µL of 10× phi29 DNA polymerase buffer, 12.5 U of phi29
DNA polymerase, 5 µL of dNTPs (25 mmol L−1) and 1 µL of BSA, H2O was added to
a final volume of 25 µL. The RCA reaction was conducted at 30 ◦C for 4 h. Finally, the
reaction was terminated using a temperature of 65 ◦C for 10 min.

2.2.3. DNAzyme and Cleavage Reaction

Two single-stranded oligonucleotides (2.5 µL of H1 and 2.5 µL of H2) and NaCl
(60 nmol L−1) were added to the RCA reaction system. The reaction was performed at
95 ◦C for 5 min and then at room temperature for 2 h.
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Next, the final single-stranded oligonucleotide substrate (2.5 µL) and 15 µL of MgCl2
were added to the solution. Then, the cleavage reaction was performed at room temperature
for 1.5 h. The product was stored in a refrigerator at 4 ◦C.

3. Results and Discussion
3.1. Principle of the microRNA Detection Method

Figure 1 illustrates the design strategy for microRNA detection using Mg2+-dependent
DNAzyme and RCA. Firstly, the target microRNA hybridizes with the padlock probe via
complementary base pairing to achieve a closed loop in the presence of DNA ligase. Sec-
ondly, the RCA reaction proceeds when DNA polymerase dNTPs are added into the DNA
ligase system to form long-stranded DNA chains with numerous repeating units. Thirdly,
when single-stranded DNA (H1 and H2) is added to the polymeric product, hybridization
with long-stranded DNA chains forms the DNAzyme. Following the addition of Mg2+ and
substrate into the DNAzyme system, a catalytic core is formed and the substrate cleavage
reaction begins. As the substrate contains fluorophore and quenching groups, the fluores-
cence intensity substantially increases following cleavage. The substrate simultaneously
removes the RCA products and drives the next cleavage reaction. When the target miRNA
is mismatched, the properties of T4 DNA ligase mean that formation of a closed loop is
challenging: two adjacent and completely complementary DNA/RNA strands must be
catalyzed by DNA ligase to form a phosphodiester bond. If the closed loop is absent, the
nucleic acid amplification reaction using a circular DNA template does not progress and
formation of the DNAzyme does not occur. Following the addition of Mg2+, the nucleic
acid cleavage reaction does not occur and the fluorescence intensity remains relatively low.
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Figure 1. Schematic illustration of the fluorescence assay for the detection of miR-21 using RCA
and DNAzyme.

3.2. Method Feasibility

During the first stage of the reaction, the concentrations of microRNA and the reactants
involved in the ligation reaction are different. The more reactants present, the more
generation of circular templates increases. In the second stage, an increased number of
cyclic templates are involved in the polymerization reaction generating more long chains. In
the third stage, the longer the chains present, the easier DNAzyme formation is; therefore,
the substrate cleavage reaction is more likely to occur and an increase in fluorescence
intensity follows.
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As the reaction in this study results in increased fluorescence intensity, a feasibility
analysis was conducted based on fluorescence intensity changes. Figure 2 shows the
fluorescence spectra in the absence of sensing system components. It can be seen from
the figure that, except for the control group, at 520 nm the fluorescence intensity of any
component is relatively low. This confirms the feasibility of the proposed reaction system.
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Figure 2. Fluorescence spectra in the absence of sensing system components: (A) without miRNA,
(B) without padlock probes, (C) without dNTPs, (D) without H1 and H2, (E) without Mg2+, (F) with-
out polymerase, (G) without ligase and (H) control sample (experimental system in which all the
above components exist).

3.3. Experimental Parameter Optimization

The subsequent optimization experiment was carried out by changing the concentra-
tion of one substance (the concentration of the other substances remains unchanged) on
the basis of Section 2.2.

3.3.1. Padlock Probe

The padlock probe hybridizes with the target microRNA and becomes an amplifica-
tion template. Therefore, the concentration of the padlock probe is an important parameter
that influences fluorescence intensity. As shown in Figure 3A, the fluorescence intensity in-
creases from 0 nmol L−1 to 20 nmol L−1 and is maximal at a concentration of 20 nmol L−1,
all other concentrations result in lower fluorescence intensity values. Figure 3B illus-
trates the rate of fluorescence intensity change with that observed at a concentration
of 20 nmol L−1 being the highest value (1409.474 a.u.). Therefore, a concentration of
20 nmol L−1 was selected for the padlock probe.

3.3.2. DNA Ligase

The padlock probe hybridizes with the target RNA via base pairing and the probe then
forms a closed loop within the presence of T4 DNA ligase. The ligase catalyzes the forma-
tion of phosphodiester bonds between the adjacent 5′-phosphate end and the 3′-hydroxyl
end of double-stranded DNA or RNA as well as catalyzing the reaction between blunt and
sticky ends. The ligase dosage has a significant influence on fluorescence intensity.

The fluorescence spectra in Figure 4A shows a gradual increase in fluorescence inten-
sity up to a maximum (1213.365 a.u.) dosage of 200 U followed by a reduction in intensity at
concentration higher than 200 U. Figure 4B also indicates the same trend, clearly indicating
a dosage of 200 U is optimal.
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3.3.3. DNA Polymerase

The polymerase has unique chain replacement and continuous synthesis properties
and is able to continuously synthesize DNA fragments as long as 70 kb. In the RCA
reaction, the phi29 DNA polymerase plays a key role. In the presence of dNTPs and phi29
polymerase buffer, the closed loop synthesizes long-stranded DNA numerous repeating
units. The polymerase is active in mild conditions; thus, the amplification of short-stranded
DNA to long-stranded DNA is possible at room temperature.

Figure 5 shows the relationship between fluorescence intensity and polymerase dosage.
Figure 5A indicates an initially increasing trend followed by a decrease. Among the
dosages analyzed, 12.5 U resulted in the highest fluorescent intensity (1204.544 a.u.) for
the polymerization system. Figure 5B illustrates the relationship more clearly. At dosages
between 0 and 10 U, the fluorescence intensity ratio gradually increases and between 12.5 U
and 15 U, the intensity clearly diminishes. It is apparent that a dosage of 12.5 U is optimal.
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3.3.4. dNTPs Concentration

The dNTP mixture contains four deoxynucleotides (dATP, dCTP, dGTP and dTTP),
with each nucleotide able to assemble into long chains with a specific sequence during
DNA polymerization. In the presence of DNA polymerase, primer DNA, polymerase
buffer and dNTPs, the reaction system begins at an increased pace and eventually forms
a long-stranded chain. Thus, demonstrating that the dNTPs influence the outcome of
the reaction.

Figure 6 illustrates the fluorescence intensity with respect to dNTP concentration. The
fluorescence intensity at a concentration of 0.05 mmol L−1 corresponds to the maximum
value (1148.926 a.u.) and the fluorescence intensity of the other concentrations is lower
than that for 0.05 mmol L−1. This relationship is more clearly illustrated in Figure 6B where
the fluorescence intensity ratio at an emission wavelength of 520 nm in the presence of
different dNTPs concentrations is shown. Hence, a concentration of 0.05 mmol L−1 was
selected as the optimal concentration.
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3.3.5. H1 and H2 Concentration

H1 and H2 are single-stranded DNA fragments composed of different sequences.
The base sequences of H1 and H2 are composed of three parts: the substrate binding
region, the catalytic core region and the assembly promoting region. In this study, follow-
ing completion of the RCA reaction, H1 and H2 were added. The two single-stranded
assembly-promoting regions (H1 and H2) and the amplified long single-strand hybridized
to successfully form a deoxyribozyme with a catalytic core region. Once the addition of the
substrate occurs, the substrate binding area and the substrate hybridize and the substrate
cleavage reaction occurs under the action of Mg2+, thereby separating the fluorescent group
from the quenching group and resulting in the generation of a fluorescent signal. It follows
that the concentration of H1 and H2 has a substantial influence on fluorescence intensity.

Figure 7A shows the fluorescence spectra obtained at different H1 and H2 concen-
trations and Figure 7B shows the fluorescence intensity ratio of the system with different
H1 and H2 concentrations at an emission wavelength of 520 nm. It is clear that the max-
imum fluorescence intensity (1216.699 a.u.) is achieved at H1 and H2 concentrations of
8 nmol L−1; therefore, a concentration of 8 nmol L−1 was used for H1 and H2 in subse-
quent experiments.Biosensors 2021, 11, x FOR PEER REVIEW 9 of 14 
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3.3.6. Mg2+ Concentration

When present at physiological concentrations within cells, Mg2+ is an important factor
in maintaining genome stability. It stabilizes the structure of DNA and chromatin and is an
essential cofactor for the enzymatic system supporting DNA synthesis and decomposition.
It is also used as a cofactor during nucleoside excision repair, base excision repair and mis-
match repair. In this study, Mg2+ promoted the assembly of DNAzyme and drove substrate
cleavage reactions. When the cleavage reaction was complete, the originally quenched
fluorophore regained its fluorescent properties; hence, it is an important component in the
process of fluorescence intensity changes within this reaction system.

Figure 8 showed the relationship between fluorescence intensity and Mg2+ concen-
tration. In Figure 8A, the fluorescence intensity reached a maximum (1179.511 a.u.) cor-
responding to a concentration of 0.12 mmol L−1. Figure 8B showed a scatter plot that
illustrates the same trend more distinctly. At concentrations between 0 and 0.12 mmol L−1,
the rate of changed gradually increases and then gradually decreased at concentrations
higher than 0.12 mmol L−1. Thus, the selection of a concentration of 0.12 mmol L−1

is reasonable.
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3.3.7. Substrate Concentration

With the addition of magnesium ions and the substrate, the cleavage deoxyribozyme
was activated and the substrate cleavage reaction began. Since the two ends of the sub-
strate were respectively labeled with a fluorescent group and a quenching group, the
fluorescence intensity of the system should be low when it was not cut. The cleavage
reaction would cause the fluorescent group and the quenching group to separate and,
finally, fluorescence recovered.

Figure 9 showed the fluorescence intensity ratio at different concentration of sub-
strate, the4F/F0 reached the maximum when the substrate was 10 nmol L−1. Thus, it is
reasonable to choose this concentration to conduct follow-up experiments.
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3.3.8. Sensor Selectivity

Biosensors generally require high selectivity. In this study, miRNA-16 (similar to
miRNA-21) and mismatch miRNA-21, which differs by only one base pair, were selected.
As the combination of miRNA and padlock probe occured during the initial stage of the
reaction, theoretically, in the absence of miRNA-21 or miRNA with a base pair sequence
mismatch, the ligation reaction will not occur and the subsequent RCA will not proceed.
Therefore, the fluorescence intensity of miRNAs with different base pair sequences existed
great differences.
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From the information shown in Figure 10, it can be seen that fluorescence intensity
signals for the target miRNA-21 detected at a concentration of 5 pmol L−1 were substantially
higher than those for miRNA-16 and mut-miRNA-21 at concentrations of 5 nmol L−1. This
indicated that the sensor is highly selective.
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3.3.9. Analytical Performance of the Sensing System for miRNA-21 Detection

The purpose of this study was to detect miRNA-21; therefore, following completion of
the above optimization experiments the detection of different concentrations of miRNA-21
under the optimized conditions was performed to determine the sensitivity and quanti-
tative detection performance of the sensor. Figure 11A showed that as the concentration
of miRNA increases, the fluorescence intensity gradually increases. Figure 11B showed
a linear relationship between miRNA concentration and fluorescence intensity. As the
miRNA concentration increased from 10 pmol L−1 to 50 pmol L−1, the fluorescence inten-
sity also gradually increased. Figure 11B served as the calibration curve for concentration
and fluorescence intensity. The calibration curve indicated a linear relationship between
10 pmol L−1 and 50 pmol L−1. The linear regression equation is F = 1173.9566 + 3.10523C
(R2 = 0.9972), where F and C represent the fluorescence intensity at a wavelength of 520 nm
and miRNA concentration (pmol L-1), respectively. The limit of detection (LOD) was calcu-
lated as 4 pmol L−1, estimated to be three times the blank (without miRNA-21) standard
deviation divided by the slope. This LOD value indicates that the reported method may be
applied for the detection of miRNA in amounts as low as 4 pmol L−1.

Table 2 shows that the LOD calculated using the proposed method is competitive
with respect to similar strategies for the detection of miRNA based on RCA or DNAzymes.
Next, 1% serum samples were spiked with different concentrations of miRNA and ana-
lyzed. The results in Figure 12A,B indicated that from concentrations of 10 pmol L−1 to
50 pmol L−1, the fluorescence intensity gradually increased. A linear regression analysis
of the fluorescence intensity at different concentrations of miRNA using a wavelength of
520 nm was performed to obtain a calibration curve of concentration and fluorescence
intensity. The linear regression equation is F = 1106.88387 + 3.20306C (R2 = 0.97712), the
LOD in serum is 6.255 pmol L−1, which is similar to the LOD value obtained for miRNA in
the buffer solution. Therefore, it is possible to quantitatively analyze the target miRNA in
the concentration range 10–50 pmol L−1.



Biosensors 2021, 11, 222 11 of 13

Biosensors 2021, 11, x FOR PEER REVIEW 11 of 14 

 

 

Figure 10. Selective detection of miRNA using the sensing system. The concentration of 

miRNA-16 and mut-miRNA was 5 nmol L−1, while the concentration of miRNA-21 was 5 

pmol L−1. 

3.3.9. Analytical Performance of the Sensing System for miRNA-21 Detection 

The purpose of this study was to detect miRNA-21; therefore, following com-

pletion of the above optimization experiments the detection of different concentra-

tions of miRNA-21 under the optimized conditions was performed to determine 

the sensitivity and quantitative detection performance of the sensor. Figure 11A 

showed that as the concentration of miRNA increases, the fluorescence intensity 

gradually increases. Figure 11B showed a linear relationship between miRNA con-

centration and fluorescence intensity. As the miRNA concentration increased from 

10 pmol L−1 to 50 pmol L−1, the fluorescence intensity also gradually increased. Fig-

ure 11(B) served as the calibration curve for concentration and fluorescence inten-

sity. The calibration curve indicated a linear relationship between 10 pmol L−1 and 

50 pmol L−1. The linear regression equation is F = 1173.9566 + 3.10523C (R2 = 0.9972), 

where F and C represent the fluorescence intensity at a wavelength of 520 nm and 

miRNA concentration (pmol L-1), respectively. The limit of detection (LOD) was 

calculated as 4 pmol L−1, estimated to be three times the blank (without miRNA-21) 

standard deviation divided by the slope. This LOD value indicates that the reported 

method may be applied for the detection of miRNA in amounts as low as 4 pmol 

L−1. 

 
Figure 11. (A) Fluorescence spectra in the presence of different concentrations of miRNA (in buffer). (B) The relationship
between fluorescence intensity in the buffer solution and the miRNA concentration. The error bars represent the standard
deviation of three repeat experiments.

Table 2. Comparison of the proposed method with similar strategies for the detection of miRNA based on RCA
or DNAzymes.

Detection Strategy LOD R2 Reference

RNA-cleaving DNAzymes 0.2 nM 0.996 [32]
RCA and CHA 87 fM 0.9908 [24]

Autonomous catalytic assembly of DNAzymes 10 pM 0.984 [33]
Target-primed and branched RCA 10 fM 0.9994 [34]

Peroxidase-mimicking system composed of trimeric G-triplex and hemin DNAzyme 37 fM 0.999 [35]
RCA and triple-helix molecular switch-actuation 1.1 aM 0.9997 [36]
Exonuclease III-propelled integrated DNAzyme 100 fM 0.998 [37]

RCA and multi-component nucleic acid enzymes 4 pM 0.9972 This work
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4. Conclusions

In conclusion, a novel, fluorescent miRNA biosensor is presented. The operating prin-
ciple of the miRNA biosensor is based on RCA and MNAzyme dual signal amplification.
This sensing strategy offers a simple and highly sensitive method with a LOD as low as
4 pmol L−1. Furthermore, the biosensor is extremely selective and is able to distinguish
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between miRNAs with one base pair mismatch. Therefore, the proposed biosensor offers
a novel and effective strategy for the detection of miRNA using a combination of RCA
and DNAzymes.
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