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Abstract: High-throughput screening of drug response in cultured cell lines is essential for studying
therapeutic mechanisms and identifying molecular variants associated with sensitivity to drugs.
Assessment of drug response is typically performed by constructing a dose-response curve of viability
and summarizing it to a representative, such as IC50. However, this is limited by its dependency
on the assay duration and lack of reflections regarding actual cellular response phenotypes. To
address these limitations, we consider how each response-phenotype contributes to the overall
growth behavior and propose an alternative method of drug response screening that takes into
account the cellular response phenotype. In conventional drug response screening methods, the
ranking of sensitivity depends on either the metric used to construct the dose-response curve or
the representative factor used to summarize the curve. This ambiguity in conventional assessment
methods is due to the fact that assessment methods are not consistent with the underlying principles
of population dynamics. Instead, the suggested phenotype metrics provide all phenotypic rates of
change that shape overall growth behavior at a given dose and better response classification, including
the phenotypic mechanism of overall growth inhibition. This alternative high-throughput drug-
response screening would improve preclinical pharmacogenomic analysis and the understanding of
a therapeutic mechanism of action.

Keywords: high-throughput drug screening; drug response metrics; drug sensitivity metrics; dose-
response assessment

1. Introduction

Drug responses in cultured cell lines are essential for identifying molecular features
associated with therapeutic effectiveness of the drug, through integration with large ge-
nomic data [1–6]. This has been investigated by constructing a dose-response curve of a
certain metric, such as viability, and summarizing the response curve into a representative
quantity. The common summary factors are the concentration of half maximal inhibi-
tion (IC50) or half maximal effect (EC50) as a measure of potency, the maximal inhibition
level (Emax) as a measure of efficacy, and the area under the curve (AUC) as a measure
of overall effectiveness. For better pharmacogenomic analysis, two limitations need to
be addressed adequately: the issue of irreproducibility in drug response assays and the
discordance between actual cellular response phenotypes and assessment metrics of drug
response. Concerns regarding reproducibility in drug response studies are a practical issue
raised repeatedly in preclinical studies [7–9]. On the other hand, the second limitation
is a more general issue; while actual response phenotypes during drug treatment are
diverse—including senescence and various forms of cell death—conventional metrics such
as IC50 do not reflect such responses. Instead, these metrics are simply de facto standards
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for crudely categorizing cell lines as either sensitive or resistant without an underlying
theoretical basis.

A recent multi-center study of the NIH Library of Network-Based Cellular Signatures
Program (LINCS) on drug response assays [10] well evaluated the irreproducibility issue.
A notable point of this study was that a growth rate [11,12]—instead of viability—was
used as a metric for producing a dose-response curve. Viability always depends on the
assay duration, and the duration is a relative factor for the doubling time of each cell line.
To correct this confounder, this study used an alternative metric based on the apparent
growth rate, under the assumption of a simple exponential cell growth [11,12]. Indeed, this
metric reportedly improved the reproducibility and performance of pharmacogenomic
association studies [13]. However, apparent growth-rate-based metrics still depend on
the assay duration in numerous cases, as observed in the MCF10A cell line treated with
neratinib in the LINCS study [10]. This implies that cellular growth behavior is not a simple
exponential function.

Here, the widespread assumption for cellular growth, a simple exponential function,
was reconsidered. We investigated how each cellular response phenotype upon a drug
treatment contributes to the overall growth behavior and solved the equations of popula-
tion dynamics of phenotypes. By using these population dynamics, we explored how the
conventional method for drug response assessment itself—encompassing the assay dura-
tion, the metric for constructing a dose-response curve, and the summary factor—affects the
assessment result of drug response and revealed its limitations for comparative analysis of
drug response. In contrast, the alternative metric based on phenotype population dynamics
produces time-independent characteristic quantities of drug response. This could provide
better pharmacogenomic variables relevant to the response phenotype of the cell.

2. Results
2.1. Phenotype Dynamics Model: Each Cellular Response Phenotype Contributes Differently to the
Overall Growth Behavior

Phenotypes related to population growth can be divided into three groups: proliferat-
ing cells, dead cells, and cell cycle-arrested cells (i.e., senescent cells). Although senescence
has never been considered individually in the conventional assessment of drug response,
therapy-induced senescence is a widely reported phenomenon [14–16]. The number of cells
in each phenotype (np proliferating cells, ns senescent cells, and nd dead cells) changes due
to cell division (with rate of change, kp), cell death (kd), or cell cycle arrest (s) of proliferating
cells (Figure 1a). Accordingly, the complete set of differential equations for phenotype
population dynamics is given, as shown in Figure 1b, and the explicit analytical solution
(Figure 1c) is derived directly without numerical calculation. The death of senescent cells
has been disregarded here unless there are senolytic drugs or immune cells.

The solution shows several notable points directly. All phenotypes have the same
characteristic exponent in their growth function: k = kp − kd − s, which is the growth rate
of proliferating cells. We call this just “growth rate (GR)” as distinct from “apparent growth
rate (aGR)” that assumes a simple exponential growth of the total viable cells. Viable cell,
np + ns, does not follow a simple exponential form. Instead, it follows the function of time,

A
(

ekt − 1
)
+ 1. Depending on kp, kd, and s, the shape of a growth curve changes from

an increasing convex type (kp − kd > s > 0) to linear (kp − kd − s � 1) or even concave
(s > kp − kd > 0) and to a decreasing convex type (kp − kd < 0) (Figure 1d). However, it
can be a simple exponential curve if s~0—that is, for the case of negligible senescence.

2.2. The Same Growth Curve Produces Different Dose-Response Curves Depending on the Assay
Duration and the Metric

By using the population dynamics of viable cells, we explored how the conventional
dose-response curve changes depending on the assay duration and the metric used in
producing a dose-response curve. To generate growth curves for certain drug–cell line pairs,
we assigned the phenotypic rate of change for two cases depending on how dominantly the
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senescence occurs: (i) senescence-dominant or (ii) senescence-negligible. The phenotype
rates of change as a function of dose and the growth curves at several doses are presented
in Figure 2a. By using these same growth curves, we constructed dose-response curves
of viability, aGR, and also GR at different end timepoints of the assay (Figure 2b). If
dose-response curves are overlapped together, it means that the used metric for such
dose-response curves does not depend on the assay duration.

Figure 1. Phenotype dynamics model. (a) A diagrammatic illustration of phenotypic response of the cell upon a drug
treatment. Proliferating cells can continue dividing, can enter a state of permanent cell cycle arrest, or can undergo cell death.
(b) Differential equations for the population dynamics in each phenotype and (c) their analytical solutions. (d) Typical
growth-curve shapes of viable cell depending on the phenotypic rate of change, kp, kd, s.

Figure 2b shows clearly that different assay durations produce different dose-response
curves. For the viability-based dose-response, this time-dependency is evident regardless
of how significantly senescence occurs (Figure 2b upper). Both potency and efficacy are
changed systematically; the longer duration gives the more sensitive response. However,
the aGR-based curve is time-independent when senescence is negligible (Figure 2b middle).
Otherwise, this also depends on the assay duration, but its variation is less than that of
viability-based curve. As a matter of course, the GR (that is, kp − kd − s)-based dose-
response curve is independent of the assay duration (Figure 2b lower).

2.3. Assay-Duration-Dependency of Drug Response Causes Significant Uncertainties in
Summary Factors

Next, we considered what this time-dependency of the dose-response curve implies in
a comparative study of drug response, e.g., a situation of categorizing cell lines to either be
sensitive or resistant upon a certain drug. The notable point regarding the assay duration
dependency is that each cell line is differently influenced by even the same duration of
treatment depending on its own doubling time. This can be clearly shown in comparing
dose-response curves of two example cell lines that show the same response to a certain
drug in terms of cell cycle (Figure 3b). It was assumed that two cell lines had the same GR
ratio (that of senescence-dominant case in Figure 2a(i) but with different doubling times
(either ~1.4 days or ~3.5 days). The dose-response curves constructed in the same assay
duration show that the cell line having the shorter intrinsic doubling time produced the
more sensitive response curve (Figure 3b). Therefore, dose-response curves of each cell line
are relatively biased, thereby implicating that there exists an intrinsic uncertainty in drug
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responses. In summary, variability in the doubling time of cell lines and a time-dependency
of the dose-response make a comparative multi-assay difficult to be controlled consistently
in terms of assay duration.

Figure 2. The dose-response curves of two distinct phenotype responses: (i) senescence-dominant and (ii) negligible-
senescence. (a) The rates of change and the corresponding growth curves. The normal growth rate k0 was assumed as 0.5
(that is, a doubling time = 1.4 days). (b) The dose-response curves of viability, aGR ratio, and also GR ratio.

Figure 3. Time-dependency of drug response. (a) A diagrammatic illustration of the response classification assay of various
cell lines upon a certain drug. (b) Drug responses of two cell lines that have the same GR ratio but different doubling times.
(c) Variation of summary factors (IC50, EC50, Emax, AUC) along the assay duration. The box plot, along with the ratio of the
maximum deviation to the mean, shows uncertainty of summary factors by time-dependency.

To estimate uncertainty of the summary factors due to time-dependency in a typical
experimental condition, we summarized dose-response curves of various assay duration
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into IC50, EC50, Emax, and AUC (Figure 3c). The duration ranged from 2 to 8 days, corre-
spond to 1.5~6 times of the original doubling time, 1.4 days, of the cell having k0 = 0.5.
Then, the relative uncertainty was calculated as the ratio of the maximum deviation to the
mean. As expected, viability-based metrics exhibit larger uncertainty than an aGR-based
one, again (Figure 3c). Among the summary factors, IC50 is largely deviated along the
assay duration and even to infinity in a 2-day assay. The AUC shows a relatively small
deviation in both viability- and aGR dose-response curve.

2.4. Effectiveness Ranking Based on a Dose-Response Curve Depends on the Assessment Method

We considered the second situation of drug screening: assessing therapeutic effective-
ness of various drugs for a certain cell line. In this multi-assay, there is no variability of
intrinsic doubling time. The question would be either which drugs are effective and which
are not, or how to determine the most effective drug to a given cell line? The common
way to answer this question is to sort the summary factor. To this end, we investigated
the therapeutic effectiveness of seven example drugs with various therapeutic effects in
terms of dominant phenotype and potency and efficacy. For each drug, several growth
curves were generated at several dosage, and these growth curves produced different
dose-response curves depending on the metric and the assay duration. Summary factors
were extracted from each dose-response curve and displayed in bar plots alongside the
corresponding dose-response curve (Figure 4). In a conventional screening procedure,
lower values of IC50, EC50, and Emax correspond to the more sensitive response, whereas
higher values for AUC are more sensitive.

Overall, the assessment result for therapeutic effectiveness shows considerable am-
biguity. For example, different summary factors produce different orders for therapeutic
effectiveness: According to IC50 and EC50, the most effective drug is drug 1 (grey), while
it is drug 4 (apricot) by Emax, and drug 2 (dark red) by AUC based on a 3-day viability
dose-response curve (Figure 4, comparison 1). Even with the same summary factor, an
effectiveness ranking of a drug is different depending on which metric is used for produc-
ing a dose-response curve: When summarized into IC50, the 3-day viability dose-response
curve gives drug 6 (blue) as the least effective one among seven drugs, while aGR gives the
same drug as 6th, and GR gives it as 5th (Figure 4, comparison 2). Moreover, even with
the same metric and the same summary factor, again a different assay duration produces a
different order for therapeutic effectiveness (Figure 4, 3-day vs. 5-day).

2.5. Alternative Phenotype Metric Provides Time-Independent Characteristic Quantities of
Drug Response

The above results indicate that the conventional drug response metrics have significant
limitations for comparative analysis of drug response. Therefore, here we propose to mea-
sure phenotypic rate of change at a certain dose rather than constructing a full-range dose-
response curve. Dead cell count to the total increased number of cells

(
Nd

Nd−N0+Ns+Nd
= kd

kp

)
,

and senescence cell count to total increased number of viable cells
(

Ns
Np−N0+Ns

= s
kp−kd

)
,

along with GR, provide the system of linear equations that would enable the determination
of all three unknowns: kp, kd, s.

These findings were confirmed by evaluating real data. We used a publicly available
dataset that included both time-lapse enumerations of viable cells and end-point measure-
ments of the phenotype fractions; that is, the ovarian cancer cell lines OV1369(R2) and
OV1946 were treated with the PARP inhibitor olaparib for 6 days [17]. First of all, dose-
response curves of viability and aGR displayed significant differences between 3-day and
6-day assays, indicating their time-dependency (Figure S1 and Supplementary Table S1a,b).
The IC50 of the 6-day assays were much lower than those of 3-day assays (1.5–3 times for
OV1369(R2) and ~10 times for OV1946).
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Figure 4. Ambiguity in assessing therapeutic effectiveness by conventional metrics. (a) A diagrammatic illustration of the
assay. (b) For each dose-response curve, the summary factors, IC50, EC50, Emax, and AUC were extracted. The stars and the
circles on dose-response curves correspond to IC50 and EC50, respectively.

For the phenotype metric, GR was obtained by nonlinear fitting of the viable cell count.
For the growth curves of the lowest 3~4 doses, the fitting converged well. The fraction of
phenotype increase was obtained by reformulating the conventional phenotype fraction
measured by β-Gal staining or flow cytometry (Figure 5). In the original paper [17], the
phenotype fractions were measured just at four doses. Therefore, the phenotype parame-
ters could be determined at a single concentration point where both GR and phenotype
fractions were determined, along with at the drugless condition (Tables in Figure 5). At that
concentration, 2.5 µM for OV1369(R2) and 0.01 µM for OV1946, olaparib showed cytostatic
effects to each cell line. If we would focus on the response at 1 µM, OV1369(R2) is resistant
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because k/k0 is larger than 0.5 at that concentration. In contrast, OV1946 is sensitive to
olaparib because k/k0 = 0.202/0.534 is smaller than 0.5 even at a much lower dose (0.01 µM).
The dominant mechanism underlying growth inhibition can be classified according to the
variation extent of each phenotypic rate of change relative to the normal growth rate. In
the response of OV1396(R2) upon olaparib treatment, senescence is dominant (10.3% for
senescence >0.3% for cell death) in addition to delayed cell division. Regarding OV1946
cells, the alternative phenotypic metric shows that even at a low dose of olaparib, growth is
significantly inhibited, as well as this effect being due to cell death rather than senescence
(26.3% for cell death >3.8% for senescence).

Figure 5. Evaluation of phenotype metric for ovarian cancer cell lines (a) OV1369(R2) and (b) OV1946 treated with olaparib.
Fold change of viable cells and the fraction of dead and senescent cells were re-plotted using public raw data (upper).
Calculation of the phenotype parameters and classification of drug response are summarized in the table (lower).

3. Discussion

We explored two different types of drug response metric under the consideration of
phenotypic population dynamics: the conventional one based on a dose-response curve
and the alternative phenotype metric evaluated at a single dose.

The drug response has been typically represented by summary factors extracted from
a dose-response curve. The most widely used metric is viability. However, the difference in
cell counts between drug-treated and drug-untreated conditions increases with time; that
is, a longer treatment results in lower cell viability. This tendency becomes more prominent
with an increase in dosage; hence, the longer the assay duration, the more sensitive the
dose-response curve. Moreover, the assay duration is a relative factor for the intrinsic
doubling time of each cell line, which means that a viability-based metric has a serious
limitation for comparing the drug responses of various cell lines. In this regard, the growth
rate could be a reasonable alternative to viability [11,12].

However, if the growth rate is derived on the assumption of a simple exponential
growth even under drug treatment, the dose-response curve might still depend on time. A
simple exponential growth results from the premise that the rate of cell number changes
is proportional to the number of cells in each given time point. The proportional factor is
the growth rate. If some of the viable cells are undergoing cell cycle arrest—which does
not contribute to changes in the cell count—viable cells do not follow simple exponential
growth. The number of proliferating cells itself might be an exponential function; however,
the total number of viable cells (including both proliferating cells and cell cycle-arrested
cells) is not. This indicates the need for considering the actual cellular response phenotypes
when evaluating drug responses.
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In this regard, we considered how each cellular response phenotype contributes to the
population dynamics. Indeed, the viable cell count was not a simple exponential function
but A

(
ekt − 1

)
+ 1. It indicates that time-dependency of the aGR is intrinsic because of

the senescent cell subpopulations, regardless of other possible confounders mentioned in
the literature [10]. On the contrary, GR (k = kp − kd − s) is time-independent, and it is the
only characteristic exponent in the population dynamics. Unless specifically enumerating
the proliferating cells, a proper fitting model, not a simple exponential function, should
be applied to the number of either viable cells ( Np+Ns

N0
= A

(
ekt − 1

)
+ 1) or dead cells

( Nd
N0

= B
(

ekt − 1
)

to determine GR. In a therapeutically effective dose where the growth is
too small, measuring dead cell counts would be better for the convergence of nonlinear
fitting. Recent advancements in time-lapse imaging in live cell microscopy [18] potentially
provide a useful platform for measuring the cellular kinetics to determine the growth rate.

The first obvious limitation of the conventional drug response metrics for response
classification of cell lines arises from the assay-duration dependency of the dose-response
curve and doubling-time variability of cell lines. This is an additional uncertainty to
other experimental variabilities such as seeding numbers, effects from either a direct cell
counting or CellTiter-Glo assay, and edge effects in a well plate [10,11]. Extracting response
summaries from two types of dose-response curves along the assay duration exhibits that
summary factors from an aGR-based dose-response curve have a smaller uncertainty than
those from a viability-based curve. Among the widely used summary factors, EC50 has
the smallest deviation, but it does not represent an overall effectiveness, only potency.
Efficacy is captured separately as Emax. Instead, AUC captures an overall effectiveness
as well as showing a relatively small deviation. The most common factor, IC50, is the
worst in terms of uncertainty, as was also shown in a statistical framework study that used
uncertainty estimations to improve biomarker discovery with assessment of cell line drug
response [19].

However, even in the case of drug screening for a single cell line wherein there is no
doubling time variability, the dose-response curve-based assessment has intrinsic ambiguity.
This is the order of the therapeutic effectiveness changes depending on the metric (viability
or aGR or even GR) for a dose-response curve and the summary factor, and the length of
the assay, in case of the conventional metric. The ambiguity of therapeutic effectiveness
assessment using a dose-response curve is represented even in the GR dose-response
curve—that is, being constructed with a time-independent, characteristic growth rate.
This is intrinsic in that summarizing a dose-response curve is customarily accomplished
by fitting with an empirical sigmoidal curve. In the absence of a theoretical basis, the
conventional summary factors are merely apparent quantities, similar to how simple
exponential fitting provides apparent growth rates for viable cell growth rather than
a characteristic exponent. Furthermore, due to uncertainty propagation, summarizing
into apparent quantities may result in greater ambiguity than the original uncertainty by
experimental variability [19]. This might be a reason for not only dimness and obscurity
within a pharmacogenomic study but also inconsistency or a modest correlation between
large pharmacogenomic studies such as CCLE [2], GDSC [20], and CTRP [21]. This finding
is in line with a previous report regarding systematic variations of the summary factors
in large-scale drug response data [22]. In that study, different summary factors captured
distinct information, and the most informative factor varied with the drug. Therefore, this
study concluded that factors other than potency should be considered in the comparative
analysis of drug response, particularly at clinically relevant concentrations. However,
while the general cellular growth as a function of time is a derivative form of exponential
function, which has a characteristic exponent, how about this characteristic quantity itself
as a function of dose? Unlike in the case of a growth curve, it is difficult to expect that the
dose-response curve has an analytical functional form or characteristic quantity in general.
Classical pharmacology is not ready to explain a dose-response with a theoretical basis.
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In this regard, we suggest an alternative evaluation of drug response, that is, one
not based on a dose-response curve but accounts for the response at a single dose as it
is. GR alone is not enough for an assessment of drug response because there are various
combinations of kp, kd, s for the same GR. We want a response variable and classification
to have phenotypic relevance. We need to measure all phenotype rates that contain all
the information on the drug response at a given dose and are directly connected to the
mechanism underlying growth inhibition.

This phenotype metric provides clear phenotype-relevant pharmacogenomic variables.
The therapeutic effect is categorized either as cytotoxic or cytostatic, and the dominant
phenotype either as delayed division, senescence, or death. Only in the case of kp − kd < 0
is the effect cytotoxic (that is, actual decrease in viable cells); otherwise, it is cytostatic
(inhibited growth). Even if kp − kd − s is negative, in the case of s > kp − kd > 0, the viable
cells increase until they all finally become senescent cells. Then, the fold change of the viable
cells reaches to a certain saturation level s

s−(kp−kd)
> 1. Therefore, the detailed classification

is either inhibited growing (kp − kd > s > 0), expanded saturation (s > kp − kd > 0), or
shrunk saturation (kp − kd < 0). Note that unless s ≈ 0, a complete shrinkage does not
happen because the fold change of viable cells becomes a nonzero level s

s−(kp−kd)
< 1.

Classification of the dominant phenotype can be performed by comparing s
k0

, kd
k0

, and k0−kp
k0

.
The classical categorization into either sensitive or resistant can be applicable in line with a
de facto classification by IC50—that is, classifying by whether or not the GR ratio (k/k0) is
larger than 0.5 at a clinically relevant dose. Evaluation flows for the conventional metrics
and the alternative phenotype metric are summarized in Figure 6.

Figure 6. Evaluation of drug response based on (a) the conventional dose-response curve and (b) the phenotype population
dynamics at a single dose. Three types of response classification are possible with the phenotype metric.
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The significance of senescence in drug response is notable. Growth behavior that
deviates from simple exponential functions and the absence of complete shrinkage of
viable cells are certainly the consequence of senescence. Furthermore, senescence causes
systematic variation in a conventional dose-response curve; as the senescence becomes
more pronounced, the dose-response curve appears less sensitive even for the same prolif-
erating growth rate. This is because senescence reduces the proliferating growth rate, but it
does not reduce viability. If an assay duration increases, then the tendency for a decreased
sensitivity along senescence is mitigated.

We believe the ability of the phenotype metric to provide the characteristic quantities
of drug response and the mechanism underlying growth inhibition would markedly
improve pharmacogenomic analysis. This improvement of the pharmacogenomic variables
in preclinical pharmacology will provide better translation into clinical studies and useful
information for treatment decision-making. Another advantage of this phenotypic metric
is that it does not require analysis in a wide range of dose. In addition to a drugless control
assay, a single-concentration assay at a clinically relevant concentration is sufficient. Of
course, evaluations in a wider range of concentrations might give a separate dose-response
curve for each of kp, kd, s, which would provide rich information regarding therapeutic
mechanisms of action.

Conventional dose-response curves have some limitations for providing precise phar-
macogenomic variables, but their usefulness is undeniable for qualitatively visualizing the
overall drug response of a single cell-line upon a certain molecular feature. For example,
ML239 cytotoxicity in NCI H661 LCLC cells along the knockdown efficiency of FADS2
were well visualized in the viability dose-response curve [6]. Therefore, we conclude that
it is appropriate to use the phenotype metric for therapeutic effectiveness assessment re-
lated to pharmacogenomic association studies and the dose-response curve for qualitative
visualization of overall drug response.

4. Methods
4.1. Exploring the Conventional Evaluation Method of Drug Response

Phenotype Parameters and Growth Curve: Growth curves for a certain drug–cell line
pair were generated by assigning phenotypic rate of change in the population dynamics
model. The rate of change was assumed respectively as Hill function of dose, which is the
most widely used functional form for dose response and even for a growth rate [11].

kp = k0

(
1 − kmpC

HC50p+C

)
kd = k0

kmdC
HC50d+C

s = k0
smC

HC50s+C

Here, the subscript m means a maximum effect for each parameter; e.g., kmd is the
maximum effect for kd, relative to the normal growth rate, k0. The growth rate under
drug-less condition (k0) and the intrinsic doubling time (Td) are related by the relation,
k0·Td = ln 2. HC50 is the concentration corresponding to the half maximal effect for
each parameter. These parameter sets determine the growth behavior of each phenotype
completely according to the phenotype population dynamics (Figure 1b,c). The growth
curve is presented as a fold change (NC) of viable cells—that is, a sum of proliferating cell
(np) and senescent cell (ns) at a certain dose C. N0 is the fold change in normal condition,
i.e., a drug-less condition (C = 0).

Does–response Curve: For given growth curves for various doses, viability = NC(T)
N0(T)

and apparent growth rate aGR = ln NC(T)
ln N0(T)

were calculated at a certain time point (T), and
these calculations generated a dose-response curve. Here, time difference between the
drug injection and the time point at which viability or aGR is calculated, corresponds to
the assay duration. Several dose-response curves were generated along the assay duration.
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Response Summary: For a given dose-response curve of either viability or apparent
growth rate, potency (IC50 and EC50) and efficacy (Emax) were obtained by nonlinear fitting
with a classical Hill function, f (x) = c + d−c

1+( x
e )

b . This was performed with the R package

”drm”, and it produced well-converged results except in high doses, where the growth was
too small. The fitting parameter b and d were 1 in all cases. The summary factors were
determined through

EC50 = e

Emax = c

IC50 = e ×
(

d−0.5
0.5−c

)1/b ∼= e ×
( 0.5

0.5−c
)

The overall effectiveness was measured as the area under the inhibitory curve
(=1-viability), AUC, by using the “trapz” function in R package “pracma”.

4.2. Drug Response Assessment of Public Data

Public Data: Drug response data were downloaded from the source data link (https:
//www.nature.com/articles/s41467-019-10460-1#Sec32) of Fleury’s paper [17] (download
on 9 June 2020 accessed on 1 November 2021). This was the only publicly available dataset
to date that included both time-lapse enumerations of viable cells and the end-point
measurements of the phenotype fractions. We assessed drug responses of OV1369(R2)
and OV1946 cell lines treated with olaparib through both of the metrics: the conventional
metric and the alternative phenotype metric. All data analyses and plots were performed
in R.

Growth Rates and Viability from Time-Lapse Cell Growth Measurements: The viable
cell counts, divided by the initial number n0, were applied to a 2-parameter exponential
function, A

(
ekt − 1

)
+ 1. The nonlinear least squares regression was performed with the

“nls” function in R. The proliferating growth rate, k, is given as one of the fitting parameters.
For the conventional assessment, apparent growth rate was determined by either nonlinear
fitting with a simple exponential function or by calculating aGR = ln NC(T)

ln N0(T)
for the assay

duration of 3 days and 6 days. Viability = NC(T)
N0(T)

was measured for the same assay duration.
Phenotype Fraction: According to the explicit functional form of each phenotypic

growth, the fractions of phenotype increase are given as Ns
Np−N0+Ns

= s
kp−kd

for senescent

cells and Nd
Nd−N0+Ns+Nd

= kd
kp

for dead cells. Note that Np − N0, instead of Np, makes the
fractions a simple ratio of the parameters. However, the phenotype fractions in the original
data are the conventional forms measured by either senescence-associated β-galactosidase
assay ( Ns

Np+Ns
for senescent cells) or flow cytometry ( Nd

Np+Ns+Nd
for dead cells). To convert

the conventional phenotype fraction to the fraction of phenotype increase, a fold change

(FC) of viable cells was used: Ns
Np−N0+Ns

= Ns
Np+Ns

FC
FC−1 and Nd

Np−N0+Ns+Nd
=

Nd
Np+Ns+Nd

FC

FC−1+
Nd

Np+Ns+Nd

for FC= Np+Ns
N0

obtained from the kinetic measurements.
Phenotype Parameter and Response Classification: kp, kd, and s were determined by

the system of linear equations; proliferating growth rate k = kp − kd − s and the fractions
of phenotype increase Nd

Nd−N0+Ns+Nd
= kd

kp
and Ns

Np−N0+Ns
= s

kp−kd
. Thereafter, at a certain

drug concentration C, the variation extent of each parameter relative to kp(0) ≈ k0 was

calculated. For example, the relative change in kd is kd(C)−kd(0)
k0

. By comparing the relative
change in each parameter, a dominant mechanism underlying growth inhibition could
be determined.
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