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Purpose: Leksell Gamma Knife� is a stereotactic radiosurgery system that allows fine-grained con-
trol of the delivered dose distribution. We describe a new inverse planning approach that both
resolves shortcomings of earlier approaches and unlocks new capabilities.
Methods: We fix the isocenter positions and perform sector-duration optimization using linear pro-
gramming, and study the effect of beam-on time penalization on the trade-off between beam-on time
and plan quality. We also describe two techniques that reduce the problem size and thus further
reduce the solution time: dualization and representative subsampling.
Results: The beam-on time penalization reduces the beam-on time by a factor 2–3 compared with
the na€ıve alternative. Dualization and representative subsampling each leads to optimization time-
savings by a factor 5–20. Overall, we find in a comparison with 75 clinical plans that we can always
find plans with similar coverage and better selectivity and beam-on time. In 44 of these, we can even
find a plan that also has better gradient index. On a standard GammaPlan workstation, the optimiza-
tion times ranged from 2.3 to 26 s with a median time of 5.7 s.
Conclusion: We present a combination of techniques that enables sector-duration optimization in a
clinically feasible time frame. © 2019 The Authors. Medical Physics published by Wiley Periodicals,
Inc. on behalf of American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.13440]
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1. INTRODUCTION

Stereotactic radiosurgery (SRS) is defined as the use of exter-
nally generated ionizing radiation to inactivate or eradicate
defined targets, typically in the head or spine, without the
need for a surgical incision.1 Present-day neurosurgeons rou-
tinely use stereotactic radiosurgery for the management of a
wide variety of brain disorders, including certain malignant
and benign tumors,2–5 as well as cardiovascular and func-
tional disorders within the brain.6–9

Leksell Gamma Knife� (LGK) is a dedicated system for
intracranial stereotactic radiosurgery. Its most recent incarna-
tions, PerfexionTM and IconTM, use 192 60Co sources, each
emitting gamma radiation. The radiation is collimated to create
a focus where the radiation from every source converges. At
the focus, both the radiation intensity and its gradient become
very large. This makes it possible to deliver high radiation
doses with minimal damage to surrounding healthy tissue.

The PerfexionTM and IconTM systems enable two ways of
tailoring the radiation dose according to the shape and size of
the target. First, the patient can be precisely moved (roboti-
cally) in relation to the focus, effectively placing the focus in
different isocenters. Second, the radiation sources are
arranged in eight, independently controlled, sectors. Each
sector can be in one of four different collimator states: the 4,
8, or 16 mm or in the beam-off state. For each isocenter posi-
tion and collimator configuration (i.e., collimator size for
each sector), the irradiation time can be specified. This com-
position is often referred to as a shot.

The large number of degrees of freedom allows sculpting
of the dose distribution in unparalleled ways. At the same
time, however, it is infeasible to explore them all by means of
manual planning. Thus, an inverse planning method is
required to make the full potential of LGK clinically accessi-
ble. Inverse planning methods only require the user to specify
what objectives to strive for, and then uses mathematical opti-
mization to search for the best possible treatment plan
according to these objectives.

Inverse planning was introduced in Leksell GammaPlan�

10, and has since then become widely adopted. This inverse
planner uses well-established metrics such as coverage, selec-
tivity, and gradient index at a predetermined isodose level,
together with a beam-on time (BOT) penalization. The opti-
mization variables are the position of isocenters, collimator
configurations, and irradiation times (beam weights more pre-
cisely). Unfortunately, the optimization problem is inherently
difficult (nonconvex). The difficulty arises from two compo-
nents: that the objectives use relative isodoses (instead of
absolute doses) and that the positions of the shots can change.
Besides, the direct use of relative isodoses makes it difficult
to simultaneously manage multiple targets and to enforce cri-
teria such as the maximum dose to an organ at risk (OAR).

Researchers have proposed optimization approaches that
use absolute doses and shots that are allowed to move.10–15

This typically results in a so-called mixed-integer problem,
which remains nonconvex. In practice, this implies that
there is a compromise between computation time and the
risk of ending up in a suboptimal solution. A consequence
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is that it is difficult to explore what trade-offs are achiev-
able — especially in complicated cases with multiple con-
flicting objectives.

A remedy to most of these problems is to formulate a convex
optimization problem. Convexity is a highly desirable property
that allows optimizations problems to be solved reliably and
efficiently.16 One way to achieve convexity — which we also
use — is to fix the isocenter positions and perform sector-dura-
tion optimization.17 This approach is inspired by optimization
formulations, in particular fluence map optimization, that are
common in intensity-modulated radiation therapy (IMRT).18,19

In sector-duration optimization, the collimator configurations
are not packaged into shots during the optimization, instead the
irradiation times of every collimator in every sector are treated
independently during the optimization. The irradiation times
are converted into deliverable shots after a solution has been
found. Despite its promises, methods using sector-duration
optimization has, so far, lacked an efficient way of controlling
BOTs20,21 and have been too computationally costly for wide-
spread clinical use.15,17,22 This is about to change.

We present the first sector-duration optimization that uses
linear programming, which is possible thanks to a well-
founded BOT penalization. Linear programming has a long
history in radiotherapy,23–27 dating back at least to 1968.28

Many of the early approaches constrained the doses to prede-
termined intervals and used the remaining freedom to maxi-
mize an objective function such as the mean26 or minimum29

dose in the target. But, in practice, this upfront specification
of dose constraints often lead to infeasible problems. This
motivated the use of elastic constraints,30 where one instead
minimizes the mean or maximum of the (weighted) constraint
violations. Our formulation belongs to this category, but with
an additional term for BOT penalization.

Linear programming has also been used in radiosurgery
before, specifically in two-phase approaches to inverse plan-
ning both for Gamma Knife radiosurgery31 and for robotic
radiosurgery.32–34 There, the decision variables are the weights
of (deliverable) beams/shots that are generated in the first
phase and optimized in the second. In Gamma Knife radio-
surgery, the sector-duration optimization has 24 times the
number of decision variables of the corresponding two-phase
procedure. The equivalent of a sector-duration optimization
for a system with a multileaf collimator would include a deci-
sion variable for the left and right positions of every leaf,
resulting in a roughly hundredfold increase of decision vari-
ables. In this work, we present novel contributions that reduce
the problem size of the sector-duration optimization while pre-
serving the flexibility it offers. In summary, our method

• Manages multiple targets;
• Explicitly handles OARs;
• Reproducibly finds the optimum given a fixed set of

isocenter locations;
• Runs in well under a minute;
• Efficiently optimizes for short BOTs;
• Allows hard constraints;
• Allows the exploration of achievable trade-offs.

2. MATERIALS AND METHODS

To achieve convexity, we divide the planning into three
distinct phases: isocenter placement, optimization, and
sequencing. The isocenters chosen in the first phase remain
fixed throughout the rest of the planning. In the optimiza-
tion phase, we formulate an optimization problem where
competing objectives are combined as a weighted sum. By
changing weights, it is straightforward to explore achievable
trade-offs. Possible objectives include dose to target, spar-
ing of OARs, and a new — highly efficient — BOT penal-
ization. During the optimization, times for each sector and
collimator are allowed to vary independently. In the
sequencing phase, these times are converted into deliver-
able shots.

2.A. Isocenter placement

The first phase of the proposed inverse planner is to
choose isocenter positions. These remain fixed throughout
the subsequent phases, defining the search space of the opti-
mization. The main objective of this phase is thus to provide
enough freedom to find a high quality plan; the only harm in
including extra isocenter positions is that it will take longer
time to solve the optimization problem.

Although algorithms for automatic isocenter place-
ment12,17,35–38 certainly have a role to play, we do not con-
sider them to be the main focus of this work. Consequently,
to remove this source of variability, we will reuse the isocen-
ter positions from the corresponding (manual) reference plan
in all examples that follow.

2.B. Optimization

As we will describe below, a major difference between the
inverse planner we propose and previous approaches based
on sector-duration optimization15,17,20–22 is that it uses linear
programming. Such optimization problems are well behaved
and well studied.16,39,40

We recognize that there are multiple, possibly conflicting,
objectives that are desirable. However, our working assump-
tion is that the exact priority among these should be pro-
vided by the user. Consequently, we foresee that a number
of options will be evaluated in the course of optimizing the
treatment plan. This indeed reflects how it works presently,
but the intention is that the proposed inverse planner will
elucidate the achievable trade-offs. Formally, suppose we
have m cost functions, f ¼ ðf1ðxÞ; . . .; fmðxÞÞt, representing,
for example, target dose, dose to an OAR, and a penalization
of BOT. This can be conveniently rearranged into a single
cost function by forming a weighted sum, that is, by scalar
multiplication with the weights w ¼ ðw1; . . .;wmÞt, where
each weight quantifies the importance of the corresponding
part of the cost function. We will now describe how we have
defined the different parts of the optimization problem so
that, taken together, it can be expressed as a linear program-
ming problem.
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2.B.1. Dose-based objectives

Given a fixed set of isocenter positions, our optimization
variables are the irradiation times tisc corresponding to every
isocenter i, collimator state c, and sector s. The dose D at a
position r is linear in terms of these irradiation times,

Dðr; tiscÞ ¼
XNiso

i¼1

X8
s¼1

X3
c¼1

UiscðrÞtisc: (1)

Often, we are interested in the doses Dn given to a discrete
set of voxels at positions rn, where n = 1,. . .,N. Then, after
appropriate rearrangements, we may evaluate the dose
as a matrix-vector multiplication: Dn ¼ ðUtÞn. Thus, the
ðN � 24NisoÞ-matrix Φ, which we refer to as the dose rate
kernel, maps irradiation times to doses.

In regions of interest, each voxel can be assigned dose-
based objectives that reflect the amount of underdosage or
overdosage it receives. Typically, the regions of interest
include all targets, a volume of healthy tissue surrounding each
target10,17 and clinically relevant OARs. We express the dose-
based objectives using one or several hinge functions,

ðDn � D̂nÞþ ¼ maxðDn � D̂n; 0Þ; (2)

where Dn is the dose in the voxel in question and D̂n is
a reference dose. This function, or its square, is com-
monly used as a dose-based objective.17,41 In principle,
every voxel could have a unique dose-based objective,
which makes it possible to, for instance, perform full-
fledged dose painting by numbers.42–44 By introducing
auxiliary variables, piecewise linear convex functions such
as the hinge function above, can be recast as linear pro-
gramming problems, cf. Appendix A.

2.B.2. Beam-on time penalization

To control the treatment time, we use a highly efficient
penalization function which we refer to as the idealized
beam-on time (iBOT).20,21 It is defined as

HðtÞ ¼
XNiso

i¼1

max
s

X3
c¼1

tisc; (3)

where Niso is the number of isocenters; s and c, respectively,
correspond to the eight sectors and three collimators. We
emphasize that iBOT is not an Lp-norm nor does it promote
sparsity — in fact, it is quite the opposite: it encourages the
total BOT of each sector to be equally long, which is advanta-
geous since they can irradiate simultaneously. By introducing
auxiliary variables, the iBOT function can be expressed using
linear programming,45 cf. Appendix A.

2.B.3. Constraints

In a linear programming problem, it is possible to include
hard constraints, that is, conditions that the solution must

fulfill. Physics only dictates one such hard constraint, namely,
that all times must be non-negative, t ≥ 0, and therefore, this
is the only hard constraint that is strictly necessary —
exempting the “artificial” constraints coming from the auxil-
iary variables. One can, optionally, include hard constraints
on doses in various regions.

2.B.4. Normal tissue sparing

We promote normal tissue sparing by encompassing the
target within two nonoverlapping thick “shells” shaped
according to the target surface. By penalizing high doses
inside the inner and outer shells, we can control selectivity
and gradient index (cf. Section 2.D), respectively. These two
shells may seem similar to the widely used concept of mar-
gins,46 but unlike margins — which have well-defined clini-
cal meanings — our shells are merely used to steer the
optimization. We construct the inner and outer shells as geo-
metric expansions, defined via the Euclidean distance trans-
form, of the target. The inner shell is expanded from the
target surface until its total volume is half that of the target
volume. The outer shell is expanded from the outer surface of
the inner shell until its volume is twice that of the target.

2.B.5. Illustrative example— primal formulation

We will base our exposition on a minimal, yet illustrative,
example of the optimization problem when there is a single
target and an OAR where we want to limit the maximum dose
to at most DO. In this case, the cost function has four compo-
nents that control the target dose, selectivity, gradient index
and BOT, respectively. We denote the prescription dose to the
target DT and the dose thresholds for selectivity and gradient
index by DS and DG, respectively. We thus arrive at the opti-
mization problem

minimize
t

wT

DTNT

XNT

i¼1

ðDT � ðUTtÞiÞþ

þ wS

DSNS

XNS

i¼1

ððUStÞi � DSÞþ

þ wG

DGNG

XNG

i¼1

ððUGtÞi � DGÞþ

þ wBOT

DT=ucal
HðtÞ

subject to UOt�DO

t� 0;

(4)

where ucal is the calibration dose rate, Na is the number of
voxels in the structures a 2 {T, S, G, O} and the weights
wa govern the relative importance of each term. Typically, we
let DS ¼ DT to promote selectivity and DG ¼ DT=2 to
reduce the gradient index. In Appendix A, we give the expli-
cit representation of the problem in Eq. (4) as a linear pro-
gramming problem on standard form.
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The example given here can easily be extended in several
ways. For instance, additional structures could be incorpo-
rated as additional terms in the cost function, and homoge-
neous (target) dose distributions could be promoted by
including a hinge function that penalizes overdosage.

2.B.6. Representative subsampling

The introduction of one auxiliary variable for every voxel
in a relevant structure vastly increases the size of the opti-
mization problem. In realistic cases, there could be, say, 105

variables. Na€ıvely solving the optimization problem thus
becomes time-consuming at best, but it could even be impos-
sible due to memory limitations. Thus, it is essential to
reduce the size of the problem.

As a first step, we propose to use an approximation we
refer to as representative subsampling. Representative sub-
sampling is based on the observation that the dose tends
to vary quite smoothly from one position to another. True
enough, there are regions like the penumbra region of the
Gamma Knife (and flattening filter-free accelerators) that
may exhibit stronger variability than others; however, for
practical purposes, it is redundant to take the dose in every
voxel into account during the optimization. We exploit
this realization by sampling only a representative frac-
tion of the voxels in each structure that we use in the
optimization.

Formally, we may understand this from the observation
that most of the criteria involving a structure Ω can be
phrased as an integral

J ¼
Z
X
f ðr;Dðr; tÞÞdr; (5)

where f is a function that assigns a cost to the dose,
D(r,t) = Φ(r)t, at position r. For instance, a dose-based hinge
functions, as in Eq. (2), corresponds to f ðr;Dðr; tÞÞ ¼
ðDðr; tÞ � D̂ðrÞÞþ and a hard constraint on the maximum
dose corresponds to

f ðr;Dðr; tÞÞ ¼
(

0 if Dðr; tÞ� D̂ðrÞ;
1 otherwise:

(6)

If we discretize the integral (5) uniformly (i.e., at the sam-
pling points), we recover the conventional expression

J � VðXÞ
N

XN
n¼1

f ðrn;UðrnÞtÞ; (7)

where V(�) is the volume operator. However, it is well known
that this scales poorly with dimension — the number of sam-
ples required to reach a given precision increases exponen-
tially with the dimension. To mitigate this, researchers have
proposed to subsample voxels on a regular grid13 or to aggre-
gate voxels into clusters.47,48 Another option is to use a
stochastic gradient descent algorithm that resamples voxels at
each iteration,49 but stochastic gradient descent is often inef-
fective on constrained problems, since every iteration requires
a projection onto the feasible set.50

However, randomness is powerful. Instead of the deter-
ministic sampling schemes mentioned above, we build upon
the well-established efficiency of Monte Carlo integration to
approximate Eq. (5) by sampling positions uniformly at ran-
dom in the structure. In addition, because we want to subsam-
ple also when using minimum and maximum dose
constraints in the target or maximum dose constraints in
organs at risk, we include a separate term corresponding to
positions sampled at random on the tessellated surface of the
volume.

2.B.7. Dualization

The introduction of auxiliary variables in the primal for-
mulation increases the number of variables — often sever-
alfold. However, as can be appreciated from the explicit
formulation in Appendix A, the resulting matrix is highly
structured; it could, for example, be decomposed as the
sum of a low-rank matrix and a sparse matrix. Exploiting
this structure makes it possible to reduce computation times
drastically. We have found that dualization reduces the
computation time by a factor 5–20 depending on the fea-
tures of the problem. Since strong duality holds for linear
programming problems, the primal and dual problems are
equivalent.

In Appendix B, we revisit our earlier example and give
the explicit formulas for the corresponding dual problem.
Importantly, however, the constraints introduced when
rewriting the hinge function using auxiliary variables
become trivial thanks to the dualization. The resulting size
reduction leads to dramatic performance improvements
when solving the dual compared to the original, primal,
problem. Moreover, the computational gain due to dualiza-
tion is entirely complementary to that of representative sub-
sampling.

2.C. Sequencing algorithm for shot composition

To deliver the treatment the Gamma Knife system
requires composite shots, that is, collimator and sector con-
figurations for each shot. The conversion from irradiation
times for each isocenter position tisc to such shots is
referred to as sequencing. The sequencing can be done in
several different ways, and although we will not go into
details here,51 it is worth noting that the result of the opti-
mization will often lead to multiple shots in the same
isocenter position.

2.D. Evaluation

In Fig. 1, we define the target volume (TV) and the plan-
ning isodose volume (PIV), which are used, together with the
volume operator V(�), to define the common radiosurgery
metrics:52

Coverage: C ¼ VðPIV \ TVÞ
VðTVÞ ; (8)
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Selectivity: S ¼ VðPIV \ TVÞ
VðPIVÞ ; (9)

Gradient index: GI ¼ VðPIVISO=2Þ
VðPIVISOÞ : (10)

In words, coverage is the fraction of the target volume that
receives at least as high dose as prescribed, selectivity is
the fraction of the planning isodose volume that encom-
passes the target volume, and gradient index describes the
dose fall-off by the ratio of the volume that receives at least
half the prescription dose to the planning isodose volume.
In addition to these metrics, plan quality is often evaluated
based on the Paddick conformity index (PCI),53 which is
defined as:

Paddick conformity index: PCI ¼ C � S: (11)

3. RESULTS

We have evaluated both the overall performance of the
proposed inverse planner as well as studied the novel compo-
nents — the beam-on time penalization and the subsampling
scheme — in isolation. We begin by reporting on the beam-
on time penalization and the subsampling scheme. Then, we
describe the overall performance on a set of 75 clinically
acceptable reference plans. Finally, we consider one case in
more detail. For this case, we illustrate the achievable trade-
offs and show how to perform dose painting or create a
homogeneous dose distribution.

3.A. Beam-on time penalization

To show the efficiency of the iBOT penalization, we com-
pare with replacing the term Θ(t) in Eq. (4) with a simple
summation over all times,

HsimpleðtÞ ¼
XNiso

i¼1

X8
s¼1

X3
c¼1

tisc; (12)

which we refer to as simple BOT (sBOT). The rest of the
objective function in Eq. (4) is left unchanged. We make
the comparison on three different cases: one small acous-
tic neuroma, one medium-sized acoustic neuroma, and one
irregular meningioma. By varying the weight of the (selec-
tivity promoting) inner shell against the BOT penalization

while keeping the other weights fixed, we obtain plans
with different plan quality and BOTs. To get adequate
statistics, we ran 1000 optimizations for each case and
choice of penalization. Plans with the same Paddick index
and gradient index to within � 1 % were tallied and the
average BOT calculated for each bin. The bins were cho-
sen to have Paddick and gradient indices within � 5 % of
the clinical plan. Table I summarizes the mean and stan-
dard deviation of the average BOT with the iBOT penal-
ization and the average BOT with the sBOT penalization
as well as the mean and standard deviation of the ratios
computed for each bin.

Clearly, iBOT results in plans of equal quality but mark-
edly shorter BOT than sBOT, in particular for the two larger
targets. The optimization times are practically equal. Figure 2
gives an overview of all the simulations for the small acoustic
neuroma, for which the BOT reduction was the smallest (but
still almost a factor of two).

Figure 3 shows how the BOT, Paddick index, and gradient
index depend on the iBOT weight. Even though the Paddick
index may appear independent of the iBOT in the small
acoustic neuroma case (middle left), recall from Eq. (11) that
it is the product of coverage and selectivity. Separately these
are not constant as a function of BOT; a shorter BOT is
obtained by increasing the total dose rate, which for Gamma
Knife is done by using larger collimators and more sectors
simultaneously. This smoothens the dose distribution so that
coverage increases at the expense of selectivity and gradient
index.

3.B. Subsampling

Since we subsample stochastically, the resulting plan
metrics also become stochastic. We do, however, want to
choose the subsampling fractions such that the statistical
fluctuations remain reasonably small. Here, we require
the standard deviation of both coverage and selectivity to
be below 1%. Furthermore, we want to ensure that our
sampling strategy, which samples both interior and sur-
face points, performs at least comparably to sampling
only in the interior.

We compare the two strategies on the three cases studied
in Section 3.A and an arteriovenous malformation case

FIG. 1. The target volume (TV) and planning isodose volume (PIV). [Color
figure can be viewed at wileyonlinelibrary.com]

TABLE I. Beam-on time (BOT) (min) at 3 Gy/min when using different
penalization terms.

Small
acoustic
neuroma

Medium
acoustic
neuroma

Irregular
meningioma

iBOT 9.3 (2.6) 21.6 (1.5) 110.8 (3.1)

sBOT 16.8 (1.9) 75.2 (4.4) 303.2 (11.6)

iBOT/sBOT 0.55 (0.16) 0.29 (0.026) 0.37 (0.029)

Optimization times iBOT (s) 0.135 3.2 3.3

Optimization times sBOT (s) 0.125 3.4 3.5
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(AVM). Before sampling, the number of target voxels are
6119 (small acoustic neuroma), 12 078 (medium acoustic
neuroma), 27 765 (meningioma), and 3 0326 (AVM). We

adjust the voxel size for the interior point sampling so that
the total number of points in the target is the same for both
sampling methods. We performed 100 runs for each of seven
subsampling fractions. Figure 4 presents the resulting stan-
dard deviation of coverage and selectivity as a function of
the percentage of the total number of voxels, that is, the
voxels belonging to all structures in the problem. For each
sampling method, we used a fixed weight setting,
ðwT;wS;wG;wBOTÞ ¼ ð1:0; 0:15; 0:15; 0:15Þ for our sampling
method and ðwT;wS;wG;wBOTÞ ¼ ð1:0; 0:025; 0:025; 0:25Þ
for interior sampling only, that rendered clinically acceptable
plans with metrics within 1% of each other. From Fig. 4, we
conclude that our sampling strategy performs comparably to
the interior point sampling for both coverage and selectivity.
Also, we see that the standard deviation of both metrics is
below 1% when the subsampling fraction is at least 10%. The
value of the metrics, and thus the standard deviation, is com-
puted on the original grid. For small sampling fractions, the
mean will deviate from the true value. However, for the sam-
pling sizes, we are interested in, that is, about 10%; this is
typically not an issue.

As illustrated in Fig. 5, subsampling shortens the opti-
mization time. Evidently, the dependence between the opti-
mization time and the subsampling fraction is approximately
linear. In the cases considered above, a subsampling of 10%
shortens the optimization time by a factor 8–22 compared to
using all initial sampling points.
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FIG. 3. Dependence of beam-on time (BOT) (top), Paddick index (middle), and gradient index (bottom) on the iBOT penalization. The columns correspond to
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3.C. Overall performance

We evaluate the overall performance by comparing the
plan metrics for optimized plans with manual forward

plans for 75 clinical cases (the majority of Gamma Knife
users still do forward planning). The clinical cases are all
single target cases: single metastases, acoustic neuromas,
and meningiomas. The range in tumor size is 0.6–
11.7 cm3 and the planning dose range is 12–24 Gy. In 18
of these cases, there are organs at risk (e.g., brainstem,
cochlea, optic nerves) so, to make a fair comparison, the
maximum doses to the OARs in the manual plans are
used as hard constraints in the optimization. Furthermore,
all the manual plans have 98%–100% coverage, so the
weights were chosen to always satisfy this criteria. To
compare the manual and optimized plans, we have to
find weight settings for each optimized plan that give a
similar trade-off between clinical objectives as the corre-
sponding manual plan. For simplicity, we employed the
following strategy: first, we created a range of plans with
different characteristics by performing 101 optimizations
for each case, with randomly sampled weights for the
inner ring and BOT penalization; then, we selected, for
each case, the optimized plan with the best gradient
index among those with both higher selectivity and
shorter BOT than the corresponding manual plan. The
resulting plan metrics are shown in Fig. 6. In summary,
for all of the 75 cases, we could find optimized plans
with simultaneously higher selectivity and shorter BOT
than the manual plans, and in 44 cases, these plans also
had better gradient index than the manual plans. In other
words, we found plans that dominate the manual ones in
almost 60% of the cases.

To solve the optimization problems, we used the open-
source solver Glop54 with default settings. The optimiza-
tion times ranged from 2.3 to 26 s with a median time
of 5.7 s on a standard GammaPlan workstation (a HP
Z640 with 32 GB RAM and 12 cores running at
2.9 MHz). Figure 7 shows how the optimization time
depends on the number of nonzero elements in the con-
straint matrix B (cf. Appendix B). We conclude that there
is a linear trend, but that the variation appears larger for
small cases.

3.D. Detailed case study

As an example, we consider a large left-sided cav-
ernous sinus meningioma, with a volume of 16:2 cm3

and with three adjacent OARs: the chiasm, the left optic
nerve, and the left optic tract. The prescription dose to
target is 15 Gy, the dose in the inner shell encompass-
ing the target is penalized if the dose exceeds 15 Gy. In
the outer shell, we penalize doses exceeding 7.5 Gy.
The maximal allowed dose to all three OARs is 8 Gy, which
is enforced by hard constraints. In Table II, we present two
optimized plans, one promoting selectivity and one promot-
ing short BOT, together with the clinical plan for compari-
son. Figure 8 shows snapshots and dose–volume histograms
(DVHs) from Leksell GammaPlan� for the three different
plans. In the plan where short BOT is promoted, the BOT is
almost halved at the expense of a moderate decrease in
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FIG. 4. The standard deviation of coverage (top) and selectivity (bottom) for
the two sampling methods, interior and surface (*) and interior only (∘) for
the small acoustic neuroma (red), the medium acoustic neuroma (purple), the
irregular meningioma (yellow), and the arteriovenous malformation (blue).
[Color figure can be viewed at wileyonlinelibrary.com]
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selectivity compared to the second plan. However, we con-
sider both plans clinically acceptable.

3.D.1. Dose painting and homogeneous plans

The flexibility of the proposed inverse planner opens up
new possibilities for treatment planning. Here, we will exem-
plify both dose painting and how to create plans with a
homogeneous dose distribution in the target.

Dose painting is achievable since both weights and pre-
scription doses can be modified on a voxel-by-voxel basis. To
illustrate this, we introduce a hotspot, with a volume of
1:2 cm3, in the center of the target. The dose prescribed to
the hotspot is twice the dose prescribed to the rest of the

structure, that is, 30 Gy. In the present example, we get a hot-
spot coverage of 99%.

It turns out that the iBOT term will in many cases favor
fairly homogeneous plans. However, such plans can be fur-
ther promoted by penalizing overdosage of the target. We
thus penalize doses exceeding 15/0.85 Gy to get a planning
isodose of at least 85%, which is very difficult using forward
planning. In Table III, we present an example of a plan for the
hotspot case and one plan with a homogeneous dose distribu-
tion. Overall, we consider both plans acceptable, although
naturally the additional requirements result in some form of
trade-off. The hotspot case has similar plan quality but longer
BOT than the clinically acceptable reference plan presented
in Table II. The homogeneous plan trades off selectivity and
we need to loosen the hard constraint on dose to OARs to
achieve homogeneity. In Fig. 9, we present snapshots of one
plan with a homogeneous dose distribution and one plan with
a hotspot.

4. DISCUSSION

In this work, we have described a linear programming
approach to Gamma Knife radiosurgery based on the division
of the planning into three distinct phases: isocenter place-
ment, optimization, and sequencing. Our main focus has,
however, been the optimization phase. We have shown that
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FIG. 7. Optimization time as a function of the number of nonzero elements
in B for the 75 clinical cases. The times shown are averages over the 101 runs
made for each case. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Metrics for the optimized plans compared to the forward plans. The
cases are sorted by the difference in gradient index. [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE II. Plan metrics for the reference plan and two optimized plans.

Reference
plan

Promoting
selectivity

Promoting
BOT

Coverage 0.95 0.95 0.96

Selectivity 0.88 0.91 0.78

Gradient index 2.73 2.79 2.71

BOT (min) at 3 Gy/min 89 135 41

Max dose (left optic nerve) 8.95 8.0 7.2

Max dose (left optic tract) 7.3 8.0 7.2

Max dose (Chiasm) 7.3 8.0 7.2

Planning isodose 46 44 53
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even without changing the isocenter positions, our optimiza-
tion approach can find plans that dominate manual forward
plans in almost 60% of the cases investigated. Reusing the
isocenter positions in this way clarifies the improvement that
results directly from the optimization, but it is — of course
— not how our approach would eventually be deployed. A
natural next step is thus to investigate methods for isocenter
placement with an emphasis on the interplay with subsequent
phases.

Our optimization problem, with a cost function that is a
weighted sum of multiple competing objectives, is fundamen-
tally a multicriteria optimization problem. A useful concept in
multicriteria optimization is that of the Pareto surface. Simply
put, the Pareto surface is the set of solutions in which you can-
not improve one objective without impairing another. This
means one should never be satisfied with a solution that is not
on the Pareto surface (Pareto optimal) unless other considera-
tions than explicitly expressed in the cost function is taken

into account. For example, our cost function only models gra-
dient index and selectivity indirectly, which means that we
cannot guarantee Pareto optimality with respect to these met-
rics. Our results show that manual forward plans are, in gen-
eral, not Pareto optimal either and that the proposed inverse
planner can often find plans that dominate them.

For convex multicriteria optimization problems, such as
ours, every choice of weights corresponds to a Pareto optimal
solution. By specifying the weights before optimization, we
have treated this problem as a single-criteria optimization
problem.55 However, every Pareto optimal point corresponds
to the solution of the optimization problem for a set weights
on the unit simplex, that is, such that w ≥ 0 andPn

i¼1 wi ¼ 1. In other words, the formulation as a weighted
sum does not restrict the set of optimal plans that we can
obtain. In practice, our normalization is not ideal since the
number of active points in each structure depends on a num-
ber of factors, including the volume and the sampling
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strategy. Consequently, the exact weight settings are unlikely
to generalize from one case to another even though they may
be quite similar. We thus expect that the planner will have to
adjust the weights a few times before arriving at a satisfactory
solution.

Although not explored here, we anticipate that further
computational gains are attainable by cleverly manipulating
the dose rate matrix Φ(r) and adapting the matrix algebra
accordingly.56–58 We also expect that tuning or replacing the
solver, or both, could shorten the optimization times further.59

5. CONCLUSIONS

We present the first sector-duration optimization that uses
linear programming. It uses a beam-on time (BOT) penaliza-
tion tailored to the Gamma Knife, which reduces the BOT by
a factor of 2–3 compared to the na€ıve alternative. In addition
to using linear programming, we describe two techniques that
reduce the problem size and thus further reduce the solution
time: dualization and representative subsampling. Dualization
leads to an equivalent problem that can be solved 5–20 times
faster than the primal one. With representative subsampling,
we refer to a stochastic sampling of positions, both in the inte-
rior and on the surface of relevant structures, to use in the
optimization. We show that using 10% of the original number
of voxels is enough to generate plans for which the statistical
fluctuations in coverage and selectivity are below 1% while
resulting in time-savings comparable to dualization.

The importance of different objectives, such as coverage,
selectivity, or beam-on time (BOT), are controlled by adjust-
ing the weights of the corresponding terms in the cost func-
tion. In a comparison with 75 clinical plans, we show that in
44 of these we can find plans that simultaneously have better
selectivity, BOT, and gradient index (with coverage close to
100% in all cases) than the forward plans.

Treatment planning for Gamma Knife has always been
highly interactive. Thanks to the combination of techniques
to reduce the computational cost that we have presented, it
becomes possible to fit sector-duration optimization — with
all its benefits — into the clinical workflow. This is our main
contribution.

ACKNOWLEDGMENTS

The authors thank Bj€orn Somell and the anonymous
reviewers for helpful comments and suggestions in the prepa-
ration of the manuscript. The Sharknado team — nuff said.
The research was supported by the VINNOVA/ITEA3 pro-
jects BENEFIT (grant 2014-00593) and IMPACT (grant
2018-02230).

CONFLICTS OF INTEREST

All authors are employed at Elekta Instrument AB, which
holds several patents related to this area. The work presented
may become part of a future commercial product.

TABLE III. One plan with a hotspot and one homogeneous plan.

Hotspot Homogeneous

Coverage 0.97 0.95

Selectivity 0.85 0.87

Gradient index 2.9 2.8

BOT (min) at 3 Gy/min 136 152

Max dose target (Gy) 38.5 17.7

Max dose left optic nerve (Gy) 8.0 8.0

Max dose left optic tract (Gy) 8.0 8.0

Max dose chiasm (Gy) 8.0 8.0

Planning isodose 40 85

(a)

(b)

FIG. 9. Snapshots from one plan with homogeneous dose distribution and
one with a hotspot. [Color figure can be viewed at wileyonlinelibrary.com]
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APPENDIX A: EXPLICIT FORMULATION OF THE
PRIMAL PROBLEM

Any linear programming problem can be written in the form

minimize
x

wtx

subject to Ax ¼ b

x� 0;

(A1)

where x 2 Rn are the optimization variables and w, b, and
A 2 Rp�n define the objective and constraint functions of
the problem.

We introduce auxiliary variables to rewrite the hinge
and iBOT functions using linear programming: if yþ; y� � 0
and D� D̂ ¼ ðyþ � y�Þ, then yþ � ðD� D̂Þþ and y� �
ðD̂� DÞþ; if si �

P3
c¼1 tisc for s = 1,. . .,8, then

si � max
s

P3
c¼1 tisc. We may then express the primal opti-

mization problem (4) in standard form by making the follow-
ing identifications:

A ¼

UT �I I 0 0 0 0 0 0 0

US 0 0 �I I 0 0 0 0 0

UG 0 0 0 0 �I I 0 0 0

UO 0 0 0 0 0 0 I 0 0

C 0 0 0 0 0 0 0 I �T

0
BBBBBB@

1
CCCCCCA
;

xt ¼ ðt; yþT ; y�T ; yþS ; y�S ; yþG ; y�G ; p; q; sÞ;

wt ¼ 0; 0;
wT

NTDT
;

wS

NSDS
; 0;

wG

NGDG
; 0; 0; 0;

wBOT

DT=ucal

� �
;

bt ¼ DT;DS;DG;DO; 0ð Þ;
(A2)

where

C ¼

1 1 1 0 0 0 . . . 0 0 0

0 0 0 1 1 1 . . . 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 0 0 0 . . . 1 1 1

0
BBBB@

1
CCCCA

¼ INiso 	 I8 	 ð1; 1; 1Þ 2 R8Niso�24Niso ; (A3)

T ¼ INiso 	 18�1 2 R8Niso�Niso ; (A4)

and ⊗ denotes the Kronecker product.

APPENDIX B: EXPLICIT FORMULATION OF THE
DUAL PROBLEM

Most modern linear programming solvers begin with a
presolve step that intends to reduce the problem size.60 How-
ever, for completeness and because we have not encountered
a solver that automatically detects the benefit of dualizing our
problem, we will here carry out the dualization explicitly. The

dual problem corresponding to a linear programming prob-
lem on standard form, Equation (A1) is16,39,40

minimize
m

btm

subject to Atmþ w� 0;
(B1)

where the dual variable m is the Lagrange multiplier for the
linear constraints of the primal problem. By eliminating
redundant variables and grouping constraints, our problem
can be stated as

minimize
~m

qt~m

subject to Bt~m� r;

‘�~m� l;

(B2)

where we have introduced the following rescaled entities

~m ¼ ð mT
DT

;
mS
DS

;
mG
DG

;
mO
DO

;
miso

DT=ucal
Þ;

uT ¼ /T

DT
;uS ¼ /S

DS
;uG ¼ /G

DG
;uO ¼ /O

DO
;Cs ¼ C

DT=ucal
:

(B3)

We may then express the dual optimization problem corre-
sponding to Eq. (A2) by making the following identifications

qt ¼ ð�1; 1; 1; 1; 0Þ;

Bt ¼ ut
T �ut

S �ut
G �ut

O �Ct
s

0 0 0 0 Tt;

� �
rt ¼ ð0;wBOTÞ;
‘ ¼ ð0; 0; 0; 0; 0Þ;

l ¼
 
wT

NT
;
wS

NS
;
wG

NG
;1;1

!
:

(B4)

The number of nonzero elements in B is
24ðNT þ NS þ NG þ NOÞ þ 32ð ÞNiso.

a)Author to whom correspondence should be addressed. Electronic mail:
jens.sjolund@elekta.com.
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