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a b s t r a c t 

Machine Learning models have become a fruitful tool in water resources modelling. However, 

it requires a significant amount of datasets for training and validation, which poses challenges 

in the analysis of data scarce environments, particularly for poorly monitored basins. In such 

scenarios, using Virtual Sample Generation (VSG) method is valuable to overcome this challenge 

in developing ML models. The main aim of this manuscript is to introduce a novel VSG based 

on multivariate distribution and Gaussian Copula called MVD-VSG whereby appropriate virtual 

combinations of groundwater quality parameters can be generated to train Deep Neural Network 

(DNN) for predicting Entropy Weighted Water Quality Index (EWQI) of aquifers even with small 

datasets. The MVD-VSG is original and was validated for its initial application using sufficient 

observed datasets collected from two aquifers. The validation results showed that from only 20 

original samples, the MVD-VSG provided enough accuracy to predict EWQI with an NSE of 0.87. 

However the companion publication of this Method paper is El Bilali et al. [1]. 

• Development of MVD-VSG to generate virtual combinations of groundwater parameters in 

data scarce environment. 

• Training deep neural network to predict groundwater quality. 

• Validation of the method with sufficient observed datasets and sensitivity analysis. 
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Fig. 1. Main components of the Multivariate Distribution-based Virtual Sample Generation Method. pH: Potential Hydrogen; Te: Temperature of 

the water; EC: Electrical Conductivity; EWQI: Entropy Weighted Water Quality Index; DNN: Deep Neural Network. 

 

 

 

 

 

 

 

 

Method description 

Introduction 

Soft computing methods have become a powerful approach in groundwater modelling, as they can capture complex and nonlinear

systems using available data compared to conceptual-based methods [2] . However, data availability is a keystone in developing and

applying this approach. Especially for poorly monitored aquifers or when drilling new wells without sufficient observed datasets, the 

application of ML models is limited. The Virtual Sample Generation method (VSG) is valuable to overcome data shortage limitations,

therefore, this can improve the accuracy of ML models even with small observed datasets. 

Multivariate distribution - based virtual sample generation “MVD-VSG ” method 

This paper presented a novel method for generating virtual groundwater quality parameters to train DNN models to predict 

groundwater quality even with small datasets. It is based on multivariate distribution and is called MVD-VSG. However, the work-

flow of the developed method was built according to three components ( Fig. 1 ): 1) Data processing and calculation of the Entropy

Weighted Water Quality Index (EWQI), which is useful to reduce subjectivity in assessing groundwater quality [3–5] ; 2) Virtual gen-

eration of groundwater quality samples using MVD-VSG and developing DNN models. DNN model is theoretically more accurate than

traditional ML models as concluded in previous comparative studies [ 6 , 7 ]. Compared to existing VSG methods [8–10] , the MVD-VSG

allows the generation of groundwater quality samples respecting the inter-correlation between chemical and physical parameters and, 

consequently, the conservation of the physical information; 3) validation with observed groundwater samples, thereby the method 

was evaluated using sufficient observed datasets. These components are described in the following sub-section. 
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Component 1: Weighted entropy water quality index (EWQI) 

The entropy was defined and applied for the first time by Shannon [11] in 1948 to thermodynamic sciences. It can evaluate an

amount and a degree of pertinent information from disorderly and uncertain data pertaining to predicting the output of a probabilistic

event. Its application was conducted in various hydrological studies, namely: drought indices, flood risk evaluation, and water quality

assessment [ 3 , 12 , 13 ]. Hence, the EWQI was embedded in the method to minimize the subjectivity in assessing groundwater quality.

However, to assess groundwater quality using n parameters j = {1, 2, 3…n } and m samples i = {1, 2, 3…m} using EWQI, we followed

the steps below. 

Step 1 : Exploratory data analysis and cleaning process of raw data to select reliable datasets X ij 

𝑋 𝑖𝑗 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ 

𝑥 11 𝑥 12 ⋯ 𝑥 1 𝑛 
𝑥 21 𝑥 22 ⋯ 𝑥 2 𝑛 
⋮ ⋮ ⋮ ⋮ 

𝑥 𝑚 1 𝑥 𝑚 2 𝑥 𝑚𝑛 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ 
(1) 

Step 2 : Normalization process. The normalization process of datasets was carried out in this method according to the construction

function as given by the Eq. (2) to reduce the dimensionality effects of groundwater quality parameters. 

𝑦 ( 𝑖,𝑗 ) = 

𝑥 𝑚𝑎𝑥 ( 𝑖,𝑗 ) − 𝑥 ( 𝑖,𝑗 ) 

𝑥 𝑚𝑎𝑥 ( 𝑖,𝑗 ) − 𝑥 min ( 𝑗,𝑗 ) 
(2) 

Hence, 

𝑌 𝑖𝑗 = 

⎡ ⎢ ⎢ ⎢ 
𝑦 11 𝑦 12 … 𝑦 1 𝑛 
𝑦 21 𝑦 22 … 𝑦 2 𝑛 
𝑦 𝑚 1 𝑦 𝑚 2 … 𝑦 𝑚𝑛 

⎤ ⎥ ⎥ ⎥ 
(3) 

Where Y ij is a standard grade matrix and represents normalized datasets 𝑦 ( 𝑖,𝑗 )∈[ 0 , 1 ] . 

Step 3 : Calculation of the entropy. Herein, the entropy was computed as following: 

The ratio Pij of j index value in i sample was computed as follow: 

𝑃 𝑖𝑗 = 

𝑦 𝑖𝑗 ∑𝑚 

𝑖 
𝑦 𝑖𝑗 

(4) 

Therefore, the information entropy e j associated with parameter j is given by the Eq. (5) . 

𝑒 𝑗 = − 

1 
ln ( 𝑚 ) 

𝑚 ∑
𝑖 =1 

𝑃 𝑖𝑗 ∗ ln ( 𝑃 𝑖𝑗 ) 𝑤ℎ𝑒𝑟𝑒 lim 

𝑃 𝑖𝑗→0 
𝑃 𝑖𝑗 ∗ ln 

(
𝑃 𝑖𝑗 

)
= 0 (5) 

Finally, the entropy weight 𝜔 j associated with groundwater quality parameter j is computed by the following equation. 

𝜔 𝑗 = 

1 − 𝑒 𝑗 ∑𝑚 

𝑖 =1 (1 − 𝑒 𝑗 ) 
(6) 

Step 4 : Calculation of EWQI 

The rating quality scale q j associated with groundwater quality parameter j is calculated by the following equation: 

𝑞 𝑗 = 

𝐶 𝑗 

𝐿 𝑗 

∗ 100 (7) 

Where Cj is the measured groundwater quality parameter j and L j is the limit value determined by the World Health Organization

(WHO) of the parameter j for drinking purposes. When a parameter j is completely absent in the studied aquifer Cj = 0, then q j = 0

meaning that there is no effect. The EWQI is calculated by the Eq. (8) . 

𝐸𝑊 𝑄𝐼 = 

𝑛 ∑
𝑗=1 

𝜔 𝑗 ∗ 𝑞 𝑗 (8) 

The developed method used physical parameters, such as the Electrical Conductivity (EC), Temperature (Te), and pH as feature

variables to predict EWQI because they can be measured by automatic sensors in real-time. Therefore, it is valuable to optimize the

process of the water quality assessment. 

Component 2: Generating virtual datasets 

As shown in the last sub-section, the EWQI is calculated using several physical and chemical parameters. More importantly, these

parameters are inter-correlated, particularly the correlations that existed between the cations and anions associated with dissolved 

matter in groundwater due to various hydro-geochemical facies such as Na-Cl, Na-Mg-Ca-Cl, and Ca-Mg-HCO3-Cl [14] . Therefore, the 

generation of virtual datasets requires the conservation of the relationships that exist between the chemical parameters, so that the

virtual generated data keeps the reel physical information that existed in the original dataset. The developed method MVD-VSG relies

on multivariate distribution to generate appropriate combinations of virtual datasets, to overcome the data availability challenge in 

predicting groundwater quality using DNN models. 
3 
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a-Multivariate normal distribution (MVN) 

Let MVN of random vector variables with dimension m represented by X = {x 1 , x 2 , x 3 …x m 

}, (X ∼ N (μ, Σ)). It describes the distri-

butions and the inter-correlations between random variables and is characterized by a covariance matrix Σ = ( Σij ) m x m 

and a mean

vector μ= {μ1 , μ2 , μ3 … μm 

}. Also, MVN is a symmetric matrix (m x m). Thus, each random variable x i has its normal distribution N

∼ (μi , Σii ). Indeed, the expression of the function density of the MVN is given by the Eq. (9) : 

𝑓 𝑋 ( 𝑥 ) = 

1 

( 2 𝜋) 
𝑝 

2 |Σ| 1 2 exp 
(
− 

1 
2 
( 𝑥 − 𝜇) 𝑇 Σ−1 ( 𝑥 − 𝜇) 

)
𝑥 ∈ ℝ 

𝑚 (9) 

Therefore, through Cholesky decomposition [15] , MVD-VSG can generate appropriate virtual combinations of groundwater quality 

parameters j , as it takes into account the inter-correlations between these parameters. Yet, it should be noted that if datasets follow

an MVN distribution implies that all variables follow normal distributions, but the inverse is not necessarily true. 

b-Copulas 

The use of MVN to generate virtual combinations of groundwater quality parameters is suitable when the normality test of datasets

is fairly acceptable. In dataset-scarce environments, the normality test of the MVN could be highly impacted either by dataset sizes

or by the fact that the variables X follow different law distributions. Alternatively, the copulas are useful to generate appropriate

virtual combinations when the normality is not verified [ 16 , 17 ]. Indeed, the copulas methods are multivariate cumulative distribution

functions, as the distribution of the marginal probability of variables X is uniform [0,1] [18] . Consequently, it is valuable to separate

the inter-correlation between random vectors from their marginal distribution. 

Let X ∈ ℝ 

m , the random vector variable considered. The expression of the joint distribution function of X can be written as follow:

𝐻 

(
𝑥 1 , 𝑥 2 , … ., 𝑥 𝑚 

)
= 𝐶 

(
𝐹 1 

(
𝑥 1 
)
, 𝐹 2 

(
𝑥 2 
)
, …… , 𝐹 𝑚 

(
𝑥 𝑚 

))
𝑋 

𝑇 ∈ ℝ 

𝑚 (10) 

C: [0,1] m →[0,1] is the copula and F i represents the i th marginal distribution function. 

Hence, by turning the Eq. (10) around, any MVD can be projected to the unit square to recover the copula C. 

𝐶 

(
𝑢 1 , 𝑢 2 , … ., 𝑢 𝑚 

)
= 𝐻 

(
𝐹 −1 1 

(
𝑢 1 
)
, 𝐹 −1 2 

(
𝑢 2 
)
, …… , 𝐹 −1 

𝑚 

(
𝑢 𝑚 

))
(11) 

Where 𝐹 −1 
𝑖 

is the inverse function of F i . 

However, the copulas can be classified into two categories, such as Archimedean and elliptical method families. Because of their

simplicity and proprieties, Archimedean methods are powerful to simulate bivariate distributions [ 12 , 17 , 19 ]. Meanwhile, the MVD-

VSG method adopted elliptical copulas, as we are studying several groundwater quality parameters and they can generate random

variables with high dimensions. These copulas, however, were widely applied in hydrological sciences and showed their utility for

generating synthetic datasets [20] . The projection of the MVN produces the Gaussian Copula with a function density given by the

following equation [21] : 

𝐶 𝑟 ( 𝑢 ) = 

1 √|𝑟 | exp 
(
− 

1 
2 
𝐹 −1 

𝑖 

𝑇 (
𝑟 −1 − 𝐼 

)
𝐹 −1 
𝑖 

)
(12) 

Where I is the identity matrix, r ∈ [ − 1, 1] m x m is the correlation matrix between variables with 1 in its diagonal. 

Component 3: Validation and implementation processes 

The reliability of the raw dataset was carried out through the calculation of the Charge Balance Error (CBE) of all samples [22] .

The samples which have CBE of more than 5% in absolute value and/or those that correspond to outlier values were deleted. Finally,

from 750 raw samples, 700 were retained for the case study. These samples were randomly divided into D train = 400 samples for

developing the MVD-VSG method and D validation = 300 samples for the validation phase. 

The Matlab software (R2021b) was used in which the Statistics and Machine Learning toolbox is called to im- 

plement the MVD-VSG method. Firstly, the logarithm transformation of the whole dataset was conducted to improve 

the distribution normality of the variables. Thereafter, the Mardia test [23] using the code developed by Trujillo-Ortiz 

( http://www.mathworks.com/matlabcentral/fileexchange/3519-mskekur ) and Rayston test [24] were conducted for checking the 

multivariate normality of the original samples. 

The MVD-VSG method is applied to generate 11 virtual datasets with sizes ranging from 500 to 10 000 samples from D train , namely:

20, 30, 50, and 400 original samples (observed data) ( Fig. 1 ). Then, a series of DNN models were trained using virtual datasets. Using

only physical parameters as input features will improve the practical implication of the methodology by embedding the developed 

method in ML-based sensor technologies to now-cast groundwater quality even with small datasets. 

The validation of the MVD-VSG method was carried out through the simulation of 300 measured samples using trained DNN

models. The performances of DNN models for predicting EWQI were evaluated using statistical metric by comparing the simulated

and observed EWQI values e.g. Root Mean Square Error, Nash-Sutcliff efficiency (NSE) [25] . Besides, the sensitivity analysis of the

MVD-VSG method to the virtual datasets and to the original samples is valuable to generate optimal size of virtual datasets and the

limits of the model performance that can be reached. 
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Reproducibility of the MVD-VSG method 

The MVD-VSG method is valuable to predict groundwater quality using ML models even with small observed data. The results

of the validation process using enough experimental data showed its robustness. Hence, the MVD-VSG is reproducible to overcome 

the data shortage in applying ML models, especially for either newly drilled wells or poorly monitored aquifers. Besides, a change

in the baseline of the modelled system leads to the mandatory re-training of the models with new observed datasets (new discharge

into the river as an example). In this scenario, the MVD-VSG is an alternative. Furthermore, ML and DNN cannot explain the process

involved in aquifer modelling, as they are considered ‘’Black-Box’’ models. Meanwhile, the physical-guided training of ML and DNN

models by embedding the physical proprieties of the system to be modelled into the features during the training phase could be a

promising alternative. Since it is difficult to get sufficient instances of the physical proprieties of the systems to be modelled to train

DNN models, the MVD-VSG method is valuable to generate appropriate virtual combinations of the physical proprieties and keeps 

the physical information of the generated virtual datasets. Therefore, the MVD-VSG is not only a powerful method to broaden the

application of DNN models with small data but is an armamentarium of a potential approach to develop explainable ML models. 
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