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Telerobotics aims to transfer human manipulation skills and dexterity over an arbitrary

distance and at an arbitrary scale to a remote workplace. A telerobotic system

that is transparent enables a natural and intuitive interaction. We postulate that

embodiment (with three sub-components: sense of ownership, agency, and self-location)

of the robotic system leads to optimal perceptual transparency and increases task

performance. However, this has not yet been investigated directly. We reason along

four premises and present findings from the literature that substantiate each of them:

(1) the brain can embody non-bodily objects (e.g., robotic hands), (2) embodiment

can be elicited with mediated sensorimotor interaction, (3) embodiment is robust

against inconsistencies between the robotic system and the operator’s body, and (4)

embodiment positively correlates to dexterous task performance. We use the predictive

encoding theory as a framework to interpret and discuss the results reported in

the literature. Numerous previous studies have shown that it is possible to induce

embodiment over a wide range of virtual and real extracorporeal objects (including

artificial limbs, avatars, and android robots) through mediated sensorimotor interaction.

Also, embodiment can occur for non-human morphologies including for elongated

arms and a tail. In accordance with the predictive encoding theory, none of the

sensory modalities is critical in establishing ownership, and discrepancies in multisensory

signals do not necessarily lead to loss of embodiment. However, large discrepancies

in terms of multisensory synchrony or visual likeness can prohibit embodiment from

occurring. The literature provides less extensive support for the link between embodiment

and (dexterous) task performance. However, data gathered with prosthetic hands

do indicate a positive correlation. We conclude that all four premises are supported

by direct or indirect evidence in the literature, suggesting that embodiment of a

remote manipulator may improve dexterous performance in telerobotics. This warrants

further implementation testing of embodiment in telerobotics. We formulate a first

set of guidelines to apply embodiment in telerobotics and identify some important

research topics.
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INTRODUCTION

The Potential of Embodiment in
Teleoperation
Despite the increasing availability of autonomous systems,
robots that are remotely controlled by humans remain a key
technology for operations, for instance in inaccessible areas
(e.g., in space or deep-sea) or in complex, unpredictable or
hazardous environments with a high degree of uncertainty,
such as in minimally invasive surgery, search and rescue
operations, disaster response or explosive ordnance disposal
(Siciliano and Khatib, 2016). Telerobotics (Niemeyer et al.,
2016) aims to replicate human manipulative skills and dexterity
over an arbitrary distance and at an arbitrary scale to a
remote workplace. Ideally, operators performing complex tasks
with telemanipulators should have the impression of physically
being at the point of interaction, so that the interaction
itself feels natural and as intuitive as possible (referred to as
telepresence, the feeling of being present at another location
than the physical location of one’s body; Van Erp et al., 2006;
Jansen and van Erp, 2010).

To afford a flawless and seamless operation, a telerobotic
system should be transparent (referring to an interface that
appears to be imperceptible and almost non-existent to the
operator), so that the user’s performance is not influenced by the
fact that the operation is mediated. In practice, there are conflicts
between transparency and control, and compromises need to
be made (Oh et al., 2018). Due to limitations of the human-
machine interface, the communication channel and the robotic
device, both the control signals and the multisensory (e.g., visual,
auditory, haptic) feedback to the human operatormay be delayed,
out of sync, and of reduced quality and resolution compared
to unmediated (direct) interaction (Niemeyer et al., 2016). This
degraded interaction quality, in turn, degrades task performance
(in terms of speed, precision, and accuracy) and increases the
cognitive workload of the human operator.

Increasing the transparency of teleoperation systems is,
therefore, an important research topic in engineering with
a strong focus on technical solutions like increasing the
bandwidth and reducing the latency of the communication.
These solutions result in increased control of the operator and
possibly enhanced performance. However, one could argue that
ultimate transparency is accomplished when the operator does
not even notice that the interaction is mediated and performed
through a robot. In other words, optimal transparency implies
that operators have the (illusory) experience that the robot’s body
and hands are their own body and hands. This is often referred
to as the sense of embodiment. We use the term embodiment
(the extent to which a physical or virtual representation in the
real or mediated world is experienced as one’s self; Aymerich-
Franch et al., 2012) as an overarching construct including the
senses of ownership, agency, and self-location (seeTable 1 for the
definitions of these constructs). The embodiment approach goes
beyond technical solutions to increase transparency and includes
recruiting brain mechanisms of telepresence (the perceived
relation between one’s self and the environment; Steuer, 1992)
and body ownership (the perceived relation between one’s self

and one’s bodily representation; Kilteni et al., 2012a). The classic
Rubber Hand Illusion [RHI, in which an observer experiences
body ownership of a rubber arm and hand when it is stroked
simultaneously with the hidden own arm and hand: Botvinick
and Cohen (1998)], and the correlation between embodiment of
a prosthetic hand and task performance show the potential of an
embodiment approach to increase transparency and performance
in teleoperation. However, to the best of our knowledge, the
direct link between embodiment and teleoperation performance
has not been extensively investigated (or at all). We identify
four premises that have to be met to come from the RHI to
enhanced teleoperation performance. In this paper we focus on
these premises and present relevant findings from the literature
to support or disprove them (see Table 2).

Four Premises for Enhanced Teleoperation
Through Embodiment
We postulate that embodiment of a remote manipulator can
improve dexterous performance. Our reasoning goes along the
following four premises (see Table 2):

1. The representation of the body in the brain is malleable
and can include non-bodily objects like robotic hands and
end effectors.

2. Embodiment can be elicited through mediated
sensorimotor interaction (e.g., through indirect viewing
and haptic displays).

3. Once established, embodiment reduces the operator’s
susceptibility to inconsistencies in size, movement, degrees
of freedom, etc. of the teleoperated device. This may be
considered an increase in transparency, even for teleoperated
devices that do not resemble one’s own arms and hands.

4. The strength and robustness of embodiment correlate
positively with dexterous task performance.

In this paper, we review a wide variety of studies on embodiment,
and we argue that each of our four premises is substantiated
by experimental evidence (Table 2). In section The Sense
of Embodiment, we focus on the different subcomponents
of embodiment, the different measures of embodiment and
theoretical frameworks to explain embodiment, including the
predictive coding theory (Friston et al., 2011; Friston, 2012;
Hohwy, 2013) as a useful framework to interpret and discuss
the findings in embodiment experiments. Sections Premise
1: The Body Representation Is Malleable and Can Include
Non-bodily Objects, Premise 2: Embodiment Can Be Evoked by
Mediated Sensorimotor Interaction, Premise 3: Once Established,
Embodiment Is Robust Against Inconsistencies, and Premise
4: Embodiment Enhances Dexterous Task Performance focus
on the four premises and discuss the literature to substantiate
or disprove them. In section Recent Developments we identify
some relevant developments, and in section Discussion and
Research Questions we formulate guidelines and research topics.
In the final section Conclusions we present the conclusions of
this study.

Summarizing, the main contribution of this paper are (i)
the postulate that embodiment and teleoperation performance
are directly linked, together with (ii) a first set of guidelines to
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TABLE 1 | The different sensory experiences that are typically distinguished in embodiment research (after Kilteni et al., 2012a, see also Huang et al., 2017), their

definition and interrelation, driving factors (origins) and associated measures.

Primary experience Components Subcomponents

Sense of Embodiment (short:

embodiment)

Definition: the feeling that a body is

(part of) one’s own biological body

Origin: integration of sensory

inputs

Sense of self-location (short: self-location)

Definition: the feeling of location in space

Origin: collocation between fake (virtual) and real body

Sense of body location

Definition: the feeling where one’s body is located in space

Origin: temporal match between visual and tactile stimulation

Measures: questionnaire items related to body location (Ehrsson

et al., 2007); response to body location estimation tasks

(Lenggenhager et al., 2007, 2009); (physiological) response to

threat toward perceived body location (Ehrsson et al., 2007)

Sense of perspective location

Definition: the feeling where one’s visual perspective is located in

space

Origin: visual feedback via 1PP or 3PP

Measures: questionnaire items related to perceived viewpoint

location (Galvan Debarba et al., 2017; Gorisse et al., 2017; Huang

et al., 2017; Verhulst et al., 2018); rating perceived viewing

direction (Pfeiffer et al., 2014)

Sense of ownership (short: ownership)

Definition: the feeling that non-bodily objects are part of one’s

own body

Origin: realism of fake body and temporal match between

visual and tactile stimulation

Measures: questionnaire items gauging the extent to which

fake body parts feel like one’s own (Botvinick and Cohen,

1998; Longo et al., 2008; Aspell et al., 2009; Slater et al.,

2010); proprioceptive estimations (Botvinick et al., 2005;

Tsakiris and Haggard, 2005; IJsselsteijn et al., 2006);

estimation of body parts’ size (Normand et al., 2011);

physiological responses to threat (Armel and Ramachandran,

2003; Petkova and Ehrsson, 2008; Slater et al., 2010; Yuan

and Steed, 2010; Petkova et al., 2011a); changes in

physiological signals (Moseley et al., 2008; Hohwy and Paton,

2010)

Sense of Agency (short: agency)

Definition: feeling of being the author of an observed action

Origin:efficiency of (motor) control

Measures: questionnaire items related to motor control

(Longo et al., 2008; Kalckert and Ehrsson, 2012).

apply embodiment in telerobotics. In addition, we identify some
important research topics.

THE SENSE OF EMBODIMENT

The sense of embodiment, or embodiment for short, has been
defined as the sense that emerges when an object’s properties are
processed as if they were the properties of one’s own biological
body (Kilteni et al., 2012a). Combinations of sensory input from
vision, touch, motor control, and proprioception are some of the
mechanisms that are relevant to embodiment (for a review see
Ehrsson, 2012). When the normal correlation between several
sensory input streams is changed, the brain can re-evaluate
the probabilities of input signals and create the illusion of
embodiment of an artificial object (e.g., Kilteni et al., 2012a).
Embodiment consists of three subcomponents (Kilteni et al.,
2012a; see Table 1): sense of self-location (the subjective feeling
where I am in space), sense of ownership (the illusory perception
that non-bodily objects are part of my own body and are the
source of associated bodily sensations), and sense of agency (the

subjective feeling that I am the author of an observed action). The
sense of self-location is in turn composed of two subcomponents
(Huang et al., 2017; see Table 1): the sense of body location
(the subjective feeling where my body is in space) and the sense
of perspective location (the subjective feeling where my visual
perspective is located in space).

Measures of Embodiment
In the literature a range of different measures has been used to
quantify embodiment, including subjective measures (i.e., self-
report questionnaires; Longo et al., 2008; Petkova and Ehrsson,
2008; Slater et al., 2010; Normand et al., 2011), proxies, and
behavioral and physiological responses (e.g., Ehrsson, 2007;
Lenggenhager et al., 2007; Petkova and Ehrsson, 2008; Kilteni
et al., 2012b; Tieri et al., 2017). Proxies include thresholds
for temporal asynchrony detection between seen and felt self-
generated movements (Hoover and Harris, 2016), perceived
spatial (proprioceptive) “drift” toward the fake body or its parts
(Botvinick and Cohen, 1998; Lenggenhager et al., 2007; Kilteni
et al., 2012b), and drift in the perceived size of body parts (e.g.,
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TABLE 2 | The premises underlying the postulate that embodiment and teleoperation performance are directly linked, together with references providing supporting

evidence.

Premise Supporting evidence

1. The body representation is

malleable and can include non-bodily

objects

The body representation is malleable: e.g., (Lackner, 1988; Ramachandran and Hirstein, 1998; de Vignemont et al., 2005;

Ehrsson et al., 2005b; Longo et al., 2009a)

Non-bodily objects can be embodied: e.g., (Botvinick and Cohen, 1998; Slater et al., 2008; Petkova et al., 2011a; Nishio

et al., 2012, 2018; Ogawa et al., 2012; Guterstam et al., 2013, 2015; Caspar et al., 2015; Kilteni et al., 2015; Ma and

Hommel, 2015a; van der Hoort and Ehrsson, 2016; Aymerich-Franch et al., 2017a; Jazbec et al., 2017; Liepelt et al., 2017;

Weser et al., 2017; Kondo et al., 2018a)

2. Embodiment can be evoked by

mediated sensorimotor interaction

Embodiment can be evoked by mediated:

- visuotactile stimulation: e.g., D’Alonzo and Cipriani (2012); (Petkova and Ehrsson, 2008; Slater et al., 2008; Kilteni et al.,

2012a; Maselli and Slater, 2013; Keizer et al., 2016; Krom et al., 2019)

- visuomotor and proprioceptive cues: e.g., (Tsakiris et al., 2006; Dummer et al., 2009; Sanchez-Vives et al., 2010; Slater

et al., 2010; Petkova et al., 2011a; Walsh et al., 2011; Kilteni et al., 2012b; Alimardani et al., 2013; Ma and Hommel, 2013;

Maselli and Slater, 2013; Steptoe et al., 2013; Kokkinara and Slater, 2014; Romano et al., 2015)

- Visual perspective: e.g., (Lenggenhager et al., 2007, 2009; Petkova and Ehrsson, 2008; Slater et al., 2008, 2010; Aspell

et al., 2009; Sanchez-Vives et al., 2010; Petkova et al., 2011a; Kilteni et al., 2012b; Ogawa et al., 2012; Maselli and Slater,

2013, 2014; Pomés and Slater, 2013; Piryankova et al., 2014; Liang et al., 2015; Pozeg et al., 2015; Pavone et al., 2016;

Galvan Debarba et al., 2017; Gorisse et al., 2017, 2019; Chen et al., 2018)

- Visual realism: e.g., (Farnè et al., 2000; Austen et al., 2004; Holmes et al., 2006; Haans et al., 2008; Petkova and

Ehrsson, 2008; Longo et al., 2009b; Slater et al., 2009, 2010; González-Franco et al., 2010; Normand et al., 2011; van

der Hoort et al., 2011; Farmer et al., 2012; Kilteni et al., 2012b, 2013; Banakou et al., 2013; Guterstam et al., 2013,

2015; Maister et al., 2013; Martini et al., 2013, 2015; Peck et al., 2013; Osumi et al., 2014; Lugrin et al., 2015; Argelaguet

et al., 2016; Lin and Jörg, 2016; Bovet et al., 2018; Jung et al., 2018; Verhulst et al., 2018; Waltemate et al., 2018)

3. Once induced, embodiment is

robust against inconsistencies

between the robotic system and the

operator’s body

Embodiment is robust against inconsistencies in:

- appearance: e.g., (Armel and Ramachandran, 2003; Hohwy and Paton, 2010)

- location: e.g., (Armel and Ramachandran, 2003)

- timing: e.g., (Maselli et al., 2016)

4. Embodiment enhances dexterous

task performance

Embodiment enhances:

- motor performance with a virtual limb (Grechuta et al., 2017)

- prosthesis movement control: e.g., (Tan et al., 2014)

- prosthetic object discrimination and manipulation: e.g., (Schiefer et al., 2016)

- prosthetic manual accuracy and sensitivity: e.g., (Valle et al., 2018)

Normand et al., 2011; Kilteni et al., 2012b). Behavioral and
physiological measures are for instance skin conductance (e.g.,
Armel and Ramachandran, 2003; Petkova and Ehrsson, 2008;
van der Hoort et al., 2011; Honma et al., 2014; Riemer et al.,
2015; Galvan Debarba et al., 2017; Grechuta et al., 2017), startle
response (Riemer et al., 2015) and heart-rate deceleration in
response to threat (Slater et al., 2010), changes in reaction times
in visuotactile cross-modal congruency task (e.g., Pavani et al.,
2000) and processing time of tactile stimuli (e.g., Moseley et al.,
2008), time of onset of the illusion (e.g., Ehrsson et al., 2004; Yeh
et al., 2017), rate of self-recognition (e.g., Tsakiris, 2008), local
histamine reactivity (e.g., Barnsley et al., 2011), skin temperature
reactivity (e.g., Moseley et al., 2008; Hohwy and Paton, 2010;
Tieri et al., 2017), and neural activity in different brain areas
(e.g., Ehrsson et al., 2004, 2007; Tsakiris et al., 2007). It has been
suggested that most physiological measures reflect an illusionary
disowning of the real hand in favor of the artificial substitute
(Longo et al., 2008; Lane et al., 2017).

Although all the measures presented above are considered to
reflect embodiment, they are not always clearly correlated and
may not reflect a causal relation, as we will also show in the next
section. This underlines that embodiment is a multidimensional
construct and that a specific measure may only reflect part of the
construct. The field can benefit from a consistent use of measures
and a clear explanation of which aspects of embodiment they
actually measure. A first step may be to link each measure to

the components presented in Table 1. In the next section, we
will further discuss the dissociations between the subcomponents
of embodiment.

Dissociations Between Subcomponents of
Embodiment
As reflected by the frequent absence of correlation between
different measures for ownership, the subcomponents of the
sensation are not necessarily correlated. Neuropsychological
studies have provided evidence for a dissociation between at
least two body representations: a body schema which is used
for motor action, and a body image which is used to make
perceptual judgments (Kammers et al., 2006). Proprioception
dominates vision for the body schema, while vision dominates
proprioception for the body image (Kammers et al., 2009).
Perceptual judgments (e.g., proprioceptive drift, depending on
the body image) are more susceptible to ownership than actions
(depending on the body schema; Kammers et al., 2009). Since
they are also relevant in a teleoperation setting, we give three
examples of dissociations: between ownership and self-location,
between self-location and perspective-location, and between
agency and ownership.

Dissociations Between Ownership and Self-Location
Ownership and self-location can become dissociated. For
instance, changing the visual perspective in immersive Virtual
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Reality (VR) from first-person perspective (1PP) to third-
person perspective (3PP) differentially affects ownership and self-
location during full-body illusions: ownership is only consistently
experienced from a 1PP while changes in perceived self-location
are also perceived in a 3PP (Maselli and Slater, 2014).

Dissociations Between Self-Location and

Perspective-Location
Self-location has been mainly investigated through
experimentally induced out-of-body experiences. Out-of-
body experiences can be triggered by delivering synchronous
visuotactile stimulation on one’s real body while displaying the
corresponding visual stimuli at the location of the occluded
physical body seen from a perspective of a person located behind
one’s back (Ehrsson, 2007). During an out-of-body experience,
the sense of body-location and the sense of perspective
location can become dissociated when people feel that they
perceive the world from a location outside their physical body
(Lenggenhager et al., 2007).

Dissociations Between Agency, Ownership, and

Proprioception
Agency and ownership typically coincide, but both can also
be dissociated (e.g., Abdulkarim and Ehrsson, 2016; Shibuya
et al., 2017; for a review see Braun et al., 2018). Ownership
is mainly determined by the realism of the fake body part
(Argelaguet et al., 2016) and the temporal match between the
perceived visual and tactile stimulation (Tsakiris and Haggard,
2005; Tsakiris, 2010; Kalckert and Ehrsson, 2012), whereas agency
primarily arises from the match between predicted (intended)
movements and actual kinesthetic feedback (i.e., the perceived
efficiency of control: Frith et al., 2000; Argelaguet et al., 2016;
Braun et al., 2018). This becomes manifest in the virtual hand
illusion (VHI), where ownership is mostly determined by delays
(temporal mismatches between visual and tactile stimulation;
Ismail and Shimada, 2016; Shibuya et al., 2018), while agency
is determined both by delays and by movement variability
(visual-motor mismatches; Shibuya et al., 2018). Functional
Magnetic Resonance Imaging (fMRI) studies have shown that
ownership and agency are linked to different brain areas.
Ownership involves activity in midline cortical structures while
agency corresponds to activity in premotor areas (pre-SMA and
BA6: Tsakiris et al., 2010), supporting the different underlying
mechanisms of agency and ownership. Agency (Caspar et al.,
2015), proprioceptive drift (Pavani et al., 2000; Holmes et al.,
2006; Haans et al., 2008; Holle et al., 2011; Rohde et al., 2011;
Kilteni et al., 2012b; Maselli and Slater, 2014) and slowing down
of tactile processing (Folegatti et al., 2009) also occur in the
absence of ownership. The other way around, passive movements
abolished agency but left ownership intact, while incongruent
positioning of the fake hand diminished ownership but did not
eliminate agency (Kalckert and Ehrsson, 2012).

Drift and ownership can be dissociated in the RHI (Riemer
et al., 2015; Romano et al., 2015) and in full-body illusions
(Maselli and Slater, 2014) too. Changing the sensed position of
the hand either toward or away from the rubber hand does not
influence the subjective strength of the RHI (Abdulkarim and

Ehrsson, 2016). Synchrony of stimulation does not affect the
proprioceptive drift but increases the sense of ownership (Tamè
et al., 2018). The time scales of ownership and proprioceptive
drift are different as well: the illusion of owning the hand can
occur as early as 6 to 11 s after the onset of simultaneous stroking
(Ehrsson et al., 2004; Lloyd, 2007), while the proprioceptive drift
continues to increase after the illusion has begun, sometimes for
several minutes (Tsakiris andHaggard, 2005; Tsakiris et al., 2007).
Also, startle, and skin conductance responses are correlated with
ownership but not with proprioceptive drift (Riemer et al., 2015).
This suggests that the sense of ownership and proprioceptive
drift are mediated by different neural mechanisms (Ehrsson
et al., 2004; Blanke, 2012). It seems that proprioceptive drift
is the result of visuo-proprioceptive integration (Erro et al.,
2018), while the sense of ownership results from multisensory
(i.e., visual, proprioceptive, and tactile) integration (Ehrsson,
2020). Proprioceptive drift is a more sensitive measure for
agency than subjective measures (Liepelt et al., 2017). Hence,
proprioceptive drift is probably only useful as an indirect
measure of the RHI in well-controlled experimental conditions
and in combination with other measures like vividness ratings
(Armel and Ramachandran, 2003; Moseley et al., 2008) and
subjectivemethods like questionnaires (Longo et al., 2008). As for
the defensive behavioral and physiological responses to threats to
an artificial body part, it is not clear whether these actually reflect
ownership or merely a bodily resonance (i.e., the activation of
similar bodily states in the self when perceiving others: Riemer
et al., 2015), possibly mediated by a mirror neuron system
(Keysers and Gazzola, 2009; Serino et al., 2009; Brozzoli et al.,
2013).

Body Representation, Internal Models, and
the Predictive Encoding Framework
It has been suggested that embodiment is mediated through a
Bayesian perceptual learning process (Armel and Ramachandran,
2003) in which signals from different modalities that co-occur
with a high probability in near-personal space (Ehrsson et al.,
2004; Makin et al., 2008) are integrated in multisensory brain
areas (premotor cortex and posterior parietal cortex: Ehrsson
et al., 2004, 2005a). In this view, a body ownership illusion is
simply the best explanation of new evidence from sensory input
given an existing framework of the human body form (based on
prior knowledge; Apps and Tsakiris, 2014; Samad et al., 2015;
see also Riva, 2018). After the onset of the illusion, further
incoming evidence is then incorporated into this false bodily self-
representation andmay override prior knowledge about the body
model and its associated causal relations (Hohwy and Paton,
2010). However, even though the illusion can be very convincing,
participants remain rationally aware that their body has not
actually changed.

The increasingly popular neuroscientific theory of predictive
encoding (Friston and Kiebel, 2009; Friston, 2012; Hohwy,
2013) is a useful framework to interpret and discuss data
on embodiment experiments and to make predictions for
embodiment effects in telerobotics. Contrary to the Bayesian
perceptual learning paradigm, predictive encoding postulates
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that the brain generates models at each level of perceptual and
cognitive processing to predict what information it should be
receiving from the level below it (i.e., top-down). The brain then
compares the actual bottom-up sensory information with the
model predictions. Only discrepancies between both (referred to
as prediction errors or surprises) are passed to higher levels where
they are used to update the model or where they are “explained
away” by activating a different model (e.g., “this is not an
external robotic end-effector but a hand that is part of my body”).
Model activation and updates are both directed at minimizing or
suppressing prediction errors at a lower level (Friston and Kiebel,
2009; Friston et al., 2011). This generic theory can also be applied
to embodiment in the sense that the brain effectively regulates
and controls the body by actively maintaining an internal model
(multisensory simulation or “body matrix”: Moseley et al., 2012)
of the body and the space around it and by using this model to
generate predictions of future sensory events. The body model
is continuously updated in a bottom-up way by minimizing
prediction errors that signal mismatches between its top-down
predictions and actual sensory events (Apps and Tsakiris, 2014).

Embodiment of tools or virtual body parts appears to reflect
the integration of two types of information: prior information
that is innate or gained from experience (e.g., the appearance of
our own body), and current multisensory information (Tsakiris,
2010). In this view multisensory stimulation is required to
induce embodiment in a bottom-up way, while the preexisting
body representation (self-image) modulates the illusion in a
top-down way by limiting the extent to which foreign objects
can effectively be integrated (Tsakiris and Haggard, 2005). Top-
down mechanisms appear to constrain the integration process
(IJsselsteijn et al., 2006), such that realistic (real and virtual)
body parts are more easily attributed to the self than arbitrary
objects (Armel and Ramachandran, 2003; Tsakiris and Haggard,
2005; Haans et al., 2008). In other words: small prediction errors
can change the body model (resulting in embodiment of these
objects), while large prediction errors are more difficult to explain
away by the brain or at all and may prohibit embodiment. In the
latter case, error signals will result in maintaining the a priori
model (this is a robotic end-effector), and not in the activation
of an embodiment model.

The advantage of adopting the predictive encoding theory as
a framework for embodiment is that it unifies perception and
motor control, which are also critical in telerobotics. The brain
uses both to minimize prediction errors: perception to adjust the
internal model and motor control to adapt to the environment or
to fill in missing data. Both experimental and clinical research
has shown that the neural substrates underlying embodiment
significantly overlap with those driving fine motor control. fMRI
and Positron Emission Tomography studies investigating the
neural correlates of sensory integration driving body ownership,
demonstrate that the RHI correlates with activity in the bilateral
premotor cortex, the intraparietal sulcus, the sensorimotor
cortex, the temporo-parietal junction and in the right posterior
insula (Ehrsson et al., 2004, 2005a; Tsakiris et al., 2007, 2008).
For the virtual hand illusion, the number of EMG activity onsets
correlated positively with reported subjective strength of the
illusion while the virtual arm was rotating (Slater et al., 2008).

These findings suggest that ownership of virtual limbs and bodies
engage the same perceptual, emotional, and motor processes that
make us feel that we own our biological bodies.

PREMISE 1: THE BODY REPRESENTATION
IS MALLEABLE AND CAN INCLUDE
NON-BODILY OBJECTS

Since we experience our body through a complex interaction
of various perceptual streams including vision, touch,
proprioception, and vestibular sensations, neither its perceived
size nor its morphology are as rigid as we usually take for
granted. By systematically manipulating the delivery of sensory
stimuli in controlled experimental conditions, different illusions
can be induced that significantly alter our bodily perception
and representation.

Malleability of the Body Representation
The apparent shape and orientation of the body can be
changed by using muscle vibration to generate proprioceptive
misinformation about limb position. For instance, vibrotactile
stimulation of the biceps or triceps while the hand touches
another non-moving body part creates the impression that the
hand is extending away or toward the body, with the associated
illusion that the touched body part is changing in size (Lackner,
1988; de Vignemont et al., 2005; Ehrsson et al., 2005b). Also,
simultaneous vibration on the biceps and triceps muscle tendons
can induce the perception of a shrunken arm (Longo et al.,
2009a). A well-known example of changed sizes in body parts is
the illusion of the long nose. This illusion occurs when a finger of
a blindfold subject (S0) is manipulated by the experimenter to tap
the nose of another subject (S1) who is sitting in front facing away
from S0 while the experimenter simultaneously taps the nose of
S0 (Ramachandran and Hirstein, 1998).

Embodiment of Non-bodily Objects
Numerous studies have shown that is possible to include
extracorporeal objects in our body representation. Ownership
has been reported for objects such as fake limbs and robotic
hands and arms, mannequins and virtual bodies and even empty
volumes of space and invisible bodies (e.g., Caspar et al., 2015;
Guterstam et al., 2015; van der Hoort and Ehrsson, 2016; Kondo
et al., 2018a) through visuotactile stimulation or visuomotor
synchronicity (see Kilteni et al., 2015 for a review of some
illusions). This line of research started to expand significantly
with the experiments of Botvinick and Cohen (1998) who found
that watching a rubber hand being stroked in synchrony with
one’s own unseen hand can cause the rubber hand to be attributed
to one’s own body. Since then, this RHI or body ownership
illusion (in short: ownership, see Table 1) has successfully been
elicited for a virtual arm (Slater et al., 2008), robot hands
(Guterstam et al., 2013) and robot arms (Aymerich-Franch et al.,
2017a), wholemannequins (Petkova et al., 2011a), android robots
(Nishio et al., 2012, 2018; Ogawa et al., 2012; Jazbec et al., 2017),
virtual balloons and virtual squares (Ma and Hommel, 2015a),
smartphones (Liepelt et al., 2017) and chopsticks (Weser et al.,
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2017). Hence, it appears that humans can incorporate a wide
range of external objects into their body representation.

The extent to which non-human artifacts can be incorporated
as a phenomenal extension of the self is clearly relevant to the area
of telepresence (IJsselsteijn, 2005). Understanding the conditions
under which integration can occur should guide the design of
virtual environments, teleoperation, and mixed reality systems,
and ways in which the body may be optimally represented in
such mediated environments. In the remainder of this section we
discuss the literature on ownership over non-bodily objects such
as non-human-like avatars, robots, external, and additional tools.

Ownership Over Non-human Like Avatars
In a teleoperation setting it is relevant how non-human like an
object can be (e.g., a robotic tool) and still evoke embodiment.
A fake body (part) does not necessarily need to look realistic to
evoke embodiment. Specific types of synchronous multisensory
and sensorimotor stimulation can induce ownership over body
parts or entire bodies with a shape, size, and symmetry that
are different from one’s normal body form (Longo et al., 2009b;
González-Franco et al., 2010; Sanchez-Vives et al., 2010; Slater
et al., 2010; Yuan and Steed, 2010; Normand et al., 2011; van der
Hoort et al., 2011; Kilteni et al., 2012b; Piryankova et al., 2014;
Verhulst et al., 2018). Several studies have also shown that we
can incorporate more “limbs” than just prescribed by our body’s
morphology (e.g., Ehrsson, 2009; Newport et al., 2010; Guterstam
et al., 2011; Folegatti et al., 2012; Chen et al., 2018). For instance,
participants moving in synchrony with a humanoid avatar that
featured a distinct and flexible tail-like appendage protruding
from its coccyx, experienced a tail that they could control
accurately and synchronously through hip movement (Steptoe
et al., 2013). Changes over time are permissible as well: in a setup
that combined VR with vibrotactile feedback, the illusion of an
elongated arm was effectively induced by letting the participants
concentrate on a virtual arm that was slowly elongated while a
virtual ball was bouncing on the virtual hand (Ariza et al., 2016).
Although similarity of the virtual avatar enhances the sense of
embodiment in VR (Maselli and Slater, 2013), even bodies with
extra limbs (Schaefer et al., 2009; Won et al., 2015), a tail (Steptoe
et al., 2013), dragon wings (Egeberg et al., 2016), and animal
bodies such as cows, spiders and bats (Ahn et al., 2016; Krekhov
et al., 2019) can be embodied by participants.

Ownership Over Robots
Humans can identify with realistic androids (Nishio et al.,
2012) as well as with non-human looking humanoid robots
(Aymerich-Franch et al., 2015, 2017a). In the domain of robotics,
embodiment has been induced toward teleoperated android arms
or robot arms, either through visuotactile synchrony (Aymerich-
Franch et al., 2017a), visuo-movement synchrony (Hellman et al.,
2015; Romano et al., 2015; Aymerich-Franch et al., 2017a), or
through a brain-computer interface (Alimardani et al., 2013). An
ownership illusion was successfully induced not only for arms
with a high resemblance to human arms in terms of shape (i.e., a
hand with five fingers: Romano et al., 2015) and texture (Hohwy
and Paton, 2010; Hellman et al., 2015), but also for non-human
looking arms (Aymerich-Franch et al., 2017a). Presenting an

arm that is attached to a robot in first-person perspective from
the viewpoint of the humanoid robot probably contributes to
its conceptualization as an “arm” and thus the development of
functions associated to this limb, which in turn contributes to its
integration as part of the body (Aymerich-Franch and Ganesh,
2016). A sense of full-body ownership and agency was induced
for teleoperated life-size androids moving in synchrony with the
participant’s movements (Nishio et al., 2012; Jazbec et al., 2017).
A first-person view with congruent visuo-auditory feedback
effectively induced a sense of embodiment toward a moving
humanoid robot (Aymerich-Franch et al., 2015). Participants
experienced this sense of embodiment even when they did not
control the robot. Furthermore, the sense of agency and body
ownership were not affected by partial and delayed control of
the robot (with delays of 0.5–2 s). In contrast, Arata et al. (2014)
found that a robotic RHI significantly decreased at time delays
over 100 ms.

Once it has been embodied, users can even experience
haptic sensations from a non-anthropomorphic embodied limb
or agent with only visual (and no haptic) feedback. For
instance, participants reported haptic sensations in their real
hand when they observed their robot avatar touching a curtain
with its hand (Aymerich-Franch et al., 2017b). The ability
to feel embodiment and ownership over non-human looking
humanoids is important, since this type of robots may be more
appropriate to perform certain functions than highly human-like
ones (Złotowski et al., 2015).

Tools and Embodiment
Studies on tool use have shown that arbitrary mappings between
motor intentions and sensory events can be learned (Sato and
Yasuda, 2005; Sato, 2009; Spengler et al., 2009) and thereafter
predicted, and novel internal models can be acquired to
facilitate tool use (Imamizu et al., 2000; Wolpert et al., 2011).
These findings are summarized by the functional body model
hypothesis (Aymerich-Franch and Ganesh, 2016), which states
that perceived entities with functional properties that match
those of our own body parts can be embodied by our brain, while
tools that afford different functionalities can modify our internal
body representation (body model) leading to perceptual changes
that depend on the shape and functionality of the tools. It appears
that arbitrary tools can be embodied provided that the actions
they afford match the task at hand (Berti and Frassinetti, 2000;
Cardinali et al., 2012).

Tool use can update the brain’s representation of the
body’s morphology and kinematics such that the modified
representation reflects an incorporation of the tool into the body
representation. As a result, tool use can extend peripersonal space
to include the space reachable by the tool (Berti and Frassinetti,
2000). This extended body model can, in turn, be recalibrated
through manipulation of the multisensory stimuli perceived
through a tool: the RHI was for instance successfully induced for
participants looking at a rubber hand holding a pair of chopsticks
while holding an identical pair in their own hands (Weser et al.,
2017). Hence, it appears that the brain treats the representation
of an embodied tool in the same way as the representation of the
(artificial) hand wielding it.
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Prosthetics
Embodiment is of particular interest for prosthetics, where
one of the main goals is to restore the motor and sensory
functions of a lost limb with an artificial substitute that feels
and acts like the lost real one. Hence, the artificial body part
should become integrated into the internal representation of
the body, through a modification of its sensorimotor cortical
representation. Embodiment has successfully been achieved in
transradial amputees by stroking specific points on the residual
limb (Ehrsson et al., 2008) and by using a prosthesis equipped
with artificial sensors that provide synchronized vibrotactile
feedback on the stump (D’Alonzo and Cipriani, 2012). Using
a bidirectional neural-machine interface, it has recently been
shown that amputees intuitively acquire a sense of agency and
improved functional motor control over robotic hands when
kinesthetic feedback is provided in the form of vibration-induced
perceptual movement illusions (Marasco et al., 2018).

Myoelectric prostheses record, process and decode electrical
activity from the user’s muscles to control the device’s actions.
Active prosthetics close the prosthesis control loop by also
providing sensory feedback to the user. Myoelectric control over
a robotic arm induced a significant sense of embodiment in both
able-bodied participants and amputees, as manifested by high
degrees of ownership and agency (Sato et al., 2018).

Conclusion on Premise 1
The above studies show ample support that the representation
of the body is indeed malleable and may also include non-
bodily objects like tools and prosthetic limbs. Objects that do not
resemble body parts can be included, provided that ownership
has been induced beforehand (Hohwy and Paton, 2010). This
suggests that different substrates mediate the initial elicitation
of the BOI (Ehrsson et al., 2004) and its maintenance, once
established (Tsakiris et al., 2006, 2007, 2008; Ehrsson, 2012).
It appears that embodiment can be induced for any type of
object (even virtual balloons or squares and smartphones: Ma
and Hommel, 2015a; Liepelt et al., 2017; Weser et al., 2017) as
long as one can control the relevant features and behaviors of that
effector (i.e., as long as one has objective agency over the effector:
Ma and Hommel, 2015b).

PREMISE 2: EMBODIMENT CAN BE
EVOKED BY MEDIATED SENSORIMOTOR
INTERACTION

In section Body Representation, Internal Models and the
Predictive Encoding Framework, we explained that according to
the predictive encoding framework, bottom-up sensory cues can
drive the activation of an embodiment model. In a telerobotics
situation, these cues will be mediated or even virtual. In the
previous chapter, we already presented several studies that used
immersive VR, showing that cues can be indirect. In this
chapter, we look more closely at the different cues in relation
to the predictive encoding framework and the possible effect
of mediation.

According to the predictive encoding framework, bottom-
up sensory signals can enforce changes in the internal model
and therewith mediate embodiment. A relevant question is how,
how quickly, to what extent, and how robustly the different
sensory signals evoke embodiment. Embodiment is typically
generated by either visuotactile or visuomotor information,
but visuo-proprioception and visual perspective can also have
a significant impact. Unmediated visuotactile stimulation is
the main sensory input for embodiment in studies related to
the classic rubber-hand paradigm (e.g., Botvinick and Cohen,
1998). More recently, different paradigms have successfully been
deployed to induce embodiment. In virtual reality, high precision
visuomotor synchronization is now generally used to induce
the sense of avatar embodiment (e.g., Kilteni et al., 2012a). It
appears that the mere view of a rubber hand near the participant’s
own hand (e.g., Pavani et al., 2000; Holmes et al., 2006; Rohde
et al., 2011) or the mere sight of a mannequin body from a
1PP perspective (e.g., Carey et al., 2019) can also be sufficient to
induce a significant ownership illusion.

In this section we compare findings in the literature
on the effect of different (combinations of) sensory inputs
on embodiment, and discuss which sensory modalities are
critical and which are sufficient to induce embodiment.
More specifically, we look at the following questions: (a)
how do different combinations of sensory cues contribute to
embodiment, (b) is embodiment possible without a particular
sensory cue, (c) what is the effect of inconsistencies in specific
sensory cue combinations, and (d) are there differences between
direct, unmediated cues, and mediated or virtual cues.

Visuotactile Stimulation
Visuotactile stimulation typically involves synchronous stroking
of the hand and its representation (e.g., rubber hand or virtual
hand). Different tactile stimuli like stroking (e.g., Botvinick and
Cohen, 1998), tapping (e.g., Haans et al., 2012) and even the
presentation of painful tactile stimuli (pinpricks: Capelari et al.,
2009) can all be used to induce the RHI. Affective touch (slow
stroking) induces a stronger sense of ownership than non-
affective touch (e.g., either fast stroking or tapping), both for
the RHI (Haans et al., 2012; Crucianelli et al., 2013, 2018; Lloyd
et al., 2013; van Stralen et al., 2014) and for a virtual full-body
ownership illusion (de Jong et al., 2017). The RHI can also be
induced through (dynamic or static) active self-touch realized by
a robotic master-slave system (Hara et al., 2016).

The RHI depends on the congruency of the tool used to stroke
the real and fake hands. The RHI is diminished when tools are
used that are incongruent with respect to their visual appearance
and predicted tactile stimulation (e.g., touching the dummy with
a pencil and the real hand with a paintbrush) relative to when
they are congruent (Ward et al., 2015). In a study by D’Alonzo
and Cipriani (2012), synchronized vibrotactile feedback and
visual stimulation effectively induced the RHI despite sensory
substitution and themodality-mismatched nature of the feedback
to the real hand. The RHI can also be induced using somatic
signals only, that is without visual cues, by moving a blindfolded
participant’s index finger so that it touches a rubber hand while
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the experimenter simultaneously touches the participant’s real
other hand (Ehrsson et al., 2005a).

But is visuotactile synchrony actually required? In some
studies, spatiotemporal mismatches between vision and touch
significantly inhibit the RHI (Armel and Ramachandran, 2003;
Ehrsson et al., 2004; Slater et al., 2008). Similar results were
found for full ownership toward plastic mannequins seen from
a 1PP: participants perceived the mannequin’s body as their own
body when the real and the fake abdomen part were touched
synchronously, but not when they were touched asynchronously
(Petkova and Ehrsson, 2008). However, other studies show
that although synchronized multisensory cues (visuotactile or
visuomotor) can strengthen the illusion, they are not required
for ownership to occur (Maselli and Slater, 2013; Keizer et al.,
2016).When the fake body (part) is realistic and overlaps in space
with the real body counterpart, ownership can even be induced in
presence of asynchronous visuotactile stimulation (Maselli and
Slater, 2013; Krom et al., 2019).

In conclusion: while visuotactile synchrony can significantly
enhance the illusion, it is not crucial to experience embodiment,
and embodiment may even occur with asynchronous visuotactile
cues in the presence of additional congruent cues. There are no
apparent differences between direct and mediated or virtual cues.

Visuomotor and Proprioceptive Cues
Visuomotor correlations are extremely efficient in eliciting full
body ownership (Slater et al., 2010; Kokkinara and Slater,
2014), thanks to the rich information processing involved in
the sensorimotor control loop. A feeling of embodiment can
be induced for a wide variety of virtual objects if the perceived
actions of the object are predictable in accordance with the
intentions of the individual (Short and Ward, 2009). More
specifically, a correlation between efferent (operator’s intended
motion) and visual afferent (visual perception of actual motion)
information is sufficient to trigger the illusion of body ownership
(Alimardani et al., 2013, 2015). As a result, ownership can
be elicited by congruent visuomotor cues alone (through a
synchronizedmotion of the real and the fake body parts), with no
need for further sensory cues (Tsakiris et al., 2006; Dummer et al.,
2009; Walsh et al., 2011; Maselli and Slater, 2013). Synchronized
movements of real and fake body parts (e.g., by tracking the
movements of the real ones to steer the fake ones) can induce
embodiment in the absence of visuotactile stimulation (e.g.,
Tsakiris et al., 2006; Dummer et al., 2009; Sanchez-Vives et al.,
2010; Ma and Hommel, 2013; Romano et al., 2015). In this case,
the visual feedback corresponds to the perceived movements
of the fake body parts. For instance, when operators watch a
teleoperated robot copying their own movements, the match
between the motion commands (efferent predictive signals) and
the sensory feedback from the motion (visual afference from the
robot’s body and proprioceptive afference from the operator’s
own body) induces a sense of agency over the robot’s actions
and ultimately results in a sense of embodiment of the robot’s
body (Alimardani et al., 2013). Also, synchronized visual and
non-cutaneous proprioceptive cues can induce embodiment:
congruent movements performed under digital nerve block
induced ownership for an artificial finger that was even stronger

than the ownership that was induced by congruent movements
performed with an intact finger (Walsh et al., 2011).

Using a virtual hand-arm model for visual stimulation in
combination with vibrotactile feedback through a data-glove,
Padilla et al. (2010) showed that synchronized movements
in combination with self-inflicted tactile stimulation (through
touching virtual objects) effectively induced a significant
ownership. Visuomotor synchrony effectively induced ownership
over an extended-humanoid avatar in immersive VR (Steptoe
et al., 2013). In addition, visuomotor synchrony between
movements of real and virtual hands induced illusions of
ownership, proprioceptive drift and agency of virtually presented
hands (Sanchez-Vives et al., 2010; Rognini et al., 2013). A similar
study found that visuomotor congruency between movements
of the real hand and a detached myoelectric-controlled robotic
hand induced proprioceptive drift but not ownership, whereas
the illusion did not occur for incongruent movements (Romano
et al., 2015). The difference between these results may be caused
by differences in the degree of realism of the fake hand: while
the virtual hands had a realistic appearance (Sanchez-Vives et al.,
2010; Rognini et al., 2013), the robotic hand showed mechanical
and electronic components (Romano et al., 2015).

Concerning proprioception and visuo-proprioceptive
congruency, ownership has shown to be relatively insensitive for
small discrepancies in position (Ehrsson et al., 2004; Rohde et al.,
2011; Maselli and Slater, 2014) and orientation (Petkova et al.,
2011b; Brozzoli et al., 2012; Ide, 2013; Ionta et al., 2013; Blom
et al., 2014) between the real and fake body parts, but decreases in
strength for larger spatial discrepancies (Lloyd, 2007; Bergström
et al., 2016).

The distribution of embodiment in the RHI across stimulated
and non-stimulated fingers depends on the kind of stimulation.
Both touch and passive movement produce a relatively
fragmented perception of one’s own body, in which a sense
of ownership is associated with individual body parts and
does not transfer to other parts. However, active movement
can integrate distinct body parts into a coherent, unified
awareness of the body (Tsakiris et al., 2006): tactile and passive
stimulation-induced localized proprioceptive drifts, specific to
the stimulated digit, while active movement of a single digit
spread the proprioceptive drift across the whole hand. This kind
of fragmented perception can be a limitation of the embodiment
in teleoperation applications when different body parts are
receiving different levels (e.g., intensity, realism, congruency) of
(artificial) feedback.

In conclusion, the above results show that visuomotor and
proprioceptive synchrony significantly enhance embodiment and
are sufficient—but not required—cues. It is not yet clear whether
inconsistencies in these cues can prohibit embodiment from
occurring. Mediated cues seem to have the same effect as
direct cues.

Visual Perspective
The perspective from which the body(-part) is seen is another
important modulator of illusory body ownership. Ownership
of a virtual body can be achieved in both 1PP (Petkova and
Ehrsson, 2008; Slater et al., 2010; Petkova et al., 2011a; Maselli
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and Slater, 2013) and in 3PP (Lenggenhager et al., 2007, 2009;
Pomés and Slater, 2013; Gorisse et al., 2017, 2019). Participants
can also experience body ownership over a teleoperated android
robot in both 1PP and in 3PP (Ogawa et al., 2012). However,
ownership is typically stronger from a 1PP compared to a 3PP
(Petkova and Ehrsson, 2008; Slater et al., 2010; Petkova et al.,
2011a; Pozeg et al., 2015), while a 1PP and a 3PP induce the
same sense of agency and spatial presence (Gorisse et al., 2017). A
1PP (compared to a 3PP) generally yields a stronger embodiment
in terms of self-location and ownership (Galvan Debarba et al.,
2017) and enables more accurate interactions due to a better
perception of the arms and the hands of the users’ avatars
(Gorisse et al., 2017), while a 3PP provides a better awareness of
the environment. In essence, 1PP can be considered as congruent
visual perspective and 3PP as incongruent. On a side note, the
vast majority of studies in this area used avatars and immersive
virtual reality, showing that the sensory cues can be mediated.

Several studies suggest that in an immersive VR environment
a 1PP is already sufficient for embodying an avatar with
human features (Maselli and Slater, 2013; Piryankova et al.,
2014). A 1PP over a fake humanoid body induces even higher
levels of experienced ownership, compared to a 3PP (Slater
et al., 2010; Petkova et al., 2011a; Maselli and Slater, 2014;
Pavone et al., 2016). Some degree of consistency between the
fake body part and the human’s own is required to induce
embodiment: if the discrepancy (i.e., the prediction error in
terms of the predictive encoding framework) is too large,
embodiment is not elicited. Ownership is less likely to occur
when the apparent visual location or orientation of a body
part conflicts with its veridical location (Pavani et al., 2000).
In a 1PP, ownership can be induced over a virtual arm that
moves with the same spatiotemporal pattern as the real one
independent of the degree of congruency of the visuotactile
feedback (Slater et al., 2008; Sanchez-Vives et al., 2010; Kilteni
et al., 2012b). A 1PP (i.e., an avatar being spatially coincident
with the position of the participant) of a realistic virtual body
substituting the participants’ own body induces an illusory
feeling of ownership and changes in body representations
(Serino et al., 2016), even after asynchronous stimulation
(Slater et al., 2010; Maselli and Slater, 2013; Serino et al., 2016).

Using a system that captures human body movement and
generates an immersive 1PP view of one’s body position with
a small (forward or backward) shift in time, it was found that
spatiotemporal deformations of the body representation induced
distinct physical sensations (Kasahara et al., 2017). Viewing a
prediction of one’s body image in the future induced lighter,
nimble and vitalized sensations, whereas past views evoked
heavier, dull, and diminished sensations.

Embodiment can occur with respect to a distant body, seen
from a 3PP, when additional reinforcement in the form of
synchronous visuotactile information is provided (Lenggenhager
et al., 2007, 2009; Aspell et al., 2009) or when the virtual body
preserves spatial overlap with the physical body (Maselli and
Slater, 2014). The latter indicates that 3PP alone is not enough,
and additional boundary conditions apply. Postural congruency
does not appear to be essential (Liang et al., 2015; Chen et al.,
2018). While ownership over a body seen from a 1PP and a

3PP are both supportable (Pomés and Slater, 2013), a 3PP of the
virtual body sometimes appears to break the illusion (Petkova
and Ehrsson, 2008; Slater et al., 2010; Petkova et al., 2011a).

While the sense of ownership and sense of self-localization
are tightly coupled in normal conditions, they can become
dissociated during virtual out-of-body experiences (e.g., Maselli
and Slater, 2014). In an out-of-body experience, the perspective
switches from 1PP to 3PP, making it possible to perceive the
world from a location outside the own body and/or even see
one’s own body. Thus, 3PP alone is not sufficient to evoke
embodiment and is not a strong cue either. 3PP may even break
existing embodiment.

In conclusion on visual perspective, the above results show
that a 1PP is a sufficient cue to evoke embodiment but is not
strictly required, as embodiment also occurs in the absence
of visual cues or with an incongruent visual perspective (i.e.,
3PP). However, 3PP alone is not sufficient to evoke embodiment
and is not a strong cue either. 3PP may even break existing
embodiment. In this respect, mediated vision is as good as
direct vision.

Visual Realism (Similarity)
Although some degree of connectivity (Perez-Marcos et al., 2012)
and anatomical correspondence between the real and the dummy
body part must be respected for embodiment to occur (Tsakiris
and Haggard, 2005), a growing body of evidence shows that
the embodiment is highly flexible and does not require a high
degree of visual realism for its induction (Slater et al., 2009).
It is, for instance, possible to experience ownership over joke-
shop rubber hands (Farnè et al., 2000), stuffed washing gloves
(Austen et al., 2004), zombie hands and wooden blocks (Lin and
Jörg, 2016), arms that appear much longer than normal (Kilteni
et al., 2012b), that look injured or particularly hairy (Osumi et al.,
2014), that have different (Holmes et al., 2006; Farmer et al.,
2012) or dynamically changing (Martini et al., 2013) skin color
or luminance (Longo et al., 2009b), that are semitransparent
(Martini et al., 2015), or which are even completely invisible
(Guterstam et al., 2013). Also, ownership can be experienced over
virtual bodies of the same (Petkova and Ehrsson, 2008; González-
Franco et al., 2010) or opposite (Slater et al., 2010) sex, over
virtual bodies of a different race (Longo et al., 2009b; Farmer et al.,
2012; Kilteni et al., 2013; Maister et al., 2013; Peck et al., 2013),
different shape and size (Normand et al., 2011; van der Hoort
et al., 2011; Banakou et al., 2013; Verhulst et al., 2018), invisible
virtual bodies (Guterstam et al., 2015), of dolls and giants (van der
Hoort et al., 2011), of robots and block-men (Lugrin et al., 2015).

A correct representation of self-contact appears to support
a strong sense of embodying an avatar during immersion in
VR (Bovet et al., 2018). Another study found a significant
shape by texture interaction: a natural skin texture increased the
strength of the RHI for a hand-shaped object, but not for a non-
hand-shaped object (Haans et al., 2008). Using a high-fidelity
personalized hand in augmented virtuality (a VE enhanced with
real objects) resulted in significantly higher accuracy in object
size estimation, in addition to higher degrees of spatial presence
and body ownership (Jung et al., 2018). Also, personalized avatars
significantly increased virtual body ownership (Waltemate et al.,
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2018). However, in several other RHI studies regarding realism,
different skin colors and hand shapes of believable rubber human
hands did not affect the strength of the RHI (Longo et al., 2009b;
Farmer et al., 2012).

Since objective agency does not depend on similarity or
realism, agency can even be larger for non-realistic body parts
when these provide a better feeling of control (Argelaguet
et al., 2016; Lin and Jörg, 2016). These observations agree with
physiological properties of cells in premotor and intraparietal
cortices which drive the fast localization of limbs in space
(Graziano, 1999; Graziano et al., 2000), but are not involved in
visual object recognition and the visual scene analysis. Moreover,
it means that embodiment may be a valuable paradigm for
applications requiring a high degree of agency, since agency is not
restricted to realistic simulations, high definition visual displays
or even anthropomorphic body parts, but can also be induced for
artificial or (low resolution) virtual entities.

In conclusion: (visual) likeness helps to evoke embodiment
but is not required, and cues may even be incongruent. Mediated
vision is as good as direct vision.

Comparison of Sensory Modalities
Asmentioned above, factors known to contribute to embodiment
include synchronous visuotactile information, visuomotor
synchrony and visuo-proprioceptive match, visual perspective
on the body, and visual appearance of the body. Data also show
that modalities may have different effects on the strength and
robustness of the effect and that none of them is strictly required
for embodiment to occur. This gives rise to two important
questions: is there a simple additive model of sensory cues and
is the strongest and most robust embodiment achieved when
all cues are present? And how do these factors quantitatively
compare in evoking embodiment? The latter requires studying
the main effects of the sensory modalities and their interactions
in a single, elaborate experiment. Such an ultimate experiment
has not been done yet. However, we can make a rough ordering
of the modalities (from strong to weak, based on the findings
above and discussed below): 1PP visual perspective, visuo-
motor / proprioception synchrony, visual-tactile synchrony, and
visual similarity.

Perspective (specifically 1PP) dominates movement and touch
as an explanatory factor for ownership (Slater et al., 2010).
As noted before, a 1PP over a realistic fake human body
or body part overlapping the real one is sufficient to elicit
ownership (Maselli and Slater, 2013). In that case, there is no
need for an additional contribution of congruent visuotactile
or sensorimotor cues. However, the contribution of congruent
multisensory and/or sensorimotor cues is required when the
level of realism of the virtual body is not high enough or
when there is no (or insufficient) spatial overlap between the
two bodies (Blom et al., 2014). Current evidence suggests that
(in the context of 1PP) visuomotor congruence contributes
significantly more to ownership than visuotactile synchrony
does (Slater et al., 2010; Petkova et al., 2011a; Kilteni et al.,
2012b; Kokkinara and Slater, 2014). Disruption of ownership
by asynchronous visuotactile stimulation can be overridden by
synchronized visuomotor stimulation (Kokkinara and Slater,

2014). The RHI illusion is stronger in an active movement
condition compared to a passive condition, indicating that both
efferent and afferent information (proprioception) contribute
to body perception (Raz et al., 2008; Dummer et al., 2009).
Haptic feedback (e.g., tactile and force feedback) during the
active movement also contributes significantly to the feeling of
ownership (Raz et al., 2008).

As mentioned above, tactile feedback is not a strict
requirement—operators watching a teleoperated android robot
(Nishio et al., 2012) or a virtual body (González-Franco et al.,
2010; Verhulst et al., 2018) moving in synchrony with their
own movements also experience embodiment. This still occurs
when there are discrepancies in position and orientation between
the fake and real body parts, although it is less strong in these
conditions (Bergström et al., 2016). Synchronous visuotactile
stimulation can overcome spatial mismatches and induce the
illusion when the rubber hand is placed in an anatomically
plausible posture but in a different position (Ehrsson et al., 2004;
Rohde et al., 2011) or in a different orientation (Brozzoli et al.,
2012; Ide, 2013; Ionta et al., 2013) from the real one. The RHI
even occurs when the tactile stimulation is merely suggested
(White et al., 2017; Smit et al., 2018).

An asynchronous multimodal stimulation is typically adopted
as the control condition in which no sense of ownership
is expected to arise since the error signal is too large to
trigger the embodiment model. However, despite the large
prediction error for an embodiment model, the asynchronous
condition does not always result in a significantly lower sense
of body ownership compared with the synchronous one (Hara
et al., 2015; Kokkinara et al., 2015; Pozeg et al., 2015).
This confirms the inference based on the predictive encoding
framework that in principle no sensory signals are strictly
required, and all sensory signals can potentially activate the
embodiment model. However, some modalities may have a
stronger (i.e., a larger weight) effect than others, as is common in
multisensory integration in general and related to differences in
signal noise.

Conclusions on Sensory Modalities and
Mediation of Cues
To conclude, embodiment can be induced and enhanced with
different (combinations of) sensory input. In accordance with
predictions based on the predictive encoding framework, not
all sensory modalities are needed in all situations, and the
information transferred by the different modalities appears to
reflect different aspects of embodiment. The available data
suggests (a) that the sensory information is not redundant,
but complementary, (b) the input of the different modalities is
weighted, and (c) there is some form of additive combination
of cues. It is also evident that there are not yet large-scale
experiments reported investigating all relevant factors and
their interactions.

When we interact with virtual or remote environments using
intuitive interaction devices, isomorphic to our sensorimotor
abilities, a real-time, reliable, and persistent chain of user action
and system feedback will effectively integrate the technology as
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a phenomenal extension of the self (IJsselsteijn et al., 2006).
Hence, embodiment can also be established through artificial
tactile stimulation (i.e., through a tactile display) or visuomotor
interaction with indirect viewing, i.e., both the sensory-motor
and visual input can be mediated. This suggests the possibility
to induce and apply embodiment in teleoperation settings, where
the operator typically receives mediated visual/motor/tactile
feedback. The data presented in the sections above clearly
substantiate Premise 2: embodiment can be evoked by mediated
sensorimotor interaction.

PREMISE 3: ONCE ESTABLISHED,
EMBODIMENT IS ROBUST AGAINST
INCONSISTENCIES

There are limits to the discrepancies for which ownership can
still be induced: the illusion does not arise for fake body
parts that have an overly unrealistic (e.g., a wooden stick:
Tsakiris and Haggard, 2005) or abstract (Yuan and Steed,
2010) appearance, that have impossible postures (Ehrsson et al.,
2004; Tsakiris and Haggard, 2005; Costantini and Haggard,
2007) or that are located outside the peripersonal space (Lloyd,
2007). However, once a basic ownership has been induced,
these restrictions no longer hold, and it is possible to extend
ownership over non-body objects like a table surface (Armel and
Ramachandran, 2003) or a box (Hohwy and Paton, 2010) and
over objects positioned at anatomically impossible locations (e.g.,
outside the peripersonal space: Armel and Ramachandran, 2003).
This indicates that once the embodiment model is activated,
mismatching sensory cues will lead to adjustments of the model,
as long as the mismatch between the predicted and actual
sensory information is below a certain threshold. In other
words: inconsistencies in size or appearance, for example, of
an embodied object will not necessarily result in abandoning
the embodiment model in favor of a “this is an external object”
model. An interesting hypothesis would then be that a step-by-
step introduction of a large inconsistency (e.g., slowly increasing
of arm length (Ariza et al., 2016), will be incorporated in the
embodiment model easier than the abrupt introduction of the
same inconsistency.

While agency and ownership tolerate quite large temporal
delays (up to 350ms, Shimada et al., 2009; Ismail and Shimada,
2016), perceived simultaneity and motor performance both
break down at much smaller delays (above 75ms; Waltemate
et al., 2016). Interestingly, illusory ownership also modulates
the temporal constraints for multisensory integration: during
the illusion, the temporal window for visuotactile integration of
body-related cues expands (Maselli et al., 2016). As a result, once
agency and ownership have been established, people fail to notice
asynchronies in visuotactile stimulation that are otherwise (in the
absence of the illusion) detected (Maselli and Slater, 2013). Note
that this finding may be essential in teleoperation performance,
since it may help to alleviate operator restrictions imposed by
system limitations.

These examples show that premise 3 is supported by
experimental evidence.

PREMISE 4: EMBODIMENT ENHANCES
DEXTEROUS TASK PERFORMANCE

Both experimental and clinical research have shown that the
structures underlying body ownership significantly overlap with
those mediating motor control, including the parietal and ventral
premotor cortices, Temporal Parietal Junction (TPJ) and the
insula (Ehrsson et al., 2004, 2005a; Tsakiris et al., 2007). This
suggests that embodiment may influence motor performance.
However, the relation between (degree of) embodiment and
(dexterous) task performance has hardly been studied. Some
recent studies indeed observed that the degree of ownership
over a virtual limb directly modulates performance in a simple
sensorimotor task: higher degrees of ownership resulted in faster
reaction times (Grechuta et al., 2017). This implies that body
ownership is not exclusively a perceptual and/or subjective
multimodal state, but that it is tightly coupled to systems for
decision-making and motor control.

Prostheses with implantable peripheral nerve interfaces that
provide sensory feedback in the form of neural stimulation
elicit somatotopic sensations similar to natural ones, affording
intuitive control over bidirectional prosthesis. This fosters
prosthesis embodiment (Schiefer et al., 2016; Rognini et al., 2019)
and leads to improved prosthesis movement control (Tan et al.,
2014) and improved object discrimination and manipulation
(Schiefer et al., 2016). Furthermore, a recent study showed that
an intraneurally controlled bidirectional hand prosthesis yielded
both high manual accuracy and rich tactile sensitivity combined
with an enhanced sense of embodiment (Valle et al., 2018).

These studies show that there is a link between embodiment
and performance for prostheses. Although this concerns a limited
number of studies that do not involve telerobotics, we consider
them as indirect support for premise 4. However, definite proof
must be obtained by investigating the link between embodiment
and dexterous performance in a telerobotics situation directly.

RECENT DEVELOPMENTS

In this section, we present recent developments that may become
relevant for embodiment in telerobotics in the near future.

Brain-Computer Interfaces
Brain-computer interfaces (BCIs) are systems that capture brain
signals (either invasively or non-invasively) and translate them
into commands for control of external devices (van Erp et al.,
2012). Although the concept of direct brain control over artificial
limbs or devices is much older, the integration with multisensory
cues and including e.g., haptic feedback dates back to the
beginning of this century (see van Erp and Brouwer, 2014 for
an overview). BCI technology enables users to move prostheses
(Kansaku et al., 2015), to navigate through virtual environments
(Pfurtscheller et al., 2006; Leeb et al., 2007a,b; Lécuyer et al., 2008)
and to control robotic devices in telepresence settings by mere
thought (Escolano et al., 2012; Alimardani et al., 2013; Kishore
et al., 2014). BCI control of either the movements of a virtual
body (Perez-Marcos et al., 2009) or its navigation through a
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virtual environment (Ori et al., 2014) can effectively induce an
experience of agency and embodiment.

Similar effects were found for humanoid robots. A study on
an EEG-based BCI for the teleoperation of a humanoid robot
found that the correlation between motor intentions (imagining
a movement) and the visual feedback of the robot’s motions
(watching the robot perform the intended movement) induced a
sense of body ownership (Alimardani et al., 2015). The illusion of
embodiment was only significant when the robot’s hands moved
in agreement with the operator’s intentions. The strength of the
illusion correlated with the operator’s BCI performance and sense
of agency.

Toward Superhuman Morphologies
Participants that simultaneously viewed the experimenter’s hands
from a 1PP and their own hands from a 3PP (using an HMD)
while all hands tapped their index fingers, experienced a four-
hand illusion (Chen et al., 2018). Participants also experienced
high levels of ownership and agency over a six-digit virtual hand
(Hoyet et al., 2016) and a third arm, both in reality (Schaefer et al.,
2009) and in augmented reality (Rosa et al., 2019). In addition,
Kishore et al. (2016) found that it is possible to concurrently
experience full-body ownership over multiple artificial bodies
(two different humanoid robots located in two distinct places
and a virtual body represented in immersive VR). Together, these
findings open the way for superhuman (robot) morphologies
such as larger, smaller, stronger, more agile or flexible, more
numerous or semi-transparent limbs.

Augmented and Extended Reality (AR, XR)
In Chapter 4, we concluded that there are no differences between
(1) direct or mediated sensorimotor interactions and between (2)
real and virtual cues. It is likely that this also holds for Augmented
Reality (AR; Rosa et al., 2015; Škola and Liarokapis, 2016),
which opens up new opportunities in telerobotic applications.
For instance, AR techniques can be used to manipulate the
appearance and perceived tactile properties of artificial body
parts or tools and therewith the strength of the ownership
illusion in a similar vein as has been demonstrated with VR,
and the combination of VR/AR and robotics affords automated
induction of embodiment. For instance through robot arms
or servo motors that touch both the real and the fake body
parts (Tsakiris et al., 2008; Rohde et al., 2011), or through
mechanical vibrators (vibrotactile actuators) attached to the
real body (Pabon et al., 2010; Evans and Blanke, 2013; Maselli
and Slater, 2013; Huisman et al., 2016). Automated vibrotactile
stimulation can be very effective due to the high synchronicity
that can be achieved between the automatic tactile stimulation
and the displayed audio-visual events (Ariza et al., 2016). For
instance, synchronized vibrotactile feedback through a data-
glove effectively induced significant ownership for a virtual hand-
arm model (Padilla et al., 2010). Slow stroking touch tuned to
stimulate the C-tactile afferents can effectively be delivered by a
robotic tactile stimulator (Pawling et al., 2017) or a vibrotactile
sleeve (van Erp and Toet, 2015). As a result, automated stroking
delivered by robotic hands (Rohde et al., 2013) or dedicated

stroking devices (Salomon et al., 2013) can effectively induce
the RHI.

Behavioral Adjustment to Body
Appearance
Full body ownership illusions can lead to substantial behavioral
changes depending on the appearance of the virtual body.
Participants who experienced ownership over a casually dressed
dark-skinned body in an immersive VR setting showed a
significant increase in variation and frequency of movement
while playing hand drums, compared to participants who were
embodied by a formal suited light-skinned body (Kilteni et al.,
2013). Teleoperators of android robots tended to adjust their
body movements to the movements of the robot (Nishio et al.,
2012). For example, they talked slowly to synchronize with the
geminoid lip motion and copied the robot’s small movements.
This suggests that the affordances of artificial bodies can be
adapted to by operators, but they should be tuned to the task at
hand so that they do not restrict the operator’s task performance.
Furthermore, the effects may not be symmetrical. For example,
the perceived size of the fake body part appears to have an
asymmetrical effect on the RHI: the illusion occurs when the fake
arm is larger than one’s own but not when it is smaller (Pavani
and Zampini, 2007).

DISCUSSION AND RESEARCH
QUESTIONS

Subcomponents of Embodiment and Task
Performance
We postulated that embodiment can improve dexterous
performance in teleoperation tasks, by making the interface
transparent through the illusion that the tasks are performed
with (a part of) one’s own body. As shown in Table 1, the
sense of embodiment consists of three components: the senses
of ownership, agency, and self-location. We also showed that
there is ample evidence that these three subcomponents are
dissociated. Dependent on the task and the nature of the
application, each of these senses will contribute differently
to task performance, and task demands may conflict with
optimal conditions for embodiment. In this section, we formulate
three example tasks and discuss their links to embodiment
subcomponents and the related research questions.

Social Interaction at a Distance Requiring a

High-Level Ownership
A task related to teleoperation (that is not further elaborated
in this paper) is social interaction with people in a remote
environment. Applications that should provide a convincing
and engaging experience of social presence (the sense of being
with another sentient being or person: Biocca et al., 2003; e.g.,
in social telepresence or social robotics: Nakanishi et al., 2014;
Tanaka et al., 2015) require a realistic (anthropomorphic) remote
self-representation with a similar posture and sufficient spatial
overlap with the corresponding real body, in combination with
a 1PP (preferably stereoscopic) display and a high degree of
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visuotactile synchronicity (Oh et al., 2018; Ventre-Dominey et al.,
2019). The mere presence of (and interaction with) people in
a social setting may also affect the sense of embodiment. For
instance, in a social conversation setting with a teleoprated
android robot it was found that the operator’s sense of
embodiment is enhanced by the interaction with the social
partner, while the partner’s presence also enhances the sense
of telepresence (Nishio et al., 2013). Although the findings
reported in the previous sections indicate that embodiment
can be induced for any type of object, a stronger sense of
embodiment is typically achieved with fake body parts that
resemble real ones. Open questions are for instance: What part
of the human body (self) needs to be represented to create a
convincing experience (Beckerle et al., 2018)? How, and to what
extent, does embodiment in a mediated environment depend
on the structure, morphology, topology, size and dynamics of
the body’s representation (Kilteni et al., 2012a; Ventre-Dominey
et al., 2019)?

Remote Execution of Specialized Tasks Requiring a

High Level of Agency
When high levels of agency are required (e.g., in applications
like robotic surgery or explosive ordnance disposal; Nahavandi
et al., 2015; Enayati et al., 2016; Pacchierotti et al., 2016), a
teleoperation system should provide a close match between
predicted (intended) movements and actual kinesthetic feedback
(i.e., efficient and transparent motor control). Open questions
are for instance: What are the limits of visuomotor congruency
needed to establish agency? What are the effects of visual
perspective on agency for a given task? What are the effects
of delayed or interrupted control on agency? How can scaling
of forces or dimensions be applied without reducing agency
(too much)?

Reconnaissance in Dangerous Environments

Requiring a High Level of Self-Location
When a high degree of situational awareness is required (e.g., in
applications like reconnaissance or search-and-rescue operations
in unpredictable or hazardous environments; Trevelyan et al.,
2016), a 3PPmight provide a better awareness of the environment
compared to a 1PP (van Erp and Kappé, 1997). In that
case, embodiment of a device seen from a 3PP requires
additional reinforcement in the form of synchronous visuotactile
information. Open questions are for instance:What type and how
much synchronous visuotactile feedback is needed to establish
embodiment of a telemanipulator seen from a 3PP? Is this
feedback only required at the start of an operation to induce
embodiment or is it required to maintain embodiment all
through an entire operation? What is the influence of switching
between 1PP and 3PP?

Embodiment Limits for Non-corporeal
Objects
An interesting question in the context of teleoperation is where
the limit lies regarding the brain’s capacity to integrate robotic
tools as part of one’s own body. It is known that there are
limits to the discrepancies for which embodiment can still be

induced, or in terms of the predictive encoding framework:
if the prediction errors become too large, the brain will not
explain the sensory input based on an embodiment model
but will instead consider the tool as an external object. As
mentioned before, an ownership illusion does not arise for
fake body parts that have an unrealistic (e.g., a wooden stick
(Tsakiris and Haggard, 2005) or abstract (Yuan and Steed,
2010) appearance, that have impossible postures (Ehrsson et al.,
2004; Tsakiris and Haggard, 2005; Costantini and Haggard,
2007) or that are located outside the peripersonal space (Lloyd,
2007). An interesting question is to what extent such an object
can evoke embodiment when the brain is given a chance
to gradually get accustomed to the object and slowly reduce
its prediction errors, for instance through morphing or other
visual manipulations.

Long Term Effects
Also, not much is known about the long-term effects of
embodiment. When participants were trained for 3 days in a RHI
set-up, no long-term effect was found on ownership, although the
training seemed to facilitate multisensory integration, reflected
in a proprioceptive drift (Honma et al., 2014). It has also
been suggested that sleep can serve as a “reset” for learning
embodiment. This could be an important factor for non-
realistic remapping, e.g., embodiment involved in remapping
of existing body part relations, such as a remapping of the
right thumb to a virtual right arm (Kondo et al., 2018b).
Children are as sensitive to visuotactile synchrony as a source
for the rubber hand illusion as adults, but exhibit a larger
proprioceptive drift, indicating that several different processes,
with different speeds of development, underlie the sense of
embodiment (Cowie et al., 2013). For hand prostheses, it
has been shown that daily use leads to a stronger response
in visual hand-selective areas in the brain when presented
with images of hand prostheses, even when these do not
resemble a human hand (e.g., hooks; van den Heiligenberg
et al., 2018). This suggests that frequent embodiment leads to
neurophysiological changes, the implications of which are not
fully known yet.

Individual Differences
More research is needed to understand the physiological
mechanisms and personality factors (e.g., susceptibility,
immersive tendencies) driving embodiment. The response to
the RHI is known to vary greatly across individuals: some
people are more prone to embodiment than others (Lin and
Jörg, 2016). Even with perfect visuotactile or visuomotor
synchronicity, the feeling of ownership over a fake body part
occurs in only about 70% of the population, while the other 30%
does not experience ownership (Ehrsson et al., 2005a; Lloyd,
2007; Martini et al., 2014). In addition to sensory integration,
it appears that personality factors also modulate embodiment:
people with higher cognitive flexibility (Yeh et al., 2017) or
higher emotional intelligence (Perepelkina et al., 2017) have a
stronger ownership experience.
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Testing the Predictive Encoding Theory as
Useful Framework
We have used the predictive encoding theory as framework for
the interpretation and discussion of a range of embodiment
results. The same theory can be used to make predictions on
embodiment effects that are of interest in telerobotics. For
instance, the prediction that once the embodiment model is
activated, gradual changes will lead to adaptation of the model
and will not break the embodiment illusion. This leads to the
prediction that a slow “morphing” from one’s own arm into any
robotic tool as well as to superhumanmorphologies is possible, as
long as the change is gradual. The “optimal” speed and increment
of changes have yet to be determined.

The Ultimate Assessment of the Weight of
Different Sensory Cues
As we showed in section Premise 1: The Body Representation
Is Malleable and Can Include Non-bodily Objects, many
sensorimotor cues contribute to embodiment, including
visuotactile synchrony and realism, visuomotor and
proprioceptive synchrony, visual perspective, visual realism.
But how do these factors quantitatively compare in evoking
embodiment? Most studies investigate only one or two of
these factors, which makes it possible to conclude that all can
contribute but none of them is strictly required. However, it has
neither been investigated how the brain weights the different
cues, nor what the boundary conditions are. Determining the
weights and possible interactions between cues requires a single
elaborate experiment.

The Ultimate Assessment of Embodiment
Causing Performance Improvement
Only few studies have investigated the relation between
embodiment and task performance and as far as we are aware
only in the domain of prostheses but not in telerobotics.
The ultimate test of our theorem is to explicitly link (the
degree of) embodiment with (the degree of) dexterous task
performance. This can for instance be done by measuring both
dexterous performance and sense of embodiment for an operator
performing a teleoperation task. Measuring both entities on
an interval scale will also yield more insight in the nature of
their relation (e.g., whether it is linear or stepwise). Catoire
et al. (2018) presented a set of simple and generic standardized
benchmark dexterity tests that are representative for a broad
range of inspection, maintenance, and repair activities and that
can be used for the assessment of dexterous performance in
teleoperation settings.

Work Toward a Standardized Methodology
and Effect Measures
Since Botvinick and Cohen first reported their studies on the
RHI, a plethora of research using the same or very similar
paradigm has been reported (Botvinick and Cohen, 1998;
Lenggenhager et al., 2007; Kilteni et al., 2012b). However, over the
last decade, many new paradigms and measures were introduced
to study embodiment, for instance using new VR techniques.

Also, some of the different subcomponents of embodiment are
used haphazardly and new constructs are introduced without
clear definitions. To mature, the field needs rigorous replication,
methodologically well-designed studies and protocols, and a
limited number of effect measures to enable comparisons across
studies. This pleads for defining a uniform set of validated and
standardized measures that covers the different subcomponents
of embodiment (Riemer et al., 2019). This set could include basic
physiological measures, subjective measures, and proxies such as
proprioceptive drift.

Countering System Limitations in
Telerobotics
To afford a convincing multisensory experience a telerobotics
system should provide (1) the synchronicity (match) between
the different (visual, auditory, and tactile) sensory signals that
is required to achieve a coherent multisensory experience and
(2) the bandwidth required to optimally convey relevant cues.
The coding of video and tactile data should be sufficiently
efficient, and system-intrinsic effects such as time delays, jitter,
or packet loss should be minimized to maintain the levels of
system transparency and stability that are required to provide
an immersive and synchronous multisensory experience. This is
especially the case for tactile information channels, since tactile
information is transmitted bidirectionally due to the law of action
and reaction, unlike visual and auditory information. Time delays
(which inevitably occur when remotely communicating haptic
information) will seriously degrade this bidirectional flow of
information. Additional problems occur when these disturbances
induce discomfort or fatigue. Even a small amount of discomfort
may become unacceptable when users need to operate telerobotic
devices over longer periods of time.

Agency and ownership can serve to alleviate the temporal
constraints for multisensory integration (Maselli et al., 2016).
Once agency and ownership have been established, people fail to
notice asynchronies in visuotactile stimulation that are otherwise
(in the absence of the illusion) detected (Maselli and Slater, 2013).
This suggests including an ownership induction phase in the
use of telerobotic systems. This can for instance be achieved
through (dynamic or static) active self-touch, which effectively
elicits a sense of ownership (Hara et al., 2016). It has also been
suggested to deploy affective feedback to integrate teleoperation
devices into the bodily self-representation (Beckerle et al., 2018).
Affective touch (e.g., slow stroking) effectively induces a strong
sense of ownership (Haans et al., 2012; Crucianelli et al., 2013,
2018; Lloyd et al., 2013; van Stralen et al., 2014; de Jong et al.,
2017). Finally, bi-directional human-machine interfaces may
serve to enhance ownership and agency by integrating intent
detection andmulti-sensory feedback through co-adaptation (the
process through which the robotic device adapts to its human
operator/user while the human adapts to the device: Beckerle
et al., 2019).

Another way to counter system limitations and facilitate
embodiment could be previous training in optimal conditions
(zero delay, sufficient bandwidth), since the memory of past
agency significantly contributes to the sense of embodiment
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(Liepelt et al., 2017) and because training facilitates multisensory
integration (Honma et al., 2014).

As for the relative contribution of visuotactile and visuomotor
feedback to the body ownership illusion, it appears that
synchrony in one kind of feedback compensates for asynchrony
in the other modality (Huynh et al., 2019).

CONCLUSIONS

We postulate that the sense of embodiment of a remote
manipulator improves dexterous performance in a teleoperation
context.We reasoned along four premises: (1) The representation
of the body in the brain is malleable and can include non-bodily
objects, (2) Embodiment can be elicited through mediated (or
even virtual) sensorimotor interaction, (3) Embodiment has a
degree of robustness against inconsistencies in appearance, size,
movement, etc. of the embodied object, and (4) Embodiment
improves performance. We showed that each of these premises
is substantiated by results reported in the literature (with the
possible exception of the last one, which is at least shown
for the use of prostheses; see Table 2). However, there is
currently no evidence that directly links embodiment and
teleoperation performance.

Assuming this direct link exists, guidelines are needed on
how to increase transparency in telerobotics by implementing
an embodiment approach in addition to current technical
performance measures. This approach should take heed of
the three components of embodiment: agency, ownership
and self-location. Based on the supportive evidence for our
second premise (“embodiment can be evoked by mediated
sensorimotor interaction”) that was presented in section Premise
1: The Body Representation Is Malleable and Can Include
Non-bodily Objects, we now formulate the following set of
initial guidelines: teleoperation systems should provide (1)

a convincing 1PP to achieve a high degree of self-location
(section Visual Perspective: A 1PP generally yields a stronger
embodiment in terms of self-location and ownership), (2) a close
match between predicted movements and actual kinesthetic
feedback to induce high levels of agency (section Visuomotor and
Proprioceptive Cues: visuomotor and proprioceptive synchrony
significantly induce agency), (3) a spatiotemporal match between
felt and seen haptic stimuli (section Visuotactile Stimulation:
visuotactile synchrony significantly induces embodiment),
and (4) a sufficient visual likeness to the human body to
induce high levels of embodiment (section Visual Realism
(Similarity): visual likeness helps to induce embodiment). The
relative importance of these factors may change per context
and task.

We adopted the predictive encoding theory as a framework
to interpret and discuss the importance of multisensory cues
for the strength of embodiment. This leads to the following
hypotheses: (1) More sensory cues are more effective provided
they match the predictions of an embodiment model; (2) Errors
in a modality do not automatically lead to a lack of embodiment,
and none of the senses is strictly required for embodiment to
occur; (3) Sudden large prediction errors may stop the activation
of the embodiment model, but: (4) The brain will cope with
smaller prediction errors by updating the embodiment model.
This suggests that a flexible embodiment model can be achieved,
by slowly introducing prediction errors, thus allowing the brain
to gradually adjust its embodiment model.
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