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Abstract

How have genes evolved within a well-known genome phylogeny? Many protein-coding genes should have evolved as a whole at

the gene level, and some should have evolved partly through fragments at the subgene level. To comprehensively explore such

complex homologous relationships and better understand gene family evolution, here, with de novo-identified modules, the

subgene units which could consecutively cover proteins within a set of closely related species, we applied a new phylogeny-

based approach that considers evolutionary models with partial homology to classify all protein-coding genes in nine Drosophila

genomes. Compared with two other popular methods for gene family construction, our approach improved practical gene family

classifications with a more reasonable view of homology and provided a much more complete landscape of gene family evolution at

the gene and subgene levels. In the case study, we found that most expanded gene families might have evolved mainly through

module rearrangements rather than gene duplications and mainly generated single-module genes through partial gene duplication,

suggesting that there might be pervasive subgene rearrangement in the evolution of protein-coding gene families. The use of a

phylogeny-based approach with partial homology to classify and analyze protein-coding gene families may provide us with a more

comprehensive landscape depicting how genes evolve within a well-known genome phylogeny.
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Introduction

With the sequencing of increasing numbers of complete ref-

erence genomes of species of interest, it has become increas-

ingly essential and important to accurately and reasonably

identify protein-coding gene families genome wide, which

are usually used as inputs for many aspects of phylogenomic

downstream analysis, including significant family expansion

and contraction (Hahn et al. 2005, 2007; De Bie et al.

2006; Demuth and Hahn 2009; Armis�en et al. 2018), gene

genealogical inference (Ane et al. 2006; Benton 2015; Cortesi

et al. 2015; Szöll}osi et al. 2015), species phylogenetic recon-

struction (Maddison 1997; Delsuc et al. 2005; Liu and Pearl

2007; Degnan and Rosenberg 2009), and gene tree reconcil-

iation (Degnan and Rosenberg 2009; Doyon et al. 2011; Ness

et al. 2011; Nakhleh 2013). Although such identification has

been very successful in phylogenomics, accurately and reliably

reconstructing homologous relationships between genes and

identifying homologous gene families are still challenging.

During the course of genome evolution, many genes evolve

as a whole unit and undergo various processes, such as gene

duplication, loss, and horizontal transfer (Zhang 2003;

Kazazian 2004; Innan and Kondrashov 2010; Doyon et al.

2011), and such genes should be homologous at the gene

level. In addition, accumulating evidence from phylogenomics

studies suggests that there are also many genes evolving at a

subgene level, caused by evolutionary events such as gene

segment duplication, fission, fusion, insertion, and deletion

(Ekman et al. 2007; Ding et al. 2012; Wu et al. 2012;

Meheust et al. 2016; Sibbald et al. 2019), among others.

These evolutionary modes at the subgene level complicate

the homologous relationships between genes and lead to

the partial homology of a given set of genes (Fitch 2000;
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McInerney et al. 2011; Haggerty et al. 2014), thereby inevi-

tably affecting the accurate and reliable assignment of gene

families.

In recent decades, many, if not most, evolutionary patterns

at the subgene level have been examined under the concepts

of protein domain and domain architecture, and many impor-

tant results have been obtained. These studies uncovered the

evolutionary dynamics of protein domains across large phyla,

including bacteria, animals, fungi, and plants (Bjorklund et al.

2005; Ekman et al. 2007; Wang and Caetano-Anoll�es 2009;

Kersting et al. 2012; Moore and Bornberg-Bauer 2012), and

investigated the genetic mechanisms underlying domain rear-

rangement from domain architecture information (Bornberg-

Bauer et al. 2005; Ekman et al. 2007; Fong et al. 2007; Moore

et al. 2008; Buljan et al. 2010; Moore et al. 2013). These

findings have furthered our understanding of how protein

modularity facilitates rapid adaptation as well as species di-

versity (Ekman et al. 2007; Zmasek and Godzik 2011; Kersting

et al. 2012; Bornberg-Bauer and Alba 2013; Moore et al.

2013). Currently, with the availability of high-quality, fully se-

quenced genomes, which are well resolved and closely re-

lated, we may be able to study protein modular evolution

more thoroughly by using de novo-identified subgene units

instead of domains. When aiming to investigate the evolu-

tionary details of protein modular evolution within closely re-

lated species, domains might not be suitable for three

reasons. First, protein domain detection relies on the prede-

fined domain models in domain databases. These domain

databases, such as Pfam (Sonnhammer et al. 1997; El-

Gebali et al. 2019) and SCOP (Murzin et al. 1995; Andreeva

et al. 2014), first require numbers of domain instances across

species to build hidden Markov models or sensitive position-

specific scoring matrices (Eddy 1998; Wilson et al. 2007).

Accordingly, if a domain has just one or fewer instances, es-

pecially in the case of domains specific to poorly studied

organisms, it will be overlooked and not presented in the

domain databases (Bjorklund et al. 2005; Zmasek and

Godzik 2011). Second, domain detection is dependent on

the chosen E value cutoff. Domains may have evolved too

fast and diverged beyond detection, especially in some clades.

Lowering the E value cutoff may allow previously absent

domains to become visible. As Moore et al. demonstrated

in their study, domain loss is particularly sensitive to variation

in the E value cutoff (Moore and Bornberg-Bauer 2012).

Third, discrete annotated domains inevitably result in the

loss of some information for protein sequences. Despite

some efforts to increase domain coverage, such as using re-

laxed constraints or enabling annotation of less characterized

domains such as those in ProDom (Servant et al. 2002), a

proportion of proteomes still remain unassigned in domain-

centric studies (Moore et al. 2008; Zmasek and Godzik 2011;

Moore and Bornberg-Bauer 2012). Most importantly, proteins

without domain annotation or with long unassigned regions

are discarded from analysis (Bjorklund et al. 2005;

Moore et al. 2013). As Zmasek et al. carefully stated, their

estimates represent a lower bound for domain repertoires

(Zmasek and Godzik 2011). This reduction can obviously

cause the loss of domains as well as domain architectures.

Thus, with such potential biases and incompleteness, any

genome-wide analysis of domain evolutionary patterns may

more or less miss some events at the subgene level and should

also incur the loss of some information, influencing the accu-

racy of gene family identification. Note that as the conserved

units of protein structure, evolution, and function, domains

might not greatly influence the results when they are used to

investigate large-scale protein evolution across distantly re-

lated species. However, for a given set of genes in closely

related species, interdomain regions may still contain some

useful information. It is necessary to include interdomain

regions as complete as possible to infer the evolutionary pro-

cess at the subgene level.

A previous study presented a method for de novo discov-

ery of homologous modules solely through sequence simi-

larity, rather than relying on previously known structural or

functional domains (Wu et al. 2012). A module is a gene

subsequence inherited as a basic unit without internal breaks

or rearrangements across the species under comparison.

After finding modules, the authors compared the modules

with domains (annotated from Pfam-A) as well as exons in

terms of size and boundary distance and found that the

modules tended to be close to domains or extend farther

than the closest domains. The presence of multiple consec-

utive domains in some modules may be because these mod-

ules did not have sufficient time to rearrange. Thus, they

stayed together, and the whole segment could be consid-

ered a unit, at least in the Drosophila clade, to infer the

genetic changes underlying species adaption and phenotype

diversity. Indeed, the authors found a large percentage of

modules lying precisely at an exon boundary, and symmet-

rical intron phases were enriched due to the presence of 0–0

modules, whose flanking introns were both in phase zero.

These findings suggested that modules are frequently pro-

duced through exon shuffling. As the study revealed, the

modules are biologically meaningful and consecutively cover

the protein sequences, and they can be used to trace the

evolutionary history of clade-specific modules or modules

that are not found in current databases. Obviously, given

the set of well-annotated genomes, these modules seem

to be less biased, and furthermore, each protein sequence

can be nearly completely and consecutively composed of

one or more different identified modules. Using modules,

Wu et al. (2012) developed an architecture-aware pipeline

to reconstruct protein modular evolution. Their study

reflected the distributions of module events and identified

the related functions and possible mechanisms of gene fu-

sion and fission. Because their major goal was to trace gene

evolution at the module level, they did not construct gene

families or analyze gene family evolution. Therefore, we may
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extend the use of de novo modules and improve the accu-

racy of gene family identification.

By accounting for gene evolution at the module level as

well as at the gene level, we can reconstruct the comprehen-

sive gene evolutionary process, which can reflect how partial

homologs occur and help us construct homologous gene

families. The majority of current software tools to identify

gene families rely on sequence comparisons and clustering.

These tools first obtain pairwise similarity scores from an all-

versus-all search by using BLAST (Camacho et al. 2009) or

DIAMOND (Buchfink et al. 2015) or MMseqs2 (Steinegger

and Söding 2017). After sequence similarity network con-

struction, the clustering of highly similar genes is generally

based on a clustering algorithm such as the Markov Cluster

Algorithm (Enright et al. 2002), Louvian (Blondel et al. 2008),

and single linkage method. The widely used methods (Enright

et al. 2003; Li et al. 2003; €Ostlund et al. 2009; Emms and Kelly

2019) take different ways to analyze sequence similarity

scores and produce different outputs. Among them is

OrthoFinder, which normalizes similarity scores for gene

length and phylogenetic distance and results in significant

improvements in accuracy (Emms and Kelly 2015). Because

most genes evolve in their entirety in a tree-like way, these

methods can be run quickly and efficiently to construct gene

families. In subsequent phylogenetic analysis of these gene

families, we can depict gene duplication, gene loss, and

gene transfer events (Doyon et al. 2011). In addition to these

methods, OrthoDB is a widely used resource that delineates

orthologs at varying resolution by referring to the hierarchy of

species radiations (Waterhouse et al. 2013). However, some

of the genes that evolved at the subgene level (McInerney

et al. 2011) are constructed from different gene parts and

have separate origins, and if we still partition them into groups

based on similarity along almost their entire length, we will be

unable to acquire a complete gene evolutionary history,

whether using a tree (Omland et al. 2008; Nakhleh 2013)

or a network model (Huson and Scornavacca 2011; Corel

et al. 2016) to infer the gene phylogeny, resulting in informa-

tion loss. Considering that genetic sequences may show sim-

ilarity for partial sharing of component fragments, some

methods can describe the genetic parts shared between

gene families and detect composite and component gene

families. CompositeSearch (Pathmanathan et al. 2018) gen-

eralized the use of sequence similarity network and outper-

formed the recent methods FusedTriplets and MosaicFinder

(Jachiet et al. 2013). Although such families theoretically can

be used as inputs to construct an N-rooted network (Haggerty

et al. 2014) to reconstruct gene family evolution, especially for

multimodule genes, relative algorithms and tools are lacking

and need to be developed. In addition, the components iden-

tified in a composite gene might not be consecutive

(Pathmanathan et al. 2018). To properly assign homologous

genes to gene families, a more reliable and realistic method

that considers the gene phylogeny to detect real homology

rather than homology based purely on sequence similarity is

needed. Instead of these two types of similarity-based

approaches, we assume that a phylogeny-based approach

that considers the origins of genetic fragments would better

describe sequence relationships and classify gene families.

In this work, we extract all protein sequences of protein-

coding genes from a set of closely related genomes with a

known and reliable species phylogeny and use all possible

constitutive subgene units for the set of protein sequences

identified by Wu et al. (2012). Combining the modules and

the set of protein sequences, all different extant module archi-

tectures (MAs), which are linear arrangements of each mod-

ule along each sequence, can be constructed. Then, the

evolutionary scenarios of the extant MAs can be inferred us-

ing STAR-MP (Wu et al. 2012), which is a maximum parsi-

mony method based on a well-known species tree, extant

Mas, and reconstructed module trees. We present a method

called RASfam that can be used to construct homologous

gene families. By focusing on the reconstructed architecture

scenarios (RASs), we can inspect how the extant MAs origi-

nated and assign them to different groups accordingly. Next,

the respective gene families are constructed for the set of

closely related genomes. Most importantly, we allow the pro-

teins whose parts have different origins to be assigned to

more than one family. We think that such assigned gene

families are more realistic and reasonable from an evolution-

ary perspective because they should reflect the complex, par-

tially homologous relationships between genes during the

course of genome evolution. For a case study, we demon-

strate this idea using nine Drosophila genomes with a well-

resolved phylogeny (Tamura et al. 2004). Indeed, we observe

evolutionary patterns of the protein-coding genes that are

more comprehensive than those in previous studies.

Interestingly, we found that most of the expanded gene fam-

ilies might have evolved mainly through module rearrange-

ment events rather than gene duplication events, especially

those driven by partial gene duplication and forming single-

module architectures. These results will provide us with a bet-

ter understanding of complicated evolutionary patterns, in

particular partially homologous relationships, of protein-

coding genes in a set of closely related species.

Materials and Methods

Proteins, Modules, and Species Phylogeny

We selected nine species within the Drosophila genus,

namely, D. melanogaster (dmel), D. yakuba (dyak), D. erecta

(dere), D. ananassae (dana), D. pseudoobscura (dpse),

D. willistoni (dwil), D. mojavensis (dmoj), D. virilism (dvir),

and D. grimshawi (dgri), with a known species tree (Tamura

et al. 2004). We analyzed the longest protein sequence for

each protein-coding gene. The sequences and annotations

are from FlyBase, and the version corresponds to that of the

identified modules (Wu et al. 2012). The module identification
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by Wu et al. was from a protein comparison by BlastP

(Altschul et al. 1997), alignment extension by LALIGN

(Huang and Miller 1991), module boundary detection by

the ADDA algorithm (Heger and Holm 2003), and module

family clustering by OrthoMCL (Enright et al. 2002).

Definitions

A module, a gene subsequence, is a single unit without inter-

nal rearrangements or breaks and can be inherited among

species. The identified modules almost cover all proteins,

which can be seen as composed of one or several modules

without gaps. This method, without relying on domain anno-

tations from databases, guarantees the completeness of the

modules. We defined the “module architecture” (architec-

ture) of each protein sequence as the ordered list of modules

that it contained. The whole workflow can be seen in figure 1.

After defining architectures, we constructed an architecture

similarity network in which each node represented an MA and

two nodes were connected by an edge if they shared at least

one common module. From the network, we obtained 4,173

architecture connected components (ACCs), each of which

had at least one path connecting any pair of two nodes, and

10,145 architecture singletons (ASTs), which shared no com-

mon modules with other architectures. Notably, we discarded

433 proteins that consisted of discontinuous modules, which

resulted in our ACCs not being exactly the same as Wu’s

architecture family (total of 4,107). After excluding 3,708

ACCs with inferred scenarios that were consistent with those

of Wu, we reconstructed the evolutionary histories of the 465

remaining ACCs. Detailed information can be found in sup-

plementary table S1, Supplementary Material online.

We present a phylogenetic workflow for reconstructing

gene evolution at the gene and subgene levels (fig. 1A and

B). For each ACC, architectures with partially homologous

relationships but derived from different module combinations

likely evolve at the module level. The evolutionary units of

ACCs are modules instead of whole genes. Therefore, we

used an architecture-aware phylogenetic pipeline (Wu et al.

2012) to reconstruct ACC evolutionary scenarios and detect

five types of module-level evolutionary events, namely, dupli-

cation, loss, merging, splitting, and emergence (fig. 1C),

which represent the processes in which an ancestral module

was duplicated, lost, or merged with another ancestral mod-

ule, an ancestral MA split into the extant modules, and a novel

module emerged, respectively. For each AST, one architecture

exists alone, and its corresponding proteins can be seen to

evolve at the gene level. We deployed a common phyloge-

nomic workflow to reconstruct AST scenarios for inferring

gene duplication and gene loss events.

Phylogenetic Analysis of ASTs

ASTs that evolve at the gene level fit a tree-like evolutionary

model. For each AST, amino acid sequences were aligned

using MUSCLE v3.8.31 (Edgar 2004) and then translated to

nucleotide alignments by TranslatorX (Abascal et al. 2010)

with the parameters -a -i -o. We performed model selection

by jModelTest v2.1.10 (Posada 2008) with the parameters -f -

g4 -BIC and without prediction of a proportion of invariable

sites. Gene trees were constructed by PhyML v3.1 (Guindon

et al. 2010) with 100 bootstraps and rooted by Notung v2.9

(Chen et al. 2000). Next, we used TreeFix v1.1.10 (Wu et al.

2013) with a 1:1 duplication:loss cost ratio to reconcile gene

trees with the species tree. The resulting reconciled gene trees

were the optimal trees with maximal likelihood and the min-

imum reconciliation cost. Finally, we annotated gene duplica-

tion and gene loss events on the species tree by TreeFix

v1.1.10 (fig. 1B).

Phylogenetic Analysis of ACCs

We reconstructed the evolutionary scenario of each ACC by

three steps (fig. 1B). First, as the evolutionary unit of an ACC is

a module, we performed phylogenetic analysis of each mod-

ule independently and constructed a module tree. Then, we

reconciled module trees with the well-known species phylog-

eny repeatedly to determine module emergence, duplication,

and loss. Finally, with the species phylogeny, the extant archi-

tectures in each species and the final reconciled module trees,

we reconstructed ancestral MAs and inferred module evolu-

tionary events on each branch of the phylogeny.

In the first step, we constructed module trees for each mod-

ule family. For each module family, we extracted correspond-

ing peptide sequences and aligned them with MUSCLE

v3.8.31. The nucleotide alignments were then retrieved by

TranslatorX with the parameters -a -i -o. To identify model

parameters for SPIMAP v1.1 (Rasmussen and Kellis 2011)

that could be used to reconstruct module trees, we used

CAFE v4.1 (De Bie et al. 2006) to predict the birth and death

rates of 9,894 module families that covered all species, and the

substitution rate was determined by SPIMAP v1.1 from 7,150

single-copy module family trees that were reconstructed by

PhyML v3.1. Module families with small sequences that could

not be used to construct module trees were discarded.

In the second step, we used maximum parsimonious rec-

onciliation to reconcile each module tree with the species

tree. We sampled 100 module trees with replacement for

the 100 reconstructed trees of each module family. We rec-

onciled each sample tree with the species tree using

FORESTER v1.050 (Zmasek and Eddy 2001) and removed

any duplication nodes that predated the species tree root

(preroot duplications). The resulting subtrees were rerooted

and reconciled repeatedly using FORESTER until no more pre-

root duplications were observed.

In the third step, we combined all reconciled module trees

of each ACC to reconstruct its evolutionary scenario. With the

reconciled module trees, the known species phylogeny and all

extant architectures of each species, we used STAR-MP v1.0
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FIG. 1.—Workflow used to analyze gene evolution at the gene and subgene levels. (A) Overview of the three major steps. (B) Reconstruction of the gene

evolutionary history for each AST and ACC. (C) Five types of module evolutionary events. (D) Homologous gene family construction based on the RASs. The gene

family towhichaMAbelongsdependsonhowtheMAoriginated. (E) Theschematicdiagramof theRASfamalgorithmdemonstrateshowtodeterminethemost

ancientmodulearchitecture(s) (MAMAs)ofanextantMA.WetracedtheMAMAofeachextantMAbydetectingtheoriginofeachof itsmodules.Meanwhile, the

number of the inferred MAMAs is derived from the result of architecture scenario reconstruction. For example, as shown on the left side of (D), the top ACC

reconstructed one MAMA, while the bottom two, although both ACCs presented two extant single-module architectures and one extant multimodule archi-

tecture.WhenRASfamisapplied,“m1” and“m2” in (E) representedtheblueandredmodule (architecture), respectively.Twoscenariosweredemonstrated:On

the left sideof (E),“MAMA1” and“MAMA2” alsorepresent theblueandredmodule (architecture), respectively,andtheextantblue-redarchitecturedescended

from MAMA1 and from MAMA2. On the right side of (E), “MAMA1” represented the blue-red architecture, from which the extant blue-red architecture

originated. (F) The schematic diagram of the RASfam algorithm demonstrates how to construct the respective gene family of a MAMA.
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(Wu et al. 2012), a maximum parsimony method, to recon-

struct the evolutionary history of each ACC and infer the

module-level evolutionary events.

Homologous Gene Family Construction

We named our phylogenetic approach RASfam: A RAS-based

approach for homologous gene family construction (supple-

mentary algorithm, Supplementary Material online). Here, a

homologous gene family is defined as a set in which all of the

members share, at least partly, a common evolutionary origin.

This definition implies that different parts of all the sequences

of one gene family may have different histories. Each AST thus

forms an individual family. Intuitively, it seems difficult to clas-

sify gene families for each ACC. Surprisingly, with the RASs,

analysis becomes simple, but the results are reasonable

(fig. 1D). For each ACC, there were at least two extant

MAs consisting of at least two different modules. For each

extant MA of the ACC, we first traced its most ancient MA

(MAMA) by detecting the origin of each of its modules based

on the RAS (fig. 1E). The modules may derive from different

MAMAs or from the same MAMA. Then, we can reliably and

naturally construct the corresponding gene families for the

ACC according to the following rules: 1) the number of

gene families being classified is equal to the number of

MAMAs inferred and 2) each extant MA, and therefore its

corresponding sequences, will belong to one or more families

in accordance with its path(s) linked to one or more MAMAs,

respectively (fig. 1F).

Gene Family Comparison

To assess the difference between our workflow and other

methods for defining gene families, we selected

OrthoFinder v2.3.8 (Emms and Kelly 2019) and

CompositeSearch (Pathmanathan et al. 2018) as representa-

tives, the former of which views a gene as a whole unit and

the latter of which considers partial sharing of gene frag-

ments, and used them to define gene families independently.

We used OrthoFinder to construct gene families with the

parameters -f -t 40 -a 10. Gene families constructed by

CompositeSearch were first analyzed using BlastP (Camacho

et al. 2009) with the parameters -query -out -seg yes -soft_-

masking true -max_target_segs 5000 -outfmt -db -num_th-

reads 50, then using cleanblastp with the parameters -i -n 1,

and finally using the compositeSearch command with param-

eters -i -n -m composites -e 1e-05 -p 30 -c 80 -l 20 -t 1. We

then calculated some indices of the gene families and

calculated the relationship between our families and fam-

ilies defined by other methods. For 10,145 AST families and

3,245 ACC-derived nonoverlapping families, we classified

the relationships into 5 types: “identity,” “included,”

“inclusion,” “overlap,” and “inclusion and overlap”

(fig. 2A). Multimodule architecture is abbreviated as

“MMA.” In figure 2A, yellow solid circles denote

homologous gene families, and gray hollow circles denote

gene families identified by OrthoFinder or

CompositeSearch. For these relationships, “included”

means that a homologous gene family has a smaller size

and is included in the corresponding gene family identified

by the methods and vice versa. For homologous gene fam-

ilies in this category, “included-A” means that other ho-

mologous gene families overlap with the family identified

by the methods, and “included-B” means that other ho-

mologous gene families are also included in this gene fam-

ily. “Overlap” means that a homologous gene family shares

some but not all of its members with some related gene

families identified by the methods. “Inclusion and overlap”

means that a homologous gene family includes gene fam-

ilies and overlaps with other gene families that were iden-

tified by the methods. Next, for 1,832 ACC-derived

overlapping families, the relations were divided into 3

types: “MMA partially divided,” “MMA solely divided,”

and “MMA partially and solely divided.” These relations

describe the fate of an MMA based on methods to con-

struct gene families. “MMA solely divided” means that

proteins with an MMA are assigned to a unique family.

“MMA partially divided” describes proteins with an MMA

that are assigned to different families. “MMA partially and

solely divided” indicates that some MMAs in an ACC are

assigned to a unique family and some MMAs are partially

divided into different families.

Size Changes of the Gene Families

From a total of 15,222 gene families, we selected 7,820 fam-

ilies in which each species had at least 1 protein. We used

CAFE v4.1 to estimate one global lambda (lambda ¼
0.00061) and analyzed the size changes of these gene fam-

ilies. Using P< 0.01, we extracted the significant results. Gene

families with significant expansion or contraction on only one

leaf branch were considered species-specific expanded or

contracted families.

Others

Gene ontology (GO) enrichment analysis was performed us-

ing the ClusterProfile R package, and the enriched GO terms

and their corresponding adjusted P values were summarized

and visualized using REVIGO (http://revigo.irb.hr/, last

accessed March 10, 2020)(Supek et al. 2011). Other visuali-

zation was performed by the following tools: EvolView (Zhang

et al. 2012) and R v3.3.3. Data in the study were processed

and analyzed with Perl, Python, and R scripts.

Results

Constructed Gene Families with Partially Homologous
Relationships

Applying our analysis pipeline RASfam (fig. 1) to the set of

111,208 protein sequences from the 9 genomes, we detected
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22,840 different modules and 24,312 different MAs.

Assuming that an edge existed when 2 MAs shared at least

1 module, an architecture network comprising 4,173 ACCs

and 10,145 ASTs was created. The RASs of 4,018 ACCs were

inferred (supplementary table S1, Supplementary Material on-

line). Among these ACCs, 310 were computed by ourselves,

and 3,708 were computed previously by Wu et al. (2012). By

carefully examining these RASs (fig. 1D and Material and

Methods), we identified 5,077 ACC-derived families.

Importantly, of the 5,077 ACC-derived families, 1,832 were

derived from 790 ACCs; thus, they shared partial homologs

with other families (supplementary table S2, Supplementary

Material online). With the 10,145 AST families, we con-

structed 15,222 gene families with a mean family size of

6.22 genes. As shown in table 1, 82.3% (12,527) of these

gene families were single-copy families with at most 1 gene

for each species. Of these single-copy families, 29.7% (4,520)

were one-to-one orthologous across all 9 species. In addition,

only 6.5% (992) were species-specific families.

To assess the quality of the constructed gene families, we

applied the recently popular approach OrthoFinder (Emms

and Kelly 2019) and the newest method considering partial

sharing of sequence fragments, CompositeSearch

(Pathmanathan et al. 2018), to the same set of protein

sequences. As shown in table 1, OrthoFinder identified the

fewest families (14,220), whereas CompositeSearch identified

the largest number of families (21,733). Surprisingly, more

than one-third of the families identified by
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CompositeSearch were species specific, whereas only�6.5%

of those identified by RASfam and 6.9% of those identified by

OrthoFinder were species specific.

Among the 10,145 AST families that we identified,

�43.1% were identically detected by the 3 different methods

(fig. 2B). Specifically, most of the AST families (�65.4%) were

identical to those detected by OrthoFinder, indicating that, for

the genes evolving in their entirety, RASfam and OrthoFinder

may construct very similar gene families. Interestingly, we

found that �32.2% of the AST families were contained in

the OrthoFinder families, suggesting that the identified mod-

ules were more comprehensive and thus that the associated

MAs were more complete.

On the other hand, based on the STAR-MP inference

results for the 4,035 ACCs, 790 of the ACCs were split into

smaller groups, and 3,245 of them remained as a whole set of

related MAs. For these 3,245 ACC-derived families that did

not share proteins with other families (called nonoverlapping

families), 66.8% were identical to the OrthoFinder families

(fig. 2C). However, only �17.1% were identical to the

CompositeSearch families, and more, �49.4%, of the fami-

lies contained two or more CompositeSearch families, indicat-

ing that RASfam may capture much more complex partially

homologous relationships than CompositeSearch. For the 790

ACCs that needed to be split, we detected 1,832 ACC-

derived overlapping families that shared proteins with other

families. Nonetheless, we found that OrthoFinder constructed

468 of the 790 ACCs as nonoverlapping families, most of

these families were designated as MMAs solely,

CompositeSearch identified 201 ACCs as nonoverlapping

families, and most of these families were designated as

MMAs solely (supplementary table S3, Supplementary

Material online). For example, the RabX5-PB family and

RpL23A-PA family are good illustrations of an MMA being

solely divided (fig. 3). In this case, our method allowed the

multimodule protein to belong to two families, whereas

OrthoFinder and CompositeSearch assigned it to only one

family (fig. 3A). Importantly, the corresponding RAS provided

by our workflow reflected how the partial homology origi-

nated, which evolutionary events might have occurred along

the genome phylogeny, and when those events might have

occurred (fig. 3B). Interestingly, such complex partially homol-

ogous relationships between genes could be modeled in an

N-rooted gene network (N¼ 2 in this case) representing the

gene remodeling history (Haggerty et al. 2014), from which

the genealogy was inferred by using the RAS as a guide

(fig. 3C).

Gene Families with Significant Size Changes Inferred Using
CAFE

Based on the classification of the gene families for all the

protein-coding genes of the nine closely related genomes,

in general, statistical significance of the family size changes

could be inferred across the species phylogeny by using sto-

chastic birth–death process-based models such as CAFE (De

Bie et al. 2006). For each family that has at least one member

in each genome, this inference may reveal the pattern of sig-

nificant family size changes, including expansion or contrac-

tion, suggesting that adaptive responses to selection on some

biological processes might have occurred through these

changes in the gene families (Rubin et al. 2000; Francino

2005; Innan and Kondrashov 2010). Among the 7,820 fam-

ilies (AST: ACC derived ¼ 1.56) that satisfied the inference

condition, we found that 405 (5.18%) underwent significant

size changes (P value < 0.01). For the 242 significantly ex-

panded families with various biological functions (supplemen-

tary table S4, Supplementary Material online), we found 15

GO terms related to 22 families, such as defense response,

oxidoreductase activity, and odorant binding, among others

(supplementary table S5, Supplementary Material online),

which have previously been identified in expanded families

in the respective species (Hahn et al. 2007).

Interestingly and importantly, as shown in figure 4, the

majority of the significantly expanded families were ACC de-

rived in the respective lineages (v2¼ 220.96, df¼ 1, P< 2.2e-

16). In addition, for the 191 species-specific families that were

significantly expanded, a similar trend was observed in all

species except D. pseudoobscura (ACC derived: all ¼ 0.5)

(supplementary fig. S1, Supplementary Material online).

Hence, such expanded ACC-derived families should allow

us to investigate potential evolutionary patterns at the sub-

gene level, which may reveal the partially homologous rela-

tionships between the genes in those families. This is

important because, due to CAFE modeling only the family

size changes, nothing from the inference can reveal the de-

tailed sequence relationships, in particular the partial

Table 1

Indices of Different Gene Families

Method Family Size No. of Families

Mean Median Total ssF scF scF-allSP F-allSP

RASfam 6.22 6 15,222 992 (6.5%) 12,527 (82.3%) 4,520 (29.7%) 6,155 (40.4%)

OrthoFinder 7.82 9 14,220 981 (6.9%) 10,977 (77.2%) 5,994 (42.2%) 8,235 (57.9%)

CompositeSearch 5.12 1 21,733 8,311 (38.2%) 19,457 (89.5%) 4,028 (18.5%) 5,416 (24.9%)

NOTE.—ssF, species-specific families; scF, single-copy families; scF-allSP, single-copy families with all species present; F-allSP, families with all species present.

Han et al. GBE

192 Genome Biol. Evol. 12(3):185–202 doi:10.1093/gbe/evaa041 Advance Access publication February 27, 2020

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa041#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa041#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa041#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa041#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa041#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa041#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa041#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa041#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa041#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evaa041#supplementary-data


homology between genes in each of the significantly ex-

panded families.

We used the architecture scenarios reconstructed by STAR-

MP to trace how the architectures in each focal family and the

number of their corresponding sequences might have

changed between each of the extant species and its most

recent ancestor. For example, significant expansion in the

sperm-specific dynein intermediate chain (Sdic) gene family

in D. melanogaster resulted in five copies, whereas only one

copy was observed in its most recent common ancestor.

Based on the scenario inferred by STAR-MP, these four new

Sdic copies might have originated from partial duplication of

the ancestral Cdic gene (supplementary fig. S2,

Supplementary Material online). Sdic copies were previously

reported to be fixed by adaptive responses to natural selection

(Nurminsky et al. 1998, 2001) and to have evolved a novel

function that might enhance male fitness (Yeh et al. 2012).

Another example is the Cyp6a21/Cyp6a9 family, which has

expanded from one copy to five copies in D. mojavensis, in-

cluding three duplicated genes and one novel gene. This novel

gene’s MA existed in the extant family but was absent in its

recent ancestor’s family (supplementary fig. S3,

Supplementary Material online). The expansion of CYP-

related genes may specialize the detoxification ability of

D. mojavensis, allowing it to tolerate both toxic cactus necro-

ses and high-desiccation deserts (Drosophila 12 Genomes

Consortium et al. 2007; Markow and Ogrady 2007). More

interesting examples are shown in supplementary figures S4–

S6, Supplementary Material online.

Pervasive Module Rearrangements in Expanded Gene
Families

Once incorporating evolution at the subgene level into infer-

ence on size changes of gene families, the evolutionary pat-

terns will be complex, as exemplified by the aforementioned

patterns. In addition to gene duplication, other events such as

module duplication, loss, fusion, fission, and emergence

might also have occurred, leading to architecture formation

in respective gene families. Note that architecture formation is
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FIG. 3.—The inferred gene families and evolutionary history of RabX5-PB and RpL23A-PA. (A) The different families were constructed using different
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inferred when a novel architecture is present in extant species

but absent in the corresponding ancestor or when an archi-

tecture has more copies in extant species than in the corre-

sponding ancestor. Such an evolutionary pattern in each

family is also important for a species, even though family

size might not change or change insignificantly. To explore

evolutionary patterns at the subgene level, we focused on the

5,077 ACC-derived families and investigated their architec-

ture change patterns based on the evolutionary scenarios in-

ferred by STAR-MP.

For the simplicity of comparison, only two levels are con-

trasted for each gene family, namely, the family of the extant

species and that of its recent ancestor. A simple index called

foldchange is defined as the ratio of extant species family size

to its recent ancestor family size. The overall distribution of the

foldchanges can be calculated accordingly (supplementary

fig. S7, Supplementary Material online). Meanwhile, for dif-

ferent types of foldchanges, we examined the evolutionary

patterns of gene families in the respective species (supplemen-

tary table S6, Supplementary Material online). Most branches

were completely unchanged (25,998, 66.8%), and many only

lost genes (5,189, 13.3%). The unchanged architectures and

copy numbers may simply be a result of the short time that

has passed within the closely related species or may be im-

portant for some gene families. There were 187 unchanged

ACC-derived families and 4,039 unchanged AST families in

the 9 species. We found that the enriched GO term of the AST

families was related to “mRNA splicing, via spliceosome” and

that the major functions of the ACC-derived families were

involved in some basic biological processes, such as replica-

tion, protein import, metabolism, cellular respiration, and di-

gestion. In addition, we observed that 86 ACC-derived

families were unchanged only in the Drosophila subgenus

and that 92 ACC-derived families were unchanged only in

the Sophophora subgenus. Interestingly, the enriched GO

terms for these unchanged families were different between

the two subgenera; they were related to rhodopsin biosyn-

thesis, synapse organization, and sleep in Drosophila subge-

nus, whereas in the Sophophora subgenus, they were mainly

related to the Notch signaling pathway, the open tracheal

system, cilium organization, locomotor rhythm, and other

processes (supplementary fig. S8, Supplementary Material

online).

Except for the branches presenting no changes or only loss

events, supplementary figure S9 and table S6, Supplementary

Material online, present the distributions of the lost, dupli-

cated, and novel genes for each family in each species.

Surprisingly, novel genes were generated uniquely in some

of the families with a foldchange<1 (1,244, 19.2%), indicat-

ing that new architectures might have occurred, although

most ancestral genes were lost. For the families of unchanged

size, a similar pattern was observed: some of them (4,053,

13.4%) generated novel genes while losing all ancestral

genes, implying that the types of architectures have

completely changed while the number of genes has remained

the same. Interestingly, for the families with a foldchange>1,

most (1,667, 72.9%) did not lose genes, and many of them

(1,150, 69.0%) gained novel genes, indicating that most such
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families might have generated novel architectures while main-

taining the ancestral architectures as well. Additionally, some

of the families (443, 26.6%) without loss events generated

only duplicated genes, and a few families (74, 4.4%) gener-

ated both duplicated and novel genes. Similarly, for the fam-

ilies with a foldchange >1 and with loss events, most (565,

91.3%) generated only novel genes, and fewer families (25,

4.0%) generated only duplicated genes. This result demon-

strates that the ACC-derived families expanded mainly

through module rearrangements by creating novel genes in-

stead of undergoing simple gene duplication.

Dominant Module Rearrangement Type for Architecture
Formation

Using our pipeline, we also provided a much more complete

landscape of gene evolution at the gene and subgene levels.

With our 4,107 RASs for ACCs and 8,902 reconstructed ge-

nealogies for ASTs, we studied the distribution of each type of

evolutionary event (supplementary fig. S10 and table S7,

Supplementary Material online). These evolutionary events

might lead to architecture formation as well as architecture

loss. Architecture formation at the gene level can only in-

crease gene copies, whereas that at the subgene level may

lead to novel genes. Along a branch, a single-module evolu-

tionary event may occur with other single-module events,

thus causing not only single occurrences but also the cooc-

currence of module events. We classified each of the possible

combinations of module events as rearrangement events by

using abbreviations for combinations of module events such

as “D,” “S-D,” “S-L,” and so on (fig. 5). Each rearrangement

event could fall into one of seven rearrangement types: mod-

ule duplication, partial gene duplication, module loss, fission,

fusion, terminal loss, and recombination. Note that a “D”

rearrangement event along a branch indicates the occurrence

of only module duplication, which could result from the du-

plication of an ancestral single-module architecture or each

module of the ancestral multimodule architecture, resulting in

whole-gene duplication. Similarly, the “L” rearrangement

event results in whole-gene loss. To determine the patterns

that might explain the formation of architectures, we exam-

ined the rearrangement events along terminal branches.

Module duplication (“D”), module loss (“L”), and fission

(“S”) were inferred when only the corresponding module

event occurred along the branch. Note that fission here

requires both products of the split to be present. Partial

gene duplication was considered to have occurred when

one of the split modules duplicated after the ancestral archi-

tecture split (“S-D”). Terminal loss was determined by ances-

tral architecture split and loss of one of the split modules (“S-

L”) and if the remaining module duplicated (“S-L-D”). Fusion

was inferred when the extant architecture was formed by the

simple merging of two ancestral modules (“M”), the merging

of two ancestral modules after one or both of them

duplicated (“D-M”), the merging of two ancestral modules,

whereas the other ancestral module was lost (“L-M”), or even

the merging of two ancestral modules, with some ancestral

modules duplicating and other being lost (“D-L-M”). Finally, a

module from the ancestral multimodule architecture partici-

pating in the formation of the extant multimodule architec-

ture was placed in the recombination category, which

included cases in which the split module merged with another

ancestral module after the ancestral architectural split (“S-

M”), one of the split modules was then lost (“S-L-M”) or

duplicated (“S-D-M”) or one of the split modules was lost

and the other was duplicated (“S-D-L-M”).

In total, 11,045 rearrangement events were present along

the terminal branches, including architecture formation and

loss. The majority (6,856, 62.07%) of these rearrangements

were single-step events, and the remaining (4,189, 37.93%)

were multiple-step events (fig. 5), which was consistent with

the findings of a previous study on Drosophila domains, sug-

gesting that 63.6% of new arrangements have an exact

single-step solution (Moore et al. 2013). In contrast, we

detected rearrangements that may have been the result of

more complex rearrangements. Importantly, a complex chain

of events, which might have a high cost but still has a prob-

ability of occurring, can explain some architecture formation.

In figure 5, we illustrate the percentage distribution of the

seven rearrangement types.

Simple module loss and module duplication could be char-

acterized as gene loss and duplication as they did not form

novel architectures. Among the five other types (5,979

events), terminal loss (2,187, 36.58%), and fusion (1,996,

33.38%) were the major drivers of novel architectures (v2 ¼
2,522, df¼ 4, P< 2.2e-16), and only 4.1% (245) of the novel

architectures arose due to fission. It seems plausible that pro-

teins are more likely to lose a nonfunctional fragment than to

produce two individual fragments because a mutation is more

likely to result in a premature stop codon than to produce

new start and stop codons. In addition, compared with fusion,

which directly merges ancestral single-module architectures,

recombination, which requires ancestral fragment merging by

multiple steps, is rare (515, 8.61%). To further understand

which rearrangement events have contributed to the forma-

tion of single-module and multimodule architectures, we in-

vestigated the rearrangement event distributions of these

types of architectures among the nine species (fig. 6). For

multimodule architecture formation, “M” was the most fre-

quent category in each species, and it is likely that gene fusion

is the dominant multimodule architecture formation mecha-

nism (v2 test, v2 ¼ 9,479, df ¼ 13, P< 2.2e-16). In contrast,

most single-module architecture formation was mediated by

terminal loss, except in D. grimshawi, in which the most com-

mon rearrangement type was partial gene duplication (v2

test, v2 ¼ 12,869, df ¼ 13, P< 2.2e-16). Interestingly, partial

gene duplication also occurs at a high frequency in D. yakuba.

The single-module architectures formed by partial gene
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duplication in D. yakuba were not detected in

D. melanogaster, and those in D. grimshawi had only eight

instances in D. melanogaster. Even without enough data to

perform GO enrichment analysis, we assumed that the single-

module architectures that formed along these two indepen-

dent lineages were related to the species-specific innovative

potential of protein. This indicates that module rearrange-

ment can generate diverse architectures in evolutionarily short

time periods and have a biased pattern when forming single-

module or multimodule architectures.

As we found pervasive module rearrangements in ex-

panded gene families, we wanted to determine how often

different rearrangement types occurred when the gene family

expanded within the Drosophila clade. For 1,383 nonoverlap-

ping ACC-derived families whose foldchange was >1 along

the corresponding terminal branch (1,698 expansions in to-

tal), we calculated the distribution of rearrangement events

(supplementary table S8, Supplementary Material online).

Based on whether the formed architecture was of a single

module or multiple modules, the expansions were classified

into three categories, namely, only single-module architec-

tures formed (1,180, 69.49%), only multimodule

architectures formed (281, 16.55%), and both types of archi-

tectures formed (237, 13.96%). Interestingly, most of the

expansions formed only single-module architectures and

mainly occurred through partial gene duplication (v2 test, v2

¼ 1,590, df ¼ 13, P< 2.2e-16), and all of these single-

module architectures were also novel architectures.

However, expansions that formed only multimodule architec-

tures were driven by gene duplication (v2 test, v2 ¼ 6,939.2,

df ¼ 13, P< 2.2e-16), which increased gene copies without

architectural changes. In conclusion, partial gene duplication

might be an important driver of gene family expansions at the

subgene level, with novel single-module protein formation.

Discussion

We have presented a phylogenetic workflow that can be used

to comprehensively reconstruct protein-coding gene evolu-

tion and that captures gene duplication and loss at the

gene level and module duplication, loss, fusion, fission, and

emergence events at the subgene level. We have also devel-

oped a new phylogeny-based approach considering partial

homology for gene family construction and demonstrated
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some of its advantages when compared with similarity-based

approaches. First, our phylogeny-based approach is more re-

alistic regarding the biological notion of homology. This strat-

egy can comprehensively depict sequence evolutionary

processes such as when and which evolutionary events might

have occurred along the genome phylogeny that have led to

partial homologs. For our constructed gene families, accord-

ing to comparison with OrthoFinder and CompositeSearch,

among genes that evolved only at the gene level, the con-

structed families were clearly almost identical. Interestingly,

for genes that evolved at the module level, more reliable par-

tial homologous relationships were revealed within each fam-

ily constructed via our method. Second, our approach

provides the detail investigation of gene family evolution.

When gene family expansion and contraction analysis is per-

formed on those families with partial homologs, the recon-

structed evolutionary process may reflect genetic mechanisms

including module rearrangement and not be limited to gene-

level duplication and loss. Significantly, with both gene and

module evolutionary events, we first provided a complete

landscape of gene family evolution within a set of closely re-

lated genomes and found that the gene family expanded

mainly through module rearrangements (fig. 4).

By adopting a more pluralistic account of homology, we

methodologically defined homologous gene families that in-

cluded full-length homologs as well as partial homologs by
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analyzing the module and protein evolutionary processes

through which proteins have frequently originated. The bio-

logical notion of homology was first raised by Owen (1868),

who summarized homologies of the vertebrate skeleton and

interpreted homologies in some archetypes as variants with-

out an evolutionary view. After almost 140 years, the mean-

ing of homology has been clarified with molecular sequence

data (Reeck et al. 1987). Although the sentiments “homology

is indivisible” (Fitch 2000) and “homology should mean ‘pos-

sessing a common evolutionary origin’” (Reeck et al. 1987)

are quoted in the vast majority of reports, Fitch (2000) and

Hillis (1994) suggested that partial homology can be used

with care to describe chimeric gene relationships. As our stud-

ies revealed and Haggerty et al. (2014) emphasized, homol-

ogy should refer to proteins that possess at least one ancestor

in common with other proteins, especially those that have

evolved at the subgene level. With our observations on the

architecture evolutionary process, we found that some pro-

teins formed from different genetic parts, which can be

expected to have different origins. Assuming that the number

of ancestors of some proteins was >1, we constructed the

more complex gene families and reflected gene family evolu-

tionary histories more realistically. Therefore, the scope of

evolutionary analyses may further expand. For example, be-

cause two genes from different gene families may be related

through a multimodule gene that belongs to both gene fam-

ilies, these families related through intermediate sequences

will have a family resemblance relationship (Haggerty et al.

2014). Some gene families may display family resemblances

through intermediate sequences; thus, we can ask whether

sequences are similar in function when they have a close fam-

ily resemblance relationship and how the functional variation

is related to family resemblance. These homologous gene

families can be seen as complements to conventional

similarity-based gene families. Obviously, such a classification

of gene families will incur a greater computational cost, al-

though the rationale of such an approach is appealing.

Moreover, the reconstruction of architecture scenarios reveals

the timing and form of architecture rearrangement but not

the evolutionary process of sequences. Further analyses sup-

porting the phylogenetic reconstruction of proteins or genes,

such as the development of N-rooted fusion networks, are still

needed.

A major issue in our study is the definition of subgene units.

Identifying modules is computationally intensive. To delineate

all possible evolutionary units of protein-coding genes across a

set of closely related genomes, we could not use any existing

domain databases because they not only are usually limited to

some domains but also contain domains that are sparsely

distributed along sequences. Thus, we need to identify mod-

ules based on sequence similarity across the set of selected

genomes, currently using the approach proposed by Wu et al.

(2012). This means that all possible modules must be reiden-

tified for a new set of genomes, resulting in high

computational costs. We can imagine that even if we add

or remove one genome from the set of genomes in which

the modules have been identified, we will need to recompute

all modules again.

In addition, phylogenetic reconstruction should be im-

proved. The reconstruction of ACC evolutionary scenarios is

achieved by using the maximum parsimony method STAR-

MP. Given extant architectures and inferred ancestral module

counts, STAR-MP can generate a set of possible ancestral

architectures at each internal node and determine the module

events that would be necessary to transform the ancestral

architectures into the extant architectures. It then applies a

dynamic programing algorithm to find the minimum total

cost along all internal branches and finally determines the

most parsimonious ancestral architectures and module events

at each node. Although the number of possible ancestral

architectures can be intractably large, STAR-MP relies on heu-

ristics to limit the architecture space and uses a maximum

parsimony algorithm to determine the architectures.

However, a better understanding of module rearrangements

may help us better sample architecture space and even build a

more biologically relevant model for accurate architecture re-

construction and module event inference. For example, de-

termining how often module events occur may provide

insight into event cost assignment. In this study, we set equal

costs for the five types of module events and did not incor-

porate duplication-to-loss or merge-to-split ratios to avoid cir-

cular dependencies. In addition, although the parsimonious

reconstructions of evolutionary histories are rapid and effi-

cient, using other methods that propagate sequence informa-

tion across all reconstructions, similarly to existing maximum

likelihood and Bayesian methods, we may model both se-

quence and architecture evolution and better capture their

evolutionary histories. Future studies may estimate module

event rates independently and incorporate them in a proba-

bilistic framework.

Our findings about the distribution of evolutionary events

are comparable to those of previous studies. For whole-gene

evolution, most gene duplication events (5,795 of 7,443,

77.86%) occurred along internal branches, whereas most

gene loss events (18,379 of 20,859, 88.11%) occurred along

terminal branches (v2 ¼ 11,535, df ¼ 1, P< 2.2e-16). Gene

losses occurred 2.8 times more often than gene duplications,

which was in line with the findings of previous studies

(Rasmussen and Kellis 2011; Koskiniemi et al. 2012; Puigbo

et al. 2014; Nelsonsathi et al. 2015). In particular, the gene

loss-to-gene duplication ratio of terminal branches was 11.15.

The large number of gene losses relative to gene duplications

might be due to gene dispensability. As many studies

revealed, only a few hundred genes are essential, and nearly

90% of genes in bacteria (Baba et al. 2006; De Berardinis

et al. 2008), 80% in yeast (Giaever et al. 2002; Kim et al.

2010), and 65–85% in Caenorhabditis elegans (Kamath et al.

2003; Sonnichsen et al. 2005) and D. melanogaster (Kamath

Han et al. GBE

198 Genome Biol. Evol. 12(3):185–202 doi:10.1093/gbe/evaa041 Advance Access publication February 27, 2020



et al. 2003; Sonnichsen et al. 2005) are dispensable. It is plau-

sible to assume that redundant genes—paralogs arising via

duplication—functionally overlap with (Mcclintock et al.

2001; Gitelman 2007; Canestro et al. 2009) or supplement

alternative pathways (Danchin et al. 2006), accounting for

ancient gene duplications followed by many gene losses.

For module evolution, we observed that module losses

(9,181) outnumbered module duplications (3,494) on termi-

nal branches by a factor of 2.63, which was similar to the

pattern for whole-gene evolution and in accordance with pre-

viously reported results at the domain level (Zmasek and

Godzik 2011). Emergence events all occurred along internal

branches. Note that we focused on the well-known

Drosophila clade and did not use outgroup genomes to search

for de novo-created genes. Thus, some inferred emerged

modules might have existed prior to the formation of the

Drosophila clade. The module merge-to-split ratio along ter-

minal branches was 0.58, which seemed to be inconsistent

with previous findings that fusion is more frequent than fis-

sion (Kummerfeld and Teichmann 2005; Fong et al. 2007;

Kersting et al. 2012). However, as Wu et al. emphasized

(Wu et al. 2012), their method measured individual events

to describe the detailed process of architecture formation.

For example, partial gene duplication (architecture AB to ar-

chitecture AB and A) and partial gene loss (architecture AB to

architecture A) all require a split event prior to module dupli-

cation/loss. If we consider “simple” merges and splits that are

unaccompanied by other module evolutionary events, as

shown in figure 5, the merge-to-split ratio becomes 6.31,

which is comparable to that obtained in previous studies.

Investigating the evolution of gene families across

species may provide insight into the evolutionary forces

that have shaped gene family diversity and adaptation.

Most cases of gene family expansion and contraction

reflect the pervasiveness of gene duplication and gene

loss. Complementarily, we show that module rearrange-

ment is also prevalent in gene family evolution. For a

long time, gene duplication was thought to be the ma-

jor driver of increased gene family size and to contribute

to adaptive evolution (Demuth and Hahn 2009;

Kondrashov 2012). Additionally, the duplicated genes

that accumulate mutations may further diverge and in-

crease the diversity of gene family members (Gao et al.

2014). The formation of proteins with new functions

from preexisting ones is thought to be easier than the

de novo formation of genes (Kondrashov 2012). In our

study, we found that gene family expansions mainly

generated single-module genes instead of multimodule

genes. Although family expansions frequently result

from gene duplication when forming multimodule

genes, partial gene duplication is more frequent when

forming single-module genes. One explanation is that

the specific functional part of proteins might be ex-

panded because of selective pressure. The monkey-

king (mkg) gene family discovered in D. melanogaster

shows that genes can originate from different domains

of an ancestral protein through a fission process and

that the underlying mechanism is duplication followed

by complementary partial degeneration (Wang et al.

2004), leading to the specification of protein functions in

gene duplicates. That is, the mechanism of partial gene du-

plication is gene duplication with subsequent partial degen-

eration. It is conceivable that gene duplicates might be

redundant in the early stage and then subsequent degener-

ations might lead to functional specification during the pro-

cess of species adaptation. Overall, diversity among gene

family members can result from not only divergent gene

duplicates but also new single-module proteins from partial

gene duplication, which implies the formation of specific

functional proteins. For gene family contractions, whether

gene loss is adaptive or neutral is sometimes controversial.

The less-is-more hypothesis proposes that adaptive loss-of-

function mutations are due to changes in environmental

conditions (Olson 1999; Olson and Varki 2003; Howes

et al. 2011; Hottes et al. 2013), and regression evolution

offers many examples of the loss of useless genes and char-

acteristics with neutral effects on fitness (Moreau and

Dabrowski 1998; Protas et al. 2006). The neutralism–selec-

tionism debate questions whether neutral variants are re-

lated to the emergence of evolutionary innovations

(Wagner 2008). We demonstrated that for all 6,472

branches with gene family contractions, although the largest

percentage (80.18%, 5,189) was due to pure gene loss,

19.22% (4,053) resulted from gene loss accompanied by

novel gene emergence. The novel genes formed through

module rearrangement may have potential functional inno-

vations and be adaptive and selection driven, contributing to

adaptation of the species, and the ancestral genes might be

neutral or slightly deleterious and finally lost by genetic drift.

These gene families might contract in size but increase in

diversity with different members, which implies functional

transformation through the evolution of gene families.

In summary, reconsidering exactly how genes evolve, par-

ticularly at the subgene level, we adopt a revised homology

model to methodologically resolve the problem of homology

detection. In the case study, we found pervasive module rear-

rangement during gene family evolution and characterized

more details as complementary to our previous understanding

of gene family expansion and contraction. Further analyses

incorporating partial homology into gene family construction

may provide new insights into the complex relationships be-

tween gene function, species phylogenetic relationships, and

evolutionary processes.
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