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Abstract: An excellent root system is responsible for crops with high nitrogen-use efficiency (NUE).
The current study evaluated the natural variations in 13 root- and biomass-related traits under a
low nitrogen (LN) treatment in a rapeseed association panel. The studied traits exhibited significant
phenotypic differences with heritabilities ranging from 0.53 to 0.66, and most of the traits showed
significant correlations with each other. The genome-wide association study (GWAS) found 51 sig-
nificant and 30 suggestive trait–SNP associations that integrated into 14 valid quantitative trait loci
(QTL) clusters and explained 5.7–21.2% phenotypic variance. In addition, RNA sequencing was
performed at two time points to examine the differential expression of genes (DEGs) between high
and low NUE lines. In total, 245, 540, and 399 DEGs were identified as LN stress-specific, high
nitrogen (HN) condition-specific, and HNLN common DEGs, respectively. An integrated analysis of
GWAS, weighted gene co-expression network, and DEGs revealed 16 genes involved in rapeseed
root development under LN stress. Previous studies have reported that the homologs of seven
out of sixteen potential genes control root growth and NUE. These findings revealed the genetic
basis underlying nitrogen stress and provided worthwhile SNPs/genes information for the genetic
improvement of NUE in rapeseed.

Keywords: rapeseed; root and biomass traits; nitrogen stress; GWAS; RNA sequencing

1. Introduction

Nitrogen (N) is one of the most important macronutrients required for plant growth
and development. It is the basic component of proteins, nucleic acids, chlorophyll, and
several hormones [1,2]. Although global agricultural N consumption has increased seven-
fold in the last half-century, most crops utilize only 30–40% of the supplied N [3,4]. A high
N fertilizer application causes serious environmental problems, such as water eutrophi-
cation, acid rain, and soil acidification [5]. To ensure the sustainability of agriculture, it is
imperative to breed crop varieties with a higher nitrogen use efficiency (NUE) [6].

Rapeseed (Brassica napus L.) is the third-largest oil crop in the world, following soy-
beans and palm. However, while absorbing a significant amount of N from the soil,
rapeseed is generally regarded as a low NUE crop, with seed yield per unit N applied
about half that of other cereals [7]. Therefore, addressing the genetic architecture of low
nitrogen stress tolerance and boosting rapeseed’s NUE is vital for the rapeseed’s economic
competitiveness [8,9]. Root system architecture (RSA) plays a critical role in N acquisition,
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both in terms of absorption capacity and soil exploration potential. A deeper understanding
of how the RSA adapts to N availability seems to be a potential lever for optimizing N
acquisition [10–12]. As a primary step, determining the key traits underpinning genotype
variability and RSA adaptability to N availability is required. For example, in most elite
cultivars, increasing the root-to-shoot ratio increases the uptake of N from the deep soil,
or the longer roots provide optimum root nutrient storage in shoots by taking advantage
of the soil’s spatial characteristics [13–15]. Furthermore, the genetic improvement of root
morphological traits was reported to affect crop yield [16]. Rice yields have been shown
to increase under drought stress when DRO1, a QTL associated with both root depth and
root development angle, is expressed at a higher level [17]. The big root biomass (BRB) gene
was reported previously to affect shoot traits and seed yield in sesame [18]. In rapeseed,
coarse root length promotes soil exploration and phosphorus uptake, which increases seed
yield [19]. As a result, optimizing root-related parameters could be a potential strategy for
promoting the development of cultivars with high NUE and yield.

Genome-wide association study (GWAS) is an effective method for identifying loci/genes
associated with complex traits in a genetically diverse crop population, including root
architectural traits in rice, wheat, soybean, maize, rapeseed, etc. [20–26]. Transcriptome
analysis has proven to be valuable for identifying candidate genes, especially differentially
expressed genes (DEGs), between samples with contrasting traits. The weighted gene
co-expression network analysis (WGCNA) method was designed to explore the system-
level functionality of the transcriptome and is widely used in plants to identify gene
modules related to the uncovering of potential transcriptional regulation [27,28]. The
combination of GWAS, transcriptome sequencing, and/or WGCNA has proven to be a
quick and effective strategy for detecting major candidate genes regulating complex traits.
In response to cadmium stress, three hub-genes (OsHSP, OsHSFC2A, and OsDJA5) were
identified through RNA sequencing and WGCNA in rice [29]. Through the integration of
GWAS, WGCNA, and differential expression analysis, four and eight important candidate
genes related to root growth in B. napus were identified during the persistent and specific
stages, respectively [30].

Due to the hidden feature of roots, the main challenge in studying root traits is
developing robust phenotypic evaluation methods. Different artificial systems have been
used to evaluate root traits, including sand, germination paper, and hydroponic-based
cultures [31]. Hydroponic culture with digital imaging could quickly and precisely detect
a variety of root traits in large populations and has been used to examine variations
in root architecture among different crops, including rice, wheat, maize, soybean, and
rapeseed [25,30,32–35]. In the present study, 13 RSA traits were investigated in hydroponic
culture under control and low nitrogen (LN) treatments in an association panel of 327 B.
napus cultivars, which was genotyped by the 50 K Brassica Infinium SNP array [25]. RNA-
seq was performed in the high and low nitrogen efficient groups at two developmental
stages to determine the expression levels of candidate genes. The goals of this study were
to examine the phenotypic variations of 13 root and biomass traits under both control and
LN treatments within a rapeseed association panel, to identify significant SNPs associated
with root and biomass traits related to NUE, and to use a GWAS and RNA-seq approach to
determine potential candidate genes associated with root response to LN stress.

2. Results
2.1. Phenotypic Analysis of Root and Shoot Biomass Traits under the LN Stress

A total of 13 root and shoot biomass traits across 327 accessions in two treatment
conditions (control and LN stress) were evaluated under hydroponics, including five root
morphological traits (MT) and eight biomass traits (BT) (Table 1).

For the investigated traits in the association panel, extensive variations were observed
among genotypes in control and LN-treated conditions (Table 2). The coefficient of variation
(CV) of the 13 traits ranged from 14.5–45.6% and 12.8–31.9%, respectively (Table 2). In
both treatment conditions, moderate to high broad-sense heritability was observed for
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all the studied traits, with the value of 0.53 to 0.70. Overall, these results showed that all
13 traits were inherited in a stable manner under hydroponics in both control and LN stress
conditions. LN treatment affected all investigated root and biomass traits compared with
the control (Table 2). On average, LN treatment significantly increased length, number,
and area of roots in the association population, resulting in an increase in RFW (6.4%) and
RDW (14.2%). However, LN treatment significantly reduced the formation of aboveground
biomass, with SFW and SDW decreased by 80.3% and 24.7%, respectively. Therefore, the
root–shoot ratio increased significantly under LN treatment, RSRF and RSRD by 48.9% and
33.8%, respectively.

Table 1. Description of the 13 examined traits.

Classification Trait Description Abbreviations Units

Root morphological
traits (MT)

Primary root length PRL cm
Total root length TRL cm
Total root surface area TSA cm2

Total root volume TRV cm3

Total number of roots TNR number

Biomass-related traits
(BM)

Shoot fresh weight SFW g
Root fresh weight RFW g
Shoot dry weight SDW g
Root dry weight RDW g
Total fresh weight TFW g
Total dry weight TDW g
Fresh root–shoot ratio RSRF RFW/SFW
Dry root–shoot ratio RSRD RDW/SDW

Table 2. Descriptive statistics for investigated traits under control and low nitrogen treatment in
association panel.

Trait
Control LN Control ×

N Stress
N Stress

Impact (%)Min Max Mean CV (%) h2 Min Max Mean CV (%) h2

PRL (cm) 12.2 34.3 24.3 14.5 0.62 16.3 36.5 25.9 12.8 0.58 ** 6.4
TRL (cm) 434.3 1435.7 843.8 20.7 0.66 330.7 2104.9 912.1 21.6 0.58 * 7.5
TSA (cm2) 18.4 99.9 56.5 23.6 0.62 24.6 158.0 65.8 23.1 0.55 * 14.1
TRV (cm3) 0.062 0.604 0.311 29.9 0.57 0.154 0.719 0.319 25.4 0.53 ns 2.4
TRN 673.5 4804.5 1654.2 45.6 0.55 667 6213.9 2166.8 31.9 0.53 ** 23.7
SFW (g) 1.291 4.889 3.243 20.1 0.72 0.858 4.062 1.799 18.7 0.66 ** −80.3
SDW (g) 0.234 1.377 0.741 26.5 - 0.266 0.992 0.594 20.8 - ** −24.7
RFW (g) 0.261 0.788 0.503 19.2 0.60 0.227 1.479 0.538 22.2 0.60 ** 6.4
RDW (g) 0.013 0.134 0.070 28.2 - 0.033 0.165 0.081 23.4 - ** 14.2
TFW (g) 1.617 5.599 3.746 19.3 0.70 1.077 5.541 2.345 18.3 0.65 ** −59.7
TDW (g) 0.277 1.476 0.809 25.9 - 0.302 1.157 0.676 19.6 - ** −19.6
RSRF 0.102 0.248 0.159 15.9 0.70 0.199 0.470 0.311 16.1 0.55 ** 48.9
RSRD 0.031 0.298 0.095 27.5 - 0.046 0.250 0.143 23.5 - ** 33.8

CV is coefficient of variation; h2 represents heritability; ns, not significant *, p < 0.05; **, p < 0.01, significance based
on the analysis of variance.

Consistent with the correlations under the control condition [30], SFW were positively
and significantly correlated with RFW under LN stress (r = 0.67, p < 0.01). Between
aboveground biomass and root morphological traits, SFW displayed the highest correlations
with TRL (r = 0.52, p < 0.01), indicating that root morphology contributed significantly to
the formation of aboveground biomass. Negative correlations were also observed between
shoot biomass traits and root–shoot ratios, with the values of −0.29 between SFW and
RSRF and −0.45 between SDW and RSRD, respectively (Figure 1A). Furthermore, root
and biomass traits showed positive and significant correlations between CK and LN stress
treatment, and the correlation of SFW (r = 0.63, p < 0.01) was the highest, while TRN
(r = 0.12, p < 0.05) had the lowest correlation (Figure 1B). It further illustrated that it
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is essential to consider multiple inter-related traits to comprehensively assess nitrogen
efficiency concerning RSA traits. In addition, the frequency distributions for 13 parameters
under LN stress were nearly continuous and normal, demonstrating that the examined
accessions were appropriate for subsequent association study (Figure 1A).
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Figure 1. Correlation analysis of the investigated traits. (A) Correlations of studied traits under low
nitrogen stress. Frequency distribution for each trait was displayed on the diagonal. The upper
and lower parts represent the correlation coefficient and scatter plots between two diagonal traits,
respectively. (B) Correlations of each investigated trait between control and low nitrogen stress. Red
and blue indicate positive and negative correlations, respectively. ***, ** and * denote significance at
the 0.1%, 1% and 5% levels of probability, respectively.

2.2. Marker–Trait Association Analysis for Root and Biomass Traits under LN Stress

The association panel was genotyped using the Brassica 50 K Illumina Infinium SNP
array containing 45,708 SNPs. As a result of SNP filtering, 20,131 SNP markers were
used to further identify trait–SNP associations [25]. This study only performed genome-
wide association analyses (GWAS) with BLUE values from three trials under LN stress
(Figure 2A–F), since the results of association analysis under normal condition were shown
in the previous study [30]. We grouped SNPs with close proximity (within 1 MB) and an
LD r2 > 0.2 together, since they were found to be a part of the same QTL [36].

To avoid missing SNPs due to the complex nature of RSA traits and the strict criteria
of MLM, we defined suggestive trait–SNP associations (3.50 < −log10 p ≤ −log10 1/20,131).
This resulted in 51 significant trait–SNP associations (−sslog10 > 4.30, −log10 1/20,131),
with 24 significant SNP markers and 30 suggestive trait–SNP associations integrated into
14 valid QTL clusters (Table 3 and Table S1), most of which included at least two investigated
root and biomass-related traits. Genetic variation explained by these QTL clusters varied
from 5.7 to 21.2%. These QTLs were detected for 11 RSA traits, except PRL and RSRF
(Table 3). The highest number of loci were identified on A09 and C03, containing 28 and
18 loci (Table S1).
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Table 3. List of important QTL clusters for investigated traits under LN stress in association panel.

QTL Cluster No. of
SNPs Peak SNP Chr. Position PVE

(%) −log10P Haplotype
Block (Mb) Traits

RT-A02-1 4 Bn-A02-p18994312 A02 17,997,697 7.0 4.5 17.95–18.25 RSRD
RT-A06-1 8 seq-new-rs31601 A06 7,556,204 10.5 6.8 7.25–7.72 TRN

RT-A09-1 19 Bn-A09-p1552993 A09 2,375,212 9.9 6.2 2.18–2.51 TRL, TSA, RFW, RDW, TRV,
TFW, SFW

RT-A09-2 9 seq-new-rs41996 A09 4,405,703 21.2 12.7 4.35–4.41 TRL, TFW, RFW, TSA, SFW,
TRV, RDW

RT-A10-1 4 Bn-A10-p11396195 A10 12,709,829 8.9 5.5 12.67–12.72 RFW, TFW, TRL, SFW
RT-A10-2 1 Bn-A10-p13659996 A10 13,700,523 10.0 6.5 13.56–13.70 TRN
RT-C03-1 2 seq-new-rs49231 C03 4,066,558 7.0 4.6 4.00–4.18 TFW, SFW
RT-C03-2 3 seq-new-rs28219 C03 8,417,394 8.4 5.5 8.32–8.41 TSA, TRL, TRV
RT-C03-3 2 seq-new-rs39672 C03 21,177,143 10.0 6.5 20.85–21.30 TRN

RT-C03-4 11 seq-new-rs41373 C03 27,421,341 9.0 5.8 27.42–27.46 TRV, TSA, TFW, TRL, RFW,
SFW

RT-C06-1 2 seq-new-rs23016 C06 12,887,745 7.1 4.6 12.80–13.08 TDW, SDW

RT-C07-1 7 seq-new-rs46512 C07 35,123,112 20.4 12.8 35.12–35.17 RFW, TSA, TFW, TRL, SFW,
TRV, RDW

RT-C08-1 4 seq-new-rs29850 C08 21,323,655 5.7 4.5 21.23–21.32 TRV, TSA, TFW
RT-C09-1 5 seq-new-rs34959 C09 34,541,392 11.9 7.4 34.38–34.54 TSA, TRL, RFW, TFW, SFW

Since root and biomass traits have exhibited considerable and strong correlations,
several pleiotropic genetic loci were identified, including QTL clusters RT-A09-1, RT-A09-2,
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RT-A10-1, RT-C03-4, RT-C07-1, and RT-C09-1, which affected both root development and
aboveground biomass formation. In particular, the SNP seq-new-rs41996 in the QTL cluster
RT-A09-2 was associated with both BT and RMT (RFW, TFW, SFW, RDW, TRL, TSA, and
TRV), with the highest phenotypic contribution (R2) of 21.2% for RFW. Similarly, the SNP
seq-new-rs46512 loci were also detected as pleiotropic on RT-C07-1 for RFW, TSA, TFW,
TRL, SFW, TRV, and RDW, with the highest R2 of 20.4% for RFW (Table S1). After validation,
these identified loci simultaneously influencing root and shoot biomass traits could be
potential loci for marker-assisted breeding.

2.3. Differentially Expressed Genes (DEGs) between High and Low Nitrogen Efficient Group

According to further phenotypic investigation, root tissues of 10 lines with extremely
high SFW and 10 lines with extremely low SFW were selected as a high nitrogen-efficient
group (HN group) and low nitrogen-efficient group (LN group), respectively, at two devel-
opmental points, T1 (7 days after transplantation) and T2 (14 days after transplantation)
under both control and LN stress for RNA sequencing analysis (Figure 3A). Consequently,
24 libraries, including three biological replicates of the HN and LN groups under the low
nitrogen stress, and HNCK and LNCK groups under the control condition, at T1 and T2
time points were generated. The total, mapped, and unique mapped reads to the reference
B. napus genome are shown in Table S2. After filtering and trimming, the Illumina RNA-seq
analysis yielded 1,153,760,000 clean reads. The average guanine–cytosine (GC) content
was 46.97%, and all of the Phred quality scores (Q30) were above 94.35%. According to
the principal component analysis (PCA) and correlation analysis based on gene expression
levels, the correlation between individuals within the same groups was greater than the
correlation between individuals within different groups (Figure S1A,B), indicating that the
three biological repeats used in the experimental design were sufficiently accurate.
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DEGs in different groups. (D) Correlation between qRT-PCR and RNA-seq data. ** and * denote
significance at the 1% and 5% levels of probability, respectively. ns, not significant.
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Using a pairwise approach, we first identified the DEGs of the HN and LN groups at
T1 and T2 under control and LN stress, respectively, including HN/LN-T1 vs. HN/LN-T2
and HNCK/LNCK-T1 vs. HNCK/LNCK-T2. Then, the common DEGs under both control
and LN stress conditions were identified between these two categories (HN/LN-T1/T2
vs. HNCK/LNCK-T1/T2) (Figure 3B). The DEGs between these groups were determined
using a false discovery rate (FDR) ≤ 0.05, and an absolute value of |log2 (fold change)|
was used as the threshold. In HN/LN-T1 vs. HN/LN-T2, 644 DEGs were identified,
including 359 upregulated and 285 downregulated DEGs (Figure 3C). Similarly, in group
HNCK/LNCK-T1 vs. HNCK/LNCK-T2, 939 DEGs were identified (442 upregulated and
497 downregulated). Furthermore, 399 DEGs (222 upregulated and 177 downregulated)
were regarded as common DEGs for HN/LN/HNCK/LNCK-T1/T2 (Figure 3B,C). This
meant that there were 245 DEGs specific to the HN/LN group under the LN stress condition,
and 540 DEGs were specific under the control condition (Table S3).

Details of DEGs, their full names and FPKM values in each group, and corresponding
description information are presented in Table S3. A heatmap was constructed using
normalized FPKM values ranging from −1 to 1 to classify high/low N-specific DEGs based
on expression profile similarity and diversity (Figure S2). The heatmap clearly exhibited
the upregulated and downregulated clusters for the gene expression patterns of DEGs.
Furthermore, qRT-PCR for 12 DEGs in all of the samples was strikingly similar to the
RNA-Seq data, showing that the RNA-Seq data were accurate (Figure 3D).

2.4. Functional Classification of DEGs Involved in High and Low Nitrogen Efficiency

To further determine the functional significance of the DEGs in each group, gene
ontology (GO) classifications were performed. In total, 245 specific DEGs under the LN
stress condition, 540 specific DEGs under the control condition, and 399 common under
both conditions were significantly assigned to 174, 128, and 159 GO terms, respectively
(Table S4). Interestingly, all three groups of DEGs were enriched in different pathways. For
LN-stress-specific DEGs, significant GO terms in molecular function were chitinase activity,
chitin binding, medium-chain-(S)-2-hydroxy-acid oxidase activity, ATPase binding, and
nutrient reservoir activity; in the cellular component category were mitochondrial small
ribosomal subunit, signal recognition particle, and vacuolar proton-transporting V-type
ATPase activity; in the biological function category were chitin catabolic process, cell wall
macromolecule catabolic process and polysaccharide catabolic process, oxidative photo-
synthetic carbon pathway, maintenance of root meristem identity, and cellular response to
reactive oxygen species (Figure 4A).
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According to the GO classification of the specific DEGs under the control condi-
tion, significant terms of molecular function were glucan endo-1-4-beta-glucanase activity,
glucan endo-1-3-beta-glucanase activity, cyclase activity, and carbohydrate binding; the
over-represented terms in the cellular function category were cell wall, apoplast, fol-
lowed by peroxisome; in the biological function category, plant-type cell wall loosening,
branched-chain amino acid metabolic process, sesquiterpene biosynthetic process, cell
wall modification, negative regulation of cell division, reactive oxygen species metabolic
process, maintenance of root meristem identity, and glucose metabolic process were the
most over-represented terms (Figure 4B).

For the common DEGs under both LN stress and control conditions, the significant
GO terms of molecular function were thioredoxin-disulfide reductase activity, indole-3-
acetonitrile nitrile hydratase activity, followed by nitrilase activity; the over-represented
terms in the cellular function category were cytosol, cohesion complex, and glyoxysomal
membrane, while, in the biological function category, the significant GO terms were cellular
response to aluminum ion, removal of superoxide radicals followed by response to cold,
NADP metabolic process, glutamate metabolic process, root hair elongation, regulation of
cell shape, photosynthesis, nitrogen compound metabolic process, and cellular response to
gravity (Figure 4C).

By analyzing the common enrichment pathway of these three DEG groups of differen-
tial genes, it was found that 14 significant pathways composed of 35 DEGs were identified
as common pathways for HN/LN efficiency. Most of these pathways were related to
hydrogen-translocating pyrophosphatase activity (GO:0009678), acid phosphatase activity
(GO: 0003993), translation initiation factor activity (GO: 0003743), magnesium ion binding
(GO: 0000287), 3-isopropylmalate dehydrogenase activity (GO: 0003862), oxidoreductase
activity (GO: 0016702), chloroplast envelope (GO: 0009941), maintenance of root meristem
identity (GO: 0010078), cellular response to reactive oxygen species (GO: 0034614), fatty
acid alpha-oxidation (GO: 0001561), cellular response to aluminum ion (GO: 0071275),
(R)-2-hydroxy-alpha-linolenic acid biosynthetic process (GO: 1902609), and translational
initiation (GO: 0006413) (Table S4). Thus, the regulation of these genes might play an
important role in the N-efficient utilization in B. napus.

2.5. Gene Co-Expression Network Construction and Analysis (WGCNA)

In order to investigate the gene regulatory network during LN stress, WGCNA was
used to determine co-expression gene modules from 83,232 identified expressed genes
with p > 0.05. The dendrogram revealed a total of 17 modules based on gene correlations
(Figure 5A), and the relationships between modules and samples are depicted in Figure 5B.
In total, 48,385 genes were identified to be involved in these 17 modules, ranging from 46
in the “MEgrey” module to 18,376 in the “MEturquoise” module (Figure 5C). The MEpink,
MEsalmon, MEtan, MEmagenta, MEred, and MEcyan modules were highly correlated
with HN-T1, HN-T2, HNCK-T1, LN-T1, LN-T2, and LNCK-T1, respectively. MEgreen
modules were found to be highly correlated with HNCK-T2 and LNCK-T2. In addition, the
MEsalmon module showed a consistent correlation with all samples of the high nitrogen-
efficient group (HN-T1, HN-T2, HNCK-T1, and HNCK-T2). Likewise, the MEbrown
module revealed a high correlation with all samples of the low nitrogen-efficient group
(LN-T1, LN-T2, LNCK-T1, and LNCK-T2) (Figure 5B). The heatmaps revealed that the
genes contained within a single module were significantly expressed in samples that were
strongly correlated with the module (Figure S3).
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Figure 5. WGCNA of gene expression matrix. (A) Gene-based co-expression network analysis
dendrogram. (B) Module–sample association; each row represents a module labeled with the same
color as in (A), and each column represents a sample. (C) Overview of identified genes corresponds
to each module.

The GO and KEGG analysis suggested that the significantly enriched GO terms of
genes in the MEsalmon module were related to mRNA processing, meristem development,
NADPH-hemoprotein reductase activity, cytokinin biosynthetic process and response to
oxidative stress, NADH pyrophosphatase activity, and root hair elongation (Table S5).
Meanwhile, pyruvate metabolism, glycolysis, and oxidative phosphorylation pathways
were significantly enriched in the “MEsalmon” module by KEGG pathway enrichment anal-
ysis (Table S6). Furthermore, significant GO terms in the “MEbrown” module were mRNA
binding, gibberellin-mediated signaling pathway, cell communication, NAD metabolic
process, regulation of carbon utilization, NADP biosynthetic process, and regulation of
auxin-mediated signaling pathway (Table S5). The most enriched KEGG pathway in the
“MEbrown” module was RNA transport, nicotinate, and nicotinamide metabolism, lysine
biosynthesis, and N-Glycan biosynthesis aminoacyl-tRNA biosynthesis (Table S6). These
important pathways played a crucial role in the nitrogen metabolism and assimilation process.

2.6. Candidate Genes’ Prediction and Prioritization by Integrating GWAS, DEGs, and WGCNA

Genes within 300 kb upstream and downstream of significant lead SNPs associated
with each trait were revealed using the decay of the LD approach [37,38]. As a result, GWAS
results revealed a total of 1378 genes around each peak SNP from 14 QTL clusters within
the 300 kb region (up and down) (Table S7). The substantial and consistent correlation
of WGCNA genes with each module allowed us to explore four potential genes from
GWAS and WGCNA overlapped genes (Figure 6A,B). Among the four candidate genes,
two genes with high and consistent correlation to the MEsalmon and two with MEbrown
modules were highly expressed at all stages of the high nitrogen-efficient group and
low nitrogen-efficient group, respectively (Table 4). Furthermore, we identified 12 genes
simultaneously detected as common candidate genes by integrating GWAS and DEGs
(Table 4). Within these 16 genes, we identified some potential candidate genes related to
nitrogen use efficiency, nitrogen utilization, assimilation, and root growth and development.
These findings assessed the efficiency of an approach for screening candidate genes that
integrated GWAS, WGCNA, and differential expression analysis.
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Table 4. List of candidate genes identified through the integration of GWAS, WGCNA, differential expression analysis, and their FPKM values.

Hub Genes in the MEsalmon Module (GWAS + WGCNA)

Darmor_ID HN-T1 HN-T2 HNCK-T1 HNCK-T2 LN-T1 LN-T2 LNCK-T1 LNCK-T2 QTN/QTL
Cluster

Distance from
Lead SNP (Kb) Description

BnaA09g04260D 7.22 27.94 9.28 37.08 7.39 25.75 6.49 34.92 RT-A09-1 273.55 Sugar transport protein 13
BnaA09g05270D 4.92 1.84 5.39 1.88 7.99 2.68 7.09 3.29 RT-A09-1 −205.92 Probable carboxylesterase 18

Hub genes in the MEbrown module (GWAS+WGCNA)

BnaA09g08440D 1.93 4.34 1.84 3.41 2.12 4.73 1.70 3.23 RT-A09-2 249.99 BTB/POZ domain-containing protein
BnaC07g30970D 13.56 13.81 15.98 12.58 15.33 13.72 18.75 14.97 RT-C07-1 −118.79 Exocyst complex component

Significant DEGs from GWAS + RNA-sequencing data

BnaA09g04280D 0.72 0.65 0.55 0.68 1.69 1.43 1.10 2.25 RT-A09-1 264.71 TRAF-like family protein
BnaA09g08450D 9.19 13.66 11.39 15.52 12.12 12.26 9.48 12.54 RT-A09-2 241.43 MVB pathway protein
BnaA10g16560D 0.00 0.08 0.08 3.80 7.23 0.23 0.00 0.00 RT-A10-1 147.27 /
BnaA10g17620D 5.56 6.81 6.50 6.40 4.37 3.03 4.04 4.40 RT-A10-1 −268.85 hydrolase II (PTH2) family protein
BnaA10g19550D 3.06 3.46 2.79 4.28 5.05 3.37 2.45 3.75 RT-A10-2 −150.98 unknown protein
BnaA10g19700D 46.34 27.83 38.00 18.89 16.09 12.86 18.94 12.44 RT-A10-2 −202.00 xyloglucan hydrolase 5 (XTH5)
BnaC03g34740D 1.22 1.04 1.49 0.92 1.15 0.96 1.05 1.08 RT-C03-3 105.06 GNS1/SUR4 membrane protein
BnaC03g42900D 16.87 15.62 28.99 14.44 26.24 17.19 27.69 21.44 RT-C03-4 −217.19 lipid-transfer protein
BnaC06g11180D 1.10 1.63 1.28 1.72 0.06 0.11 1.42 0.10 RT-C06-1 −262.51 /
BnaC06g11230D 0.81 0.50 1.57 1.02 0.83 1.10 1.22 1.01 RT-C06-1 −280.51 nicotinamidase 1 (NIC1)
BnaC07g30250D 2.51 1.76 2.50 1.18 1.07 0.60 0.89 0.43 RT-C07-1 295.55 /
BnaC07g30400D 5.52 3.82 10.18 8.55 3.83 5.54 9.20 10.00 RT-C07-1 223.14 SLAC1 homologue 3 (SLAH3)
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3. Discussion

Nitrogen stress is a major limiting factor for crop production worldwide, and plant
RSA is of great significance in nutrient stress tolerance [39]. In recent years, the use of
RSA is predicted to result in a “second green revolution” in agriculture [13,40]. Different
phenotyping methodologies for early crops’ RSA screening were used, expecting that
genotypes with diverse root architecture at the seedling stage would respond similarly
at the adult stage when water and/or nutrients became limited for grain yield [12]. In
this study, we studied root and shoot behaviors at the seedling stage under N-limited
conditions in a modified hydroponics growth system, which was deemed a valid way to
examine root system changes compared to field conditions [41]. The significant variations
were observed for different root and biomass traits among the genotypes of the association
panel due to their diverse genetic background and wide geographical distributions. In
agreement with the previous studies [26,42], seedlings grown under LN conditions showed
reduced SFW and TFW but increased RSRF, SDW, and RSRD than seedlings grown under
control (CK) conditions. This finding shows that N-deficient plants transport more carbon
in order to promote root development and, hence, mine the substrate for more nitrogen [12].
Greater TRL, TRV, TSA, and TRN indicate an increased ability to acquire more N from the
nutrient solution. Under control and low-N conditions, the broad-sense heritability of the
examined traits was moderate to high (0.55–0.72) and (0.53–0.66), respectively (Table 2),
indicating that these root and biomass parameters are more genetically governed and,
thus, more responsive to genetic improvement. Similar findings were reported by other
researchers [26,43].

Correlations between root and biomass traits demonstrate the balance of root and shoot
organs and resource partitioning between above- and below-ground plant tissues [44]. In
the present study, a high correlation between shoot and root weights observed might
be due to the supply of nutrients from roots to the shoot parts, as reported in rape-
seed [25,26,30,43,45]. Furthermore, the strong correlation between root and biomass traits
aids in successful soil exploration by intercepting nutrients and communicating stress
signals [46]. Understanding the mechanisms underlying root-related traits in crops may
be an effective strategy for developing high-quality root cultivars via marker-assisted
selection [41]. Based on GWAS results, 81 trait–SNP associations (51 significant and 30 sug-
gestive) were identified that were integrated into 14 valid QTL clusters (Table 3, Table S1).
This revealed the complex genetic control of root and biomass traits at an early stage of crop
growth. In addition, some pleiotropic QTLs were found (Table S1), revealing that different
traits from specific QTLs may be addressed separately to increase RSA in rapeseed [47].

Transcriptome analysis is a robust approach that helps the identification of differen-
tially expressed genes with their expression level and regulatory mechanisms [48]. The
present study identified 245 and 540 DEGs specific to HN/LN and HNCK/LNCK, respec-
tively, while 399 DEGs were considered common DEGs for HN/LN/HNCK/LNCK-T1T2
(Table S3, Figure 3B). DEGs associated with significant GO terms might have a critical role in
root growth and nitrogen efficiency/stress tolerance. For example, BnaC02G0384400ZS (At-
GLO4) associated with GO-term medium-chain-(S)-2-hydroxy-acid oxidase activity has been
reported to play a crucial role in carbon and nitrogen metabolism [49]. BnaC06G0457600ZS (At-
GLYK), corresponding to the oxidative photosynthetic carbon pathway, has been recently
reported to regulate nitrogen assimilation [50]. Similarly, BnaC02G0071500ZS (AtNLA),
associated with GO term glucan endo-1-4-beta-glucanase activity, has been reported to
play a key role in nitrogen remobilization and promote root elongation under nitrogen
stress [51,52]. BnaC02G0065900ZS (AtGMII), associated with carbohydrate binding, has
been reported to play a key role in root growth and development [53]. These findings
indicate that DEGs encoding several metabolic, regulatory, signaling, and structural pro-
teins involved in arginine and proline metabolism, galactose metabolism, and tryptophan
metabolism may be primarily responsible for the differences in nitrogen use efficiency
between these groups [54].
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The integration of GWAS, WGCNA, and differential expression analysis has already
been used to identify candidate genes in many crops [55]. We identified 12 and 4 candidate
genes related to root growth and nitrogen stress by integrating GWAS, WGCNA, and
DEGs. For example, BnaA09g04260D, a major hub gene in the MEsalmon module and
located in the region of the QTL cluster qcA09-1, encodes a major facilitator superfam-
ily protein, whose homologous AtSTP13 had a potential role in root growth responses
and nitrogen uptake under nitrogen-starved conditions [56–58]. Another hub gene in the
MEsalmon module and the qcA09-1 region, BnaA09g05270D, has been reported to have a
crucial role in regulating root gravitropism and elongation against various environmen-
tal stresses [59,60]. An overlapped candidate gene between the MEbrown module and
qcA09-2, BnaA09g08440D, a member of the NPY gene family (AtNPY1), had a crucial role
in root gravitropism in A.thaliana [61]. Four potential candidate genes out of twelve were
identified through the integration of GWAS, and DEGs have been reported to function as
central regulators in root development and nitrogen stress. BnaA10g16560D (AtGSR2),
encoding glutamine synthetase, has been reported to function in nitrogen assimilation, and
thus improve nitrogen use efficiency [62,63]. BnaA10g19550D (AtLAZY1/AtANR1), an
important candidate gene identified in RT-A10-2, has a crucial role in root gravitropism and
nitrate regulation of root development [64,65]. BnaA10g19700D (AtXTH5) encoding en-
doxyloglucan transferase has been reported to regulate root cap during nitrogen stress [66].
Another important gene, BnaC07g30400D (AtSLAH3), plays a potential role in nitrogen
uptake and assimilation during nitrogen-deprived conditions [67–69].

The aforementioned results revealed that these candidate genes played an important
role in root growth and nitrogen utilization efficiency. A better understanding of nitrogen
stress tolerance and root growth was acquired by identifying potential associated SNPs and
promising candidate genes of nitrogen stress tolerance, which will serve a crucial role in
the elite’s rapeseed breeding programs. However, further research based on these putative
candidate genes will comprehensively elucidate the significance of these genes in rapeseed
NUE, root development, and growth.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Based on the Rapeseed Research Network in China, 327 B. napus lines were used in
this study, including 191 semi-winter (population 1; P1), 34 winter (P2), and 102 spring
accessions (P3). A total of 327 rapeseed germplasm accessions were studied, with 222 from
China’s Yangtze River, 52 from other places/unknown origins, 23 from northwestern China,
16 from Europe, and 14 from Australia. All the accessions were strictly self-crossed.

The root-related traits of 327 B. napus accessions were evaluated using the previously
described hydroponic setup [41]. After two days in the dark on the medical gauze of the
germination device, uniform and robust rapeseed seeds were exposed to light (180 µmol
photons m−2s−1) and grew for four days in a greenhouse (60–80 percent relative humidity)
under 16/8 h day/night cycles at 24 ◦C [70]. The Hoagland’s solution (the concentration
of N was 15 Mm; control treatment) was composed of: 5 mM Ca (NO3)2·4 H2O, 5 mM
KNO3, 2 mM MgSO4 ·7H2O, 1mM KH2PO4, 0.05 mM EDTA-Fe, 46 µM H3BO3, 9.14 µM
MnCl2·4H2O, 0.77 µM ZnSO4·7H2O, 0.37 µM NaMoO4·2H2O, and 0.32 µM CuSO4·5H2O.
Six days after planting, seedlings were shifted to a growth device containing a quarter of
Hoagland’s solution (two treatments, control and LN), as described by [43]. Each basin had
30 seedlings of five different lines (five seedlings for each line). Once a week, the nutrient
solution was replaced. Each week, the 1/4 solution was changed to a 1/2 solution, and then
100% solution until harvesting. The N content was decreased to 0.5 mM for LN treatment by
lowering KNO3 and replacing Ca(NO3)2 with CaCl2. A completely randomized design was
applied to three independent hydroponic culture trials conducted at Oil Crops Research
Institute, Chinese Academy of Agricultural Sciences-Wuhan, China.
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4.2. Phenotypic Investigation

Three plants from each genotype were collected during harvest, and each plant was
divided into root and shoot sections. Five root morphology traits (RMT) viz. total root
length (TRL), total root surface area (TSA), total root volume (TRV), and total root number
(TRN) were captured through images using a scanner (EPSON V700, Japan) and further
analyzed by WinRHIZO software (Pro 2012b, Canada), while primary root length (PRL)
was measured manually using a ruler. Eight biomass-related traits (BT), including root
fresh weight (RFW) and shoot fresh weight (SFW), were measured manually by using a
weighing balance. Root dry weight (RDW) and shoot dry weight (SDW) were measured
after oven drying at 80 ◦C until a consistent weight was reached. Total dry weight (TDW)
and total fresh weight (TFW) were estimated as SDW + RDW and SFW + RFW, respectively.
The ratio of root-to-shoot fresh weight (RSRF) and ratio of root-to-shoot dry weight (RSRD)
were measured as the ratio between RFW and SFW and ratio between RDW and SDW,
respectively.

4.3. Statistical Analysis

Statistical analysis was conducted using BLUE values for 13 traits studied under
nitrogen stress across three trials. Statistically significant differences between treatments
were estimated using a paired samples t-test, with α = 0.05 as a significant threshold. Basic
statistics and broad-sense heritability were calculated using QTL Ici mapping 4.2 [36,71].
The “PerformanceAnalytics” package in R software was used to calculate Pearson correla-
tion at a significance level of (p < 0.05). The response of each trait to LN was represented by
the increase or decrease of LN relative to CK, calculated as (LN-CK)/LN × 100%.

4.4. Association Analysis

Using the new B. napus 50 K Illumina Infinium SNP array, 327 B. napus lines were geno-
typed. After filtering, there were 20,131 SNP markers for further investigation [25]. The
trait–SNP association was investigated utilizing Best Linear Unbiased Estimates (BLUE) val-
ues of three LN trials via Tassel 5.0 software using a mixed linear model (MLM) with (Q + K)
matrix [72]. To find marker–trait associations, an arbitrary cutoff value of 1/20,131 SNPs
(−log 10 (p) = 4.30) was used. The Manhattan and Quantile–Quantile (Q-Q) plots were gen-
erated using the qqman and ggplot2 tools, respectively [73,74]. The four-gamete criterion
was used to identify marker haplotypes at each linked locus using Haploview software [75].

4.5. Candidate Gene Prediction

The complete gene list in the QTL cluster region was scanned using the B. napus
“Darmor” reference genome information [76]. Potential candidate genes for nitrogen
efficiency/LN nitrogen tolerance were identified using gene ontology (GO terms) from the
TAIR website and gene functions recovered from prior studies [76].

4.6. Transcriptome Sequencing and Analysis

Based on the differences in SFW, 20 accessions (S5, S39, S46, S49, S64, S78, S118, S129,
S140, S170, S189, S226, S251, S275, S283, S289, S291, S303, S313, and S324) with extremely
high and 20 accessions (S18, S32, S90, S104, S106, S124, S145, S149, S161, S176, S193, S197,
S205, S237, S252, S256, S265, S272, and S326) with extremely low SFW were selected from
the association panel. The phenotypic values divided these accessions mainly into high
nitrogen efficiency (HN) and low nitrogen efficiency (LN). These accessions were grown
hydroponically under control and LN treatment conditions, and the same protocol of
Hoagland’s solution was applied for the transcriptome experiment as described above.
Samples were collected at two time points, 7 and 14 days after transplanting (T1 and T2).

Total RNA was extracted from root tissue of high-N and low-N efficiency accessions.
Then, equal amounts of total RNA from 20 high-N and 20 low-N efficiency accessions
were separately pooled. Three biological replicates, each obtained from three independent
plants, were collected for RNA sequencing (RNA-seq) for each sample.
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Twenty-four RNA-seq libraries (one tissue× two groups× two treatments× two-time
points × three biological replicates per sample) were prepared for total RNA extraction
with IRIzol reagent (Invitrogen, USA). An Illumina HiseqTM 2500 platform was used by
Oebiotech Company in Shanghai, China, to construct sequencing libraries and conduct
Illumina sequencing. Raw readings with 150 paired-end base pairs (bp) were filtered and
aligned [77].

The clean reads were mapped using HISAT v2.0.4 and the B. napus ZS11 refer-
ence genome (https://www.genoscope.cns.fr/brassicanapus/data/, accessed on 22 April
2022) [76]. The WGCNA was conducted using the WGCNA package in R [78]. The “DESeq”
R package was utilized to identify DEGs using ≤ 0.05 for the false discovery rate (FDR)
and |log2 ratio| ≥ 1 as criteria.

4.7. Validation of DEGs by Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Twelve differentially expressed candidate genes were assessed by qRT-PCR to measure
the reliability of the RNA-seq data, as previously described [79]. The primer sequences are
presented in Table S8. The SYBR qPCR Master Mix (Vazyme) was used with the CFX96 for
qRT-PCR analysis (BIO-RAD). Each sample was subjected to three technical replications.
The 2−∆∆CT method was utilized to determine the relative expression of target genes using
B. napus ACTIN2 as an internal control. [80].
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