
Computational and Structural Biotechnology Journal 19 (2021) 732–742
journal homepage: www.elsevier .com/locate /csbj
A theoretical and generalized approach for the assessment of the
sample-specific limit of detection for clinical metagenomics
https://doi.org/10.1016/j.csbj.2020.12.040
2001-0370/� 2021 Friedrich-Loeffler-Institut. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: dirk.hoeper@fli.de (D. Höper).
Arnt Ebinger a, Susanne Fischer b, Dirk Höper a,⇑
a Institute for Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald–Insel Riems,
Mecklenburg-Western Pomerania, Germany
b Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald–Insel Riems, Mecklenburg-Western
Pomerania, Germany
a r t i c l e i n f o

Article history:
Received 1 September 2020
Received in revised form 16 December 2020
Accepted 24 December 2020
Available online 26 December 2020

Keywords:
Metagenomics
Next-generation sequencing
Detection limit
Sensitivity
Bernoulli process
qPCR
a b s t r a c t

Metagenomics is a powerful tool to identify novel or unexpected pathogens, since it is generic and rela-
tively unbiased. The limit of detection (LOD) is a critical parameter for the routine application of methods
in the clinical diagnostic context. Although attempts for the determination of LODs for metagenomics
next-generation sequencing (mNGS) have been made previously, these were only applicable for specific
target species in defined samples matrices. Therefore, we developed and validated a generalized
probability-based model to assess the sample-specific LOD of mNGS experiments (LODmNGS). Initial rar-
efaction analyses with datasets of Borna disease virus 1 human encephalitis cases revealed a stochastic
behavior of virus read detection. Based on this, we transformed the Bernoulli formula to predict the min-
imal necessary dataset size to detect one virus read with a probability of 99%. We validated the formula
with 30 datasets from diseased individuals, resulting in an accuracy of 99.1% and an average of 4.5 ± 0.4
viral reads found in the calculated minimal dataset size. We demonstrated by modeling the virus genome
size, virus-, and total RNA-concentration that the main determinant of mNGS sensitivity is the virus-
sample background ratio. The predicted LODmNGS for the respective pathogenic virus in the datasets were
congruent with the virus-concentration determined by RT-qPCR. Theoretical assumptions were further
confirmed by correlation analysis of mNGS and RT-qPCR data from the samples of the analyzed datasets.
This approach should guide standardization of mNGS application, due to the generalized concept of
LODmNGS.
� 2021 Friedrich-Loeffler-Institut. Published by Elsevier B.V. on behalf of Research Network of Compu-
tational and Structural Biotechnology. This is an open access article under the CC BY license (http://crea-

tivecommons.org/licenses/by/4.0/).
1. Introduction

Metagenomic next-generation sequencing (mNGS) is a power-
ful tool to identify the DNA or RNA of novel or unexpected patho-
gens in a single-assay. It enables a relatively unbiased detection of
all organisms present in a sample, including viruses, bacteria,
fungi, and parasites [1]. It has therefore a great potential to fill
the gap of detecting undiagnosed causative agents in diseased
patients [2–4]. Routine molecular diagnostic methods like real-
time quantitative PCR (qPCR) are highly sensitive, specific and
can be standardized [5]. However, the specificity hampers the
detection of newly emerging pathogens or distant relatives, like
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) and the variegated squirrel bornavirus 1 (VSBV-1) [6,7]. Addi-
tionally, by qPCR only those pathogens can be detected that are
specifically targeted. Unexpected pathogens are missed [8]. This
gap of diagnosis can lead to a fatal outcome for patients, due to a
delayed development and/or implementation of clinical interven-
tion strategies, like vaccination, medication, treatment, and quar-
antine. In this respect, mNGS is increasingly applied in clinical
settings [9]. Technological and bioinformatics advances made it
even more attractive [10–14]. In recent years, ring-trials of bioin-
formatics pipelines [15,16] and clinical retro- and prospective
studies were performed focusing on proof-of-concept,
turnaround-times, accuracy, thresholds to prevent false-positive
calls, quality metrics, and analytical and diagnostic specificity
and sensitivity [17–20].

Sensitivity is one of the major factors to assess the power of a
diagnostic method. At the first glance, the sensitivity of mNGS is
determined by the amount of sequenced reads. Thus, the more
reads are sequenced, the further the sensitivity increases.
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However, the selection of the required data depth has been based
mainly on economic factors and empirical and ad-hoc heuristic
models, resulting in published datasets that range from 5 to 24
mio reads [17–19,21,22]. Especially for tissue samples, the unbi-
ased sequencing usually results in high background levels of often
>99%, which is an inherent disadvantage of mNGS, limiting the
analytical sensitivity at constant data depths [22]. To address this
issue, targeted pathogen enrichment techniques and host-
depletion have been applied [23–25]. However, they are expensive,
complex, and not available for every host or pathogen and more-
over do not support the detection of hitherto unknown pathogens.
The heterogenic composition of host and pathogen is consequently
a key problem in mNGS analysis. Low levels of pathogen reads fur-
ther complicate the differentiation from commensals and contam-
inants. Hence, data interpretation has been supported by statistical
assessment (z-scores) [26] or methodical parameters, for example
calculation of the pathogen reads per million (rpm) [18], to make
positive calls based on the pathogen read numbers and propor-
tions. Furthermore, the detection rate is influenced by the genome
size of the specific target. In coverage theories, the genome size
determines the necessary sequencing effort. To achieve equal
sequence depth, a higher sequence data input into assembly is
needed for larger genomes than for smaller genomes. Likewise,
the detection of a single sequencing read is more likely to come
from a large genome rather than a small one at uniform abundance
levels [27,28]. The detection of a species out of the specimen is
thus dependent on its abundance, the relative genome size, and
the data depth [27]. Therefore, mNGS design should be aware of
these factors to find the needle in the metagenome haystack
[29], since low abundant pathogens have also been linked to severe
diseases [30,31].

So far, sensitivity assessments of mNGS have been made by
comparison with routine methods at qualitative or semi-
quantitative levels (Cq values) and by spiking a collection of patho-
gens in serial dilutions in a specific sample matrix [18,20,22,32,33].
However, due to the core property of mNGS to detect all nucleic
acids with nearly identical probability, a generalization of these
pathogen/matrix combination specific results is not possible. Thus,
the definition of a limit of detection (LOD) for mNGS (LODmNGS), as
applied for other routine methods, is hampered due to the many
variables influencing the sensitivity.

Hence, the aim of this study was the development and valida-
tion of a pathogen/matrix independent generally applicable math-
ematical model to assess the detection limit of mNGS experiments.
This approach should guide standardization of mNGS application.
Therefore, we developed and validated a straightforward analytical
tool to assess the sample-specific LODmNGS, which is critical for the
routine application of mNGS in the clinical diagnostic context.
2. Experimental procedures

2.1. Samples and datasets

The study included 30 disease-associated samples and the
respective datasets from human and animal cases (Table 1), con-
firmed by RT-qPCR and mNGS from total RNA. Briefly, five samples
originated from brain material of human fatal encephalitis cases
caused by Borna disease virus 1 (BoDV-1) [8,31]. Twenty-five sam-
ples with different sample matrices, including lung, brain, heart,
liver, and spleen were derived from various host species infected
with rustrela virus (RusV) [34], a pegivirus (PGV), or with West
Nile virus (WNV) lineage 2 [35], respectively. In the analysed
mNGS datasets, virus-specific reads were identified by assem-
bler/mapping analysis after quality and adapter trimming imple-
mented in the 454 software suite (v3.0; Roche). The quality of
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the library and dataset was checked using FastQC [36] and R-
packages bioanalyzeR [37] and qrqc [38] in R-Studio [39] with R
(v4.0.2; [40]). Subsequently, the percentage of the respective target
virus in the dataset was calculated from the number of virus-
specific reads and the total number of reads of that dataset.

2.2. Wet-lab procedures

Total RNA concentrations were quantified using a Nanodrop
ND1000 instrument (Peqlab, Erlangen, Germany). The DNA library
concentration was measured by using the Bioanalyzer 2100 (Agi-
lent Technologies, CA, USA). Absolute quantification of the viral
RNA and the double-stranded virus cDNA (library) was performed
by specific 50 nuclease RT-qPCR and qPCR, respectively (SensiFASTTM

Probe No-ROX One-Step Kit, meridian Bioscience, Tennessee, USA).
For BoDV-1, Mix1 targeting the P gene was used [8]. For PGV, we
used an in-silico and in-vitro confirmed specific assay. For WNV,
the INEID-assay targeting the 50 untranslated region was used
[41]. For RusV, an assay targeting the non-structural gene was used
[34]. For absolute quantification, a plasmid or synthetic dsDNA
(gBlocks�, Integrated DNA Technologies, Leuven, Belgium) calibra-
tion standard was applied in duplicates in ten-fold dilutions series
from 1.0E + 06 to 1.0E + 01 copies per ml (c/ml) in concordance with
the MIQE Guidelines [42]. RT-qPCR calibration curves for BoDV-1,
PGV, WNV, and RusV showed an efficiency between 96.6% and
103.1% with R2 ranging from 0.9998 to 1.0 and slope in the range
from –3.407 to –3.348. For BoDV-1 RNA only, retrospective abso-
lute quantification was carried out with an external calibration
curve. An internal standard was used for normalization between
the runs. The qPCR calibration curves for the quantification of tar-
get virus fragments in the library showed an efficiency between
100.4% and 103.2% with R2 ranging from 0.993 to 1.0 and slope
in the range from –3.312 to –3.247. For this, 14 libraries, compris-
ing nine WNV (lib03416 – lib03425), two BoDV-1 (lib02246,
lib02462), two PGV (lib03148, lib03150), and one RusV
(lib03123) were analyzed.

2.3. Rarefaction analysis

Rarefaction analyses were performed initially with the five
BoDV-1 metagenomics datasets only (lib02012 to lib02558;
Table 1). Reads were mapped along the BoDV-1 reference sequence
(NC_001607.1) using the 454 software suite (v3.0; Roche, Man-
nheim, Germany) to identify reads of viral origin. Complete lists
of read accessions of the individual libraries were extracted. Then,
random subsets of read accessions of each library comprising
1.0E + 02, 1.0E + 03, 1.0E + 04, 5.0E + 04, 1.0E + 05, 5.0E + 05,
1.0E + 06, 2.0E + 06, and 3.0E + 06 reads were retrieved from these
lists using the linux command ‘shuf’. In these subsets, read acces-
sions representing viral reads were identified using the linux com-
mand ‘fgrep –f’ and the list of accessions representing reads of
known viral origin. For each subset size, analyses were repeated
100 times and for each repetition presence, absence of BoDV-1 as
well as the number of BoDV-1 reads were recorded. In case the
detection rate (presence or absence of BoDV-1 reads) in a given
subset size exceeded 95%, only five repetitions were performed
because of the low variation in results.

2.4. Reference sequences

For calculations exploring factors that influence the limit of
detection, we included the following sequences of RNA virus family
representatives:West Nile virus (WNV), NC_001563.2, Flaviviridae;
Borna disease virus 1 (BoDV-1), NC_001607, Bornaviridae; Rift
Valley fever virus (RVF), NC_014397, NC_014396, NC_014395,
Bunyaviridae; Sindbis virus (SINV), NC_001547, Togaviridae;



Table 1
Sample and sequencing information.

Viral target Library ID Host Tissue Total RNA RT-qPCR mNGS

(ng/ml) (Cq value) total reads target virus reads target virus percentage

BoDV-1 lib02012 Human brain 25.7 15.7 2.69E + 06 2.15E + 04 8.00E – 01
lib02246 Human brain 37.6 23.0 7.65E + 06 3.20E + 01 4.18E – 04
lib02462 Human brain 17.0 17.8 4.60E + 06 4.61E + 03 1.00E – 01
lib02557 Human brain 4.1 19.3 1.15E + 07 1.96E + 04 1.71E – 01
lib02558 Human brain 18.4 20.5 3.93E + 06 2.70E + 01 6.86E – 04

PGV lib03148 European hamster lung 136.4 26.8 1.45E + 06 2.10E + 01 1.44E – 03
lib03150 European hamster lung 260.2 28.0 1.76E + 06 1.00E + 01 5.67E – 04

RusV lib03123 Donkey brain 249.0 26.2 2.65E + 06 1.30E + 01 4.91E – 04
WNV lib02898 Great Grey Owl organ pool 598.3 11.3 6.82E + 06 3.97E + 05 5.83E + 00

lib02914 Goshawk brain 197.3 15.7 6.67E + 06 3.01E + 04 4.52E – 01
lib02959 Goshawk brain 80.3 17.6 7.99E + 06 2.79E + 04 3.49E – 01
lib03378 Snowy Owl heart 217.4 21.4 2.71E + 06 8.82E + 02 3.26E – 02
lib03379 Great Grey Owl liver 898.5 14.3 3.00E + 06 3.61E + 04 1.20E + 00
lib03380 Snowy Owl liver 832.1 12.3 3.87E + 06 2.12E + 05 5.46E + 00
lib03381 Blue Tit brain 40.6 21.7 4.38E + 06 2.88E + 04 6.57E – 01
lib03382 Snowy Owl liver 715.2 16.6 3.55E + 06 1.84E + 04 5.17E – 01
lib03415 Snowy Owl heart 189.9 16.8 2.47E + 06 9.73E + 03 3.94E – 01
lib03416 Andean Flamingo heart 119.5 17.2 8.37E + 05 3.36E + 03 4.02E – 01
lib03417 Goshawk heart 188.9 17.6 1.05E + 06 3.58E + 03 3.41E – 01
lib03418 Goshawk brain 134.7 12.5 2.72E + 06 2.94E + 05 1.08E + 01
lib03419 Goshawk brain 535.9 13.0 9.25E + 05 4.04E + 04 4.37E + 00
lib03420 Goshawk brain 411.5 16.1 7.98E + 05 5.53E + 03 6.93E – 01
lib03422 Great Tit liver/heart 1180.9 11.7 1.23E + 06 1.56E + 05 1.27E + 01
lib03423 Eurasian Golden Plover liver/spleen 472.7 19.2 1.58E + 06 1.32E + 04 8.38E – 01
lib03424 Goshawk brain 446.0 16.7 1.02E + 06 4.92E + 03 4.81E – 01
lib03425 Snowy Owl liver 619.9 14.2 1.57E + 06 3.21E + 04 2.05E + 00
lib03426 Snowy Owl liver 513.1 17.2 3.77E + 06 1.17E + 04 3.10E – 01
lib03449 Humboldt-Penguin heart 270.7 12.1 2.72E + 06 3.06E + 05 1.12E + 01
lib03450 Goshawk brain 291.5 14.5 2.32E + 06 3.15E + 04 1.36E + 00
lib03451 Horse spinal cord 34.7 28.2 2.94E + 06 1.80E + 01 6.11E – 04

Abbreviations: BoDV-1, Borna disease virus 1; PGV, Pegivirus, RusV, Rustrela virus; WNV, West Nile virus lineage 2; RNA (total), ribonucleic acid concentration of the sample;
RT-qPCR, reverse transcriptase real-time PCR; Cq, quantification cycle; mNGS, metagenomics next generation sequencing.
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
NC_045512.2, Coronaviridae; Human coxsackievirus A (CV-A2),
NC_038306, Picornaviridae; Measles virus (MV), NC_001498,
Paramaxoviridae; Rabies lyssavirus (RABV), NC_001542,
Rhabdoviridae; Rubella virus (RuV), NC_001545.2, Matonaviridae;
Influenza A virus (IAV), GCA_001343785, Orthomyxoviridae;
Hepatitis delta virus (HDV), NC_001653.2, Deltavirus incertae sedis.
Fig. 1. Rarefaction analysis and detection rate of BoDV-1 datasets. Detection rates
(%) were calculated by the amount of qualitative BoDV-1 read positive subsamples.
3. Results

3.1. Virus read proportion and dataset size determine virus detection

As a starting point for the analyses, we performed a rarefaction
analysis. We repetitively determined the detection (presence/ab-
sence) of virus reads in data subsets of different size (100 repeats
per subset size). From the results of these repetitive drawings,
we calculated the positivity rate, i.e. the detection rate of the virus
in a given dataset size. For this, we used a set of five datasets gen-
erated from BoDV-1-positive samples covering a range of virus
read percentages from 6.9E – 04 – 8.0E – 01%. The detection rate
of BoDV-1 reads in subsets of these datasets differed (Fig. 1). In
subsets of datasets with a low virus read percentage
(lib02246 = 4.2E – 04%, lib02558 = 6.9E – 04%) BoDV-1 read detec-
tion was possible at a partial dataset size of 1.0E + 06 reads with
100% and at 5.0E + 05 reads with 97% detection rate. At higher virus
read percentages in the range of 1.0E – 01 – 8.0E – 01%, BoDV-1
read detection was possible at low partial dataset sizes of
1.0E + 03 reads for lib02012 and 1.0E + 04 reads for lib02462
and lib02557 (detection rates of 100%). The BoDV-1 read amount
per partial dataset size increased linearly for all virus read percent-
ages (R2 � 0.9851, p � 0.001), despite detection rates of <100%
(Extended Data Fig. 1).
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3.2. Virus detection by mNGS is a Bernoulli process

Based on the results of the rarefaction analyses (=stochastic
behavior of virus read detection influenced by dataset size and
virus read proportion), we sought a mathematical formula to pre-
dict the minimum required dataset size to detect one virus read
with a reasonable detection rate. The Bernoulli process describes
a discrete stochastic process with only two possible results (pres-
ence/absence), coupled with a statement about the probability of
occurrence. The equation for the standard Bernoulli process is
shown in Equation 1. The notations for the mathematical deriva-
tion can be found in Table 2.
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Equation 1: Bernoulli process

P kð Þ ¼ n

k

� �
pk 1� pð Þn�k

The LOD is defined as the lowest quantity that can be detected
with reasonable certainty for a given analytical procedure [43]. The
chance to detect at least one viral read should be close to 100%. To
estimate the dataset size necessary to find one viral read (k = 1)
with an event probability of a = 0.99 (0 < a < 1) and a given prob-
ability of p, it is necessary to transform Equation 1. Therefore, the
arising question was to transform the Bernoulli process to gather
an insight into the necessary size of n, i.e. the number of reads
sequenced for a library (mNGS). This was done by taking the coun-
ter event possibilities into the equation. Following, the natural log-
arithms were processed and the equation was solved according to
equation 2 (Eq. 2). To directly use the virus read proportion of a

sample, we set p = p
�
/100, where p

�
= virus read percentage.

Equation 2: Transformed Bernoulli process

n � lnð1� aÞ
lnð1� ~p

100Þ
Validation of the transformed Bernoulli formula was performed

with p
�
which originated from the mNGS analysis of the 30 trimmed

and quality checked datasets from diseased animals and humans

(Table 1, Extended Data Figs. 2, 3, and 4). The p
�
from the mNGS

and assembler/mapping analysis resulted from the number of
virus-specific reads and the total number of all sequenced reads
of a library. One-hundred subsamples from the total read accession
numbers of the libraries were taken respectively with replacement
and were compared to the accession list of mapped virus reads. The
mean accuracy of Eq. 2 to predict dataset size n for a virus read was
99.1% within the range of 93.0 to 100.0% at a qualitative level
(Table 3). We proved the assumption of k = 1 virus read of Eq. 2
by counting the amount of the respective virus reads in the sub-
sets. This resulted in k = 4.5 ± 0.4 reads in n (Table 3). As a cross
check of Eq. 2, we reconstructed the number of virus reads from
the mNGS analyses. To do this, we divided the individual dataset
sizes (Table 1) by the calculated n (Table 3). We included k = 4.5
as a multiplication factor in Equation 3, since k – 1.

Equation 3: Recovery of virus read numbers

p
� ðrÞ ¼ r

n

� �
� k;

where r = actually available dataset size, n = theoretically required
dataset size for �1 virus read (Eq. 2), and k = multiplication factor.
The recovery rate was 97.99% (median; Extended Data Fig. 5).

3.3. Modelling factors that impact mNGS sensitivity

As mentioned above, empirical data shows that the detection of
a species depends on its abundance, the relative genome size, and
the dataset size. We used R Studio [39] to investigate the influence
of these factors on mNGS sensitivity. To be able to apply Eq. 2 for
the prediction of the necessary sequencing effort, we approximate

p
�
as the ratio of the amounts (in g) of viral RNA and total RNA in the

sample. We approximated p
�
from the amount of viral RNA calcu-
Table 2
Mathematical notations of the Bernoulli formula.

Variable Meaning

n Number of trials (size of dataset)
p Possibility of occurrence (of a viral read; virus read proportion)
k Number of matches to obtain
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lated from the virus genome copy number and the amount of total
RNA as determined photometrically with Equation 4 (Eq. 4).

Equation 4: Prediction of p
�

p
�
i ¼ 100 � nt � 340 Da � 1:6605402E — 15 ng=Da � c

total RNA concentration

where i = virus genome copies, nt = virus genome size,
340 Da = mean weight of one RNA nucleotide in Dalton,
1.6605402E – 15 = weight of one Da in nanogram, and c = i/ml.

Applying Eq. 2 in combination with Eq. 3 and Eq. 4, we modeled

p
�
in dependence of different factors but with constant a = 0.99

(Fig. 2). First, we investigated the effect of p
�
on the expected num-

ber of BoDV-1 reads in a dataset of defined size (r = 5.0E + 06 reads)
in dependence of the virus copy number per ml and the total RNA
concentration. To assess the sensitivity, a tenfold serial dilution of
1.0E + 00 to 1.0E + 06 c/ml of the BoDV-1 genome (8910 nt,
NC_001607) was used, while RNA concentration was increased (1
to 100 ng/ml) (Fig. 2a). As Fig. 2a shows, the expected number of
BoDV-1 reads differed within and between virus concentrations,
showing a decrease in virus reads with a simultaneous increase in
total RNA concentration. To illuminate qualitative diagnostic
aspects, we calculated the necessary dataset size n for the same
dependencies as in Fig. 2a with an upper cut-off for dataset size
set at 1.5E + 07 reads (Fig. 2b). This showed that with copy numbers
higher than 1.0E + 05 c/ml, BoDV-1 was detectable independently of

the background, i.e. at every p
�
. On the contrary, with BoDV-1 copy

numbers below 1.0E + 04 c/ml, virus reads were only detectable at
total RNA concentrations lower than approx. 50 ng/ml (Fig. 2b).With
a BoDV-1 copy number below 1.0E + 02 c/ml, no detection was pos-
sible with a dataset size of 5.0E + 06 reads (Fig. 2b).

In order to generalize the model, we investigated the influence
of the genome size on the virus read numbers at a given dataset
size (Fig. 2c) and the necessary dataset size (Fig. 2d). For these
analyses, we repeated the calculations with representative genome
sizes for small, medium and large RNA virus genomes (7.5 kb,
15 kb, and 30 kb) at a concentration of 1.0E + 04 c/ml. As Fig. 2c
shows, the number of virus reads that can be expected in a dataset
of 5.0E + 06 reads depends on the genome size. The detection of a
read from a virus with a small genome (7.5 kb) size required higher
dataset sizes (n) than for larger viruses (15 and 30 kb; Fig. 2d).

To assess the meaningfulness of the result obtained with a cer-
tain assay, the limit of detection (LOD) of that assay needs to be
defined. Although in practice the LOD of qPCR depends on the
specific assay, theoretically the LOD of qPCR is at the genome copy
number of 3 c/ml but independent of the genome size. As shown
above, the sensitivity of mNGS depends on both virus copy number
and virus genome size. In order to investigate the limit of detection
for mNGS analysis, we calculated the minimum virus genome copy
number that allows for the detection of a virus in a dataset of
5.0E + 06 reads generated from a sample with 30 ng/ml total
RNA. Specifically, we further examined the effect of the genome
size (1.5 kb to 30 kb) on the detection limit of an mNGS analysis.
For this, we calculated the LOD of an mNGS analysis as follows:

For each p
�
i (1.0E + 00 � i � 1.0E + 06 c/ml; Eq. 4), the theoretically

necessary minimal dataset size n was calculated according to Eq. 2.
The LOD is then defined as the minimal c/ml for which 1 viral read
can be expected in a dataset of 5.0E + 06 reads. As shown in Fig. 2e,
the LOD varies among the genome sizes. The LOD for the very large
SARS-CoV-2 (1686 c/ml) and the very small HDV (29106 c/ml) differs
17.3 times from each other.

To evaluate the sensitivity independent of the pathogen
(genome size and copy number) and the total nucleic acid
concentration, we calculated n (the necessary dataset size to detect

1 viral read) for a range of p
�
(5.0E – 05 – 1.0E – 03%). In this



Table 3
Validation of the transformed Bernoulli formula.

Viral target ID n Accuracy (%) Viral reads
Mean SD

BoDV-1 lib02012 559 99 4.7 2.2
lib02246 1,101,151 100 4.7 2.0
lib02462 4603 93 2.8 1.8
lib02557 2693 100 4.3 2.2
lib02558 670,830 100 4.4 1.9

PGV lib03148 318,891 100 4.5 1.9
lib03150 807,922 100 4.4 1.7

RusV lib03123 939,828 100 4.5 1.7
WNV lib02898 77 98 4.7 2.1

lib02914 1017 99 4.5 2.2
lib02959 1317 100 4.5 2.4
lib03378 14,144 97 4.5 2.1
lib03379 381 100 4.5 1.7
lib03380 82 100 4.8 2.0
lib03381 699 99 4.8 2.4
lib03382 888 100 5.0 2.3
lib03415 1166 99 4.7 1.9
lib03416 1144 97 4.5 2.0
lib03417 1349 98 4.7 2.1
lib03418 40 100 4.3 1.8
lib03419 103 100 4.7 2.2
lib03420 662 100 4.7 2.1
lib03422 34 100 4.3 1.8
lib03423 547 99 4.8 2.1
lib03424 955 100 4.2 1.9
lib03425 223 98 4.7 2.1
lib03426 1481 99 5.0 2.0
lib03449 39 100 4.3 2.0
lib03450 337 99 4.6 2.2
lib03451 754,944 100 4.8 1.5
Mean 99.1 4.5 2.0
SD 1.5 0.4 0.2

Abbreviations: BoDV-1, Borna disease virus 1; PGV, Pegivirus, RusV, Rustrela virus; WNV, West Nile virus lineage 2; n, theoretically required dataset size for 1 virus read; SD,
standard deviation.
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analysis, we observed an exponential decrease in the required

dataset size n (Fig. 2f). For all p
�� 0.0001% the pathogen was detect-

able with a dataset size of 5.0E + 06 reads. For p
�
< 0.0001% a higher

amount of sequenced reads were necessary, indicating that in the-
ory the sensitivity can be scaled by scaling the dataset size.

3.4. p
�
RT-qPCR and p

�
mNGS are significantly correlated

As a proof-of-concept that for mNGS analysis p
�
is defined as the

ratio of the mass of viral nucleic acids and total RNA, we compared

p
�
mNGS and p

�
RT-qPCR. To this end, we calculated p

�
from the quantita-

tive RT-qPCR results by Eq. 4. For these calculations the genome
sizes of the individual viruses (BoDV-1, 8910 nt; RusV, 9322 nt;

WNV, 11080; PGV, 11,520 nt) were used. The calculated p
�
RT-qPCR

correlated highly significant with the p
�
mNGS (r = 0.82, p < 0.0001).

Unexpectedly, with a single exception (BoDV-1 in lib02246;

Fig. 3a, Extended Data Table 1) p
�
mNGS were higher (median 61.7

times, IQR 35.8 – 107.8) than p
�
RT-qPCR (Fig. 3b). Therefore, to trace

the source of this deviation, we determined p
�
Library in the

sequencing-ready libraries. To this end, we analyzed 14 libraries

by qPCR and Agilent Bioanalyzer. For the calculations of p
�
Library,

we modified the conversion factor for 340 Da for RNA into
660 Da for dsDNA in Eq. 4 and put the amount of qPCR target mole-
cules in relation to the DNA library concentration. For a subset of

five libraries, we observed an increase of p
�
in the library (p

�
Library;

median = 1.2E – 03%) in comparison with p
�
RT-qPCR (median = 2.2E

– 05%; Extended Data Fig. 6). This coincided with p
�
mNGS of these

libraries. However, the same libraries had an increased p
�
in com-
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parison to p
�
mNGS (median = 5.7E – 04%). Unfortunately, nine

WNV libraries had to be excluded from this analysis of p
�
Library

due to methodical constraints. Here, the RT-qPCR assay is located
at the 50-terminus of the genome, which is not converted effi-
ciently during library preparation, as displayed by qPCR data and
genome coverage analyses (data not shown). Hence, no reliable

determination of p
�
Library was possible.
3.5. Detection limits of mNGS appear primarily determined by total
RNA concentration

As outlined above, in published studies the sensitivity of mNGS
is often tried to define by comparison with routine diagnostic
methods. Therefore, here we conducted a systematic comparison
of the LODs calculated from mNGS data with the virus genome
copy numbers determined by RT-qPCR from the identical sample.
To this end, we calculated the LODmNGS using Eq. 2 and its modifi-
cation (Eq. 4, calculation of LOD) to the datasets used in this study
(Table 1). The LODmNGS calculated for the individual libraries dif-
fered, apparently rather in relation to the total RNA concentration
than to the amount of sequenced reads or virus species (Fig. 4a;
Extended Data Table 1). LODmNGS values were considered plausible
if lower than or equal to the virus copy numbers per ml as deter-
mined by RT-qPCR. This was true in 25/30 cases (Fig. 4b, Extended
Data Table 1). Although the detection of virus concentrations
below the calculated LOD is by definition very unlikely, this was
observed for five libraries containing different viruses (lib02558,
BoDV-1; lib03148 and lib03150, PGV; lib03123, RusV; lib03451,
WNV; Fig. 4b and Extended Data Table 1). For these five samples,
we recalculated the LODmNGS for the different event probabilities



Fig. 2. Theoretical evaluation of impact factors for mNGS analytical sensitivity. (a) Amount of BoDV-1 reads in relation to the total RNA- and virus-concentration at dataset
size 5.0E + 06 reads. No BoDV-1 reads were calculated for 1.0E + 02 c/ml. (b) Minimal dataset size (n) required to detect at least one BoDV-1 read depending on the RNA- and
virus-concentration. Threshold (orange line) was set at 5.0E + 06 read dataset size. (c) Amount of virus reads depending on the genome length and RNA-concentration. Virus
concentration at 1.0E + 04 c/ml and data set size at 5.0E + 06 reads. (d) Minimal dataset size (n) required to detect at least one virus read depending on the genome length at a
virus-concentration of 1.0E + 04 c/ml. Threshold (orange line) was set at 5.0E + 06 read dataset size. (e) Limit of detection of mNGS depending on the genome length of RNA
viruses. Dataset size at 5.0E + 06 reads and RNA-concentration at 30 ng/ml. Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2; measles virus, MeV; Influenza A
virus, IAV; Rift Valley fever virus, RVFV; Rabies lyssavirus, RABV; Sindbis virus, SINV; West Nile virus, WNV; Rubella virus, RuV; Borna disease virus 1, BoDV-1; Coxsackievirus
A, CV-A2; Hepatitis delta virus, HDV. (f) Minimal dataset size (n) required to detect at least one pathogen read depending on p

�
. Threshold (orange line) was set at 5.0E + 06

read data depth. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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for a = 0.01 to 0.99 (stepwise increase of 0.01) and compared it to
the c/ml of RT-qPCR (Fig. 4c). In all these cases, the recalculated
LODmNGS was plausible according to the definition above, albeit
with reduced a in the range of 0.09 and 0.75 (Fig. 4c).
3.6. p
�
mNGS and LODmNGS are significantly correlated with RT-qPCR

values

We conclusively examined the correlation between the various
sample and dataset characteristics examined above. To this end,
737
values were log-transformed prior to the calculation of spearman
correlations and p-values with the rcorr() function of the Hmisc
package [44] in R Studio. The correlation matrix was created with
the corrplot package [45]. In this analysis we included Cq-values,
virus copy numbers calculated from RT-qPCR values (Cq, c/ml),

dataset size, number of virus reads, p
�
mNGS, n, and LODmNGS. Inverse

correlation of semi-quantitative (Cq) and absolute quantitative (c/
ml) RT-qPCR values were observed (Fig. 5). As Fig. 5 shows, this
analysis revealed highly significant (p < 0.01) correlations of RT-

qPCR values and mNGS (viral reads, p
�
mNGS) and formula-derived



Fig. 3. Comparison of RT-qPCR and mNGS derived virus to background ratios. (a) p
�

were determined by mNGS analysis (proportion of virus reads to total reads) and
absolute quantification by RT-qPCR (proportion of virus RNA in ng/ml to the total
RNA concentration); r = 0.82, **p < 0.0001. (b) Discrepancy of mNGS and RT-qPCR
derived p

�
displayed as the factor of p

�
mNGS / p

�
RT-qPCR; median = 61.7.
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values (n, LODmNGS), respectively. Obviously, the correlation
between mNGS and formula-derived values is due to the depen-
dency of the formula derived values from the mNGS data. None
of the categories had significant correlation with the dataset size.
This correlation analyses clearly shows that the calculation of
LODmNGS and the necessary dataset size n is possible and yields
meaningful results. These allow the assessment of the mNGS based

detection limit depending on p
�
.

4. Discussion

We developed a straightforward probability-based mathemati-
cal approach to test the assignment of the individual detection
limit per sample for mNGS analysis. We followed a sample
matrix-independent approach to preserve the advantageous non-
specificity of mNGS in pathogen detection and at the same time
make a statistical statement about the probability of virus detec-
tion at a certain data depth. The assessment of an mNGS result
must always take into account the specific detection limit of the
analysis for a certain pathogen and the analysis of specific param-
eters (total nucleic acid input, expected pathogen genome size,
dataset size; compare Fig. 2e). Our model incorporates the hitherto
known factors influencing LODmNGS, whereby valuable information
can be derviated for the assessment of mNGS experiments and
related expectations. The expression of LODmNGS in copies per
microliter enables comparison with RT-qPCR derived concentra-
tions. To the best of our knowledge, we showed for the first time
a direct relationship between the ratio of viral and total RNA and
its ratio after mNGS analysis.

Rarefaction analysis of the BoDV-1 datasets showed that the
relationship between virus detection rate and dataset depths

depends on the virus read percentage p
�
. Therefore, we concluded

that the presence or absence of a virus read at a certain, minimal
dataset size follows a Bernoulli distribution, a discrete probability
distribution with binomial results. We transformed the formula of
the Bernoulli process into Eq. 2 to calculate the dataset size
required for virus detection with a given probability. We set
a = 0.99 (99%) to detect the virus read with a probability close to
100%. The introduction of a probability for the detection limit for
mNGS is thus in line with the general definition of LOD [43]. The
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verification of Eq. 2 with datasets from diseased animals and
humans showed a high accuracy and repeatability, confirming
our probability based approach. However, the accuracy of n (min-
imal dataset size for the detection of one virus read) was influ-
enced by the accurate determination of the virus-background-

ratio, designated p
�
. We argue that an incorrect assignment of virus

reads in the determination of p
�

for BoDV-1 reads in lib02462
resulted in a slightly reduced accuracy (93%) and 2.8 ± 1.8 virus
reads. In Eq. 2, we set k = 1 virus read to calculate n. Indeed, in
datasets of size n, a mean of 4.5 ± 0.4 reads were counted. Actually,
dataset size n is calculated for k = 1. At last, we confirmed the
applicability and correctness of Eq. 2 and k = 4.5 by recovering
the actual virus read numbers with an accuracy of 97.99%.

We demonstrated that the critical factor of the mNGS sensitiv-

ity is p
�
. We observed a logarithmic relationship of p

�
and n, indicat-

ing that a pathogen abundance level of p
�

> 0.001% is already
reliably detectable within a dataset of 5.0E + 06 reads (Fig. 2f).

Due to the logarithmic relation of p
�
and n, lower p

�
require dispro-

portionately large datasets. Interestingly, a log relationship of Cq
values and mapped reads of viral pathogens in nasopharyngeal
swabs has already been observed [32]. This observation also fits
with published [30] findings that the selection of a suitable sample
is critical for the success of mNGS analyses.

However, p
�
is a relative value. The nucleic acid amount of larger

viruses is naturally higher than that of a small one at the same con-
centration, i.e. genome copy number (c/ml). The effect of the gen-
ome size and the probability of occurrence of a single species
read has already been reported [27]. Moreover, the genome size
has already been taken into account in the normalization of read
counts (RPKM [20], VTMK [46]) and in experimental planning for
assembly approaches [28]. We also observed an effect of the gen-
ome size on LODmNGS. The LODmNGS decreased with increasing gen-
ome sizes (Fig. 2e). The LODmNGS for SARS-CoV-2 was 17.3 times
lower than for HDV. When comparing large DNA viruses, bacteria
or parasites, the impact of genome size on the differences in the
LOD will be more pronounced. Additionally, the basic assumption
of our calculations and those from RT-qPCR quantification relies
on linking a target read or amplicon of small size to a genomic
equivalent, neglecting differences in genome coverage as poten-
tially caused by transcriptional gradients or the expression of
subgenomic RNA found in several species [47]. Furthermore, we
show that the virus-concentration is not a reliable indicator of

mNGS sensitivity (compare Fig. 2a, 2b). With decreasing p
�
, i.e.

increasing background, the same virus genome copy number can
lead to different amount of virus reads and required dataset size
for detection. In absolute read numbers, in a dataset of 5.0E + 06
reads generated from a sample with 50 ng/ml total RNA and a virus
concentration of 1.0E + 04 c/ml one would receive 5 BoDV-1 reads
while at 1 ng/ml total RNA with the same virus concentration, the
same dataset would comprise approx. 400 viral reads (Fig. 2a,
2b). Consequently, with a virus concentration of 1.0E + 04 c/ml
and 1 ng/ml total RNA only 1.0E + 05 reads (minimal dataset size
n) are needed for detection of BoDV-1, whereas 5.0E + 06 reads
are needed at 50 ng/ml total RNA. The effect of high and low back-
ground is well known [17–19,33,48]. Consequently, highly abun-
dant pathogens are more obvious than low-abundant pathogens
and the differentiation to a contaminant becomes more important
[49,50]. At a low pathogen read and abundance level, assembly
approaches may fail or threshold criteria used to differentiate clin-
ically relevant pathogens from contaminants may not be met
[18,19], but even a single pathogen read should be reviewed care-
fully and should not be rejected per se [19,30]. Nevertheless, it is of
course not advisable to derive a diagnosis or even a clinical treat-
ment strategy based on single or few reads. Especially single or



Fig. 4. Calculation of the sample-based detection limit from datasets. (a) Key characteristics of the analysed samples and datasets. Upper panel, dataset size; mid panel, total
RNA concentration; lower panel, LODmNGS. Calculations were performed with 30 datasets originated from diseased animals (Table 1) by combination of equations 2, 3, and 4.
(b) Comparison of the LODmNGS (c/ml) and viral genome copy numbers (c/ml) as determined by RT-qPCR quantification of the samples. Red lines display the samples where
LODmNGS > RT-qPCR c/ml. (c) Probability-based calculation of LODmNGS for the five samples labelled red in (b). Horizontal lines represent the adjusted a to meet the criteria
LODmNGS < copy number determined by RT-qPCR. Vertical lines represent the calculated LODmNGS (c/ml) with the adjusted a. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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low abundant pathogen reads need to be reviewed carefully and a
false assignment e.g. due to low-complexity regions, has to be
excluded by a data analyst. However, knowledge of LODmNGS can
739
help to assess and rank the obtained results and provide valuable
information to base the decision on whether or not it is worth fol-
lowing up the findings.



Fig. 5. Correlation matrix of RT-qPCR impact factors for mNGS sensitivity. Values
derived from samples and formula were compared. The correlation coefficient is
displayed from + 1 to �1 (positive and negative correlation). An asterisk indicates
p < 0.01.
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Deducing p
�
from absolute quantitative RT-qPCR is in principle

possible (r = 0.82, p < 0.0001, Fig. 3). We also confirmed the corre-
lation of RT-qPCR values and mNGS results (Fig. 5). The observed

factor of 61.7 between p
�
mNGS and p

�
RT-qPCR is presumably a com-

bined effect of different experimental factors: (i) The use of an
external DNA standard (according to the original publication
[51]) instead of an RNA standard may render the absolute quantifi-
cation of our RT-qPCR assays somewhat inexact by disregarding
the efficiency of the reverse transcriptase [52]; (ii) it is presup-
posed that a suitable method for measuring the total RNA concen-

tration is applied in order not to flaw the p
�
RT-qPCR or LODmNGS

calculations; this is especially true for samples with low biomass
(<10 ng); however, we did not observe substantial differences of
the low biomass lib02557 (4.1 ng/ml) to all other analyzed libraries
(�17 ng/ml; Table 1, Extended Data Table 1, Fig. 4,); (iii) presum-
ably most importantly, library preparation impacts the finally

resulting p
�
mNGS; it alters the composition of the total nucleic acids

by enzymatic modifications including reverse-transcription, frag-
ment end polishing, and adapter ligation. Of course lastly also size
selection impacts the composition by removing small and large
fragments from the sample during library preparation [10]. To
assess the impact of library preparation and distinguish its effect

from potential sequencing bias, we determined p
�
Library from a set

of analyzed libraries. Although due to technical constraints only a
subset of the data could be taken into account, it appears that

the main difference between p
�
RT-qPCR and p

�
mNGS is introduced dur-

ing library preparation. This does of course not rule out differences
of viral read proportions in datasets which can derive from differ-
ent sequencing platforms and their respective library preparation

workflows, affecting p
�
mNGS [53,54]. Rather, it can be expected that

each workflow from sample to sequence dataset will have its

specific factor between p
�
RT-qPCR and p

�
mNGS. Therefore, further stud-

ies are needed to identify such factors to adjust our model and
increase its level of precision.

In Fig. 4a, we modelled the LOD for 30 datasets that originated
from various sample matrices of diseased animals and humans. We
calculated the individual LODmNGS for every sample based on the
target virus, total RNA concentration, and dataset size. While
LODmNGS increased with increasing total RNA-concentrations, the
740
impact of the dataset size was neglectable. This missing influence
of the dataset size may be caused by the selected datasets,
although these were randomly selected from available datasets.
The accuracy of the calculated LOD remains to be assessed by sys-
tematic comparison of mNGS negative but RT-qPCR positive sam-
ples. Nevertheless, in 25/30 cases the RT-qPCR derived
quantitative values were above the mNGS LOD, supporting the
dependencies between sample and LODmNGS elaborated in this
paper. In the remaining cases, LODmNGS was higher than the con-

centration derived from RT-qPCR. All these had a p
�
of 1.44E-03 –

6.86E-04 and �27 virus reads. We argue that the used data depth
for these samples was too low to fulfill the 99% probability require-
ment for the occurrence of at least one viral read in a data subset.
Systematic analysis are needed to evaluate the effect of data depth
and probability of detection as well as to validate the predicted and
actual LOD.

In previous studies, the detection cut-offs of mNGS have been
linked to Cq ~32 and ~36 in nasopharyngeal swabs, aspirates, or
sputums for different virus panels [20,32] or have been evaluated
by a serial dilution of a set of pathogens, including human immun-
odeficiency virus and cytomegalovirus with 313 and 14 copies/ml
in CSF samples [18]. Although these results highlight the limitation
and power of mNGS, the results are hardly transferable to other
matrices and viruses. Additionally, differences in sequencing
depths complicate a generalization of the detection limit. A general
definition of LODmNGS seems therefore not suitable but appears
rather matrix and pathogen-specific [17,18,20,32]. However, our
approach supports the standardization of the mNGS detection limit
across matrices and pathogens.

5. Conclusion

The assessment of the detection limit is of major interest for the
application of shotgun mNGS in clinical laboratories. Therefore, we
developed and validated a straightforward analytical tool to assess
the sample-specific LODmNGS, considering nucleic acid concentra-
tion, genome length, and data depth. For this calculation, we define
the total nucleic acid concentration as the background for model-
ing the LODmNGS. The results of these calculations are congruent
with RT-qPCR results. This mathematical and sample matrix inde-
pendent approach may guide to a more transferable and standard-
izable LOD for future mNGS experiments.
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