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Dispersal homogenizes communities via
immigration even at low rates in a simplified
synthetic bacterial metacommunity
Stilianos Fodelianakis 1, Alexander Lorz2, Adriana Valenzuela-Cuevas1, Alan Barozzi 1, Jenny Marie Booth1 &

Daniele Daffonchio 1

Selection and dispersal are ecological processes that have contrasting roles in the assembly

of communities. Variable selection diversifies and strong dispersal homogenizes them.

However, we do not know whether dispersal homogenizes communities directly via immi-

gration or indirectly via weakening selection across habitats due to physical transfer of

material, e.g., water mixing in aquatic ecosystems. Here we examine how dispersal homo-

genizes a simplified synthetic bacterial metacommunity, using a sequencing-independent

approach based on flow cytometry and mathematical modeling. We show that dispersal

homogenizes the metacommunity via immigration, not via weakening selection, and even

when immigration is four times slower than growth. This finding challenges the current view

that dispersal homogenizes communities only at high rates and explains why communities

are homogeneous at small spatial scales. It also offers a benchmark for sequence-based

studies in natural microbial communities where immigration rates can be inferred solely

by using neutral models.
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Environmental selection and dispersal1 are key assembly
processes for microbial communities2,3 and their quantifi-
cation could help us to predict how microbial communities

will change in the future4. Microbial communities tend to
diversify when selection is variable, i.e., when different taxa
occupy different niches along environmental gradients. Typical
examples include pH gradients in soils5 or temperature gradients
in the oceans6. In contrast, communities tend to homogenize
when dispersal is high7, for example, in permeable sediments8

or at small scales in soil9.
Disentangling the contrasting roles of selection and dispersal

is particularly important for metacommunities (a set of com-
munities that are linked by dispersal7) in which dispersal can
decrease the strength of selection. This is the case for many
ecosystems in freshwater and marine habitats (i.e., oceans, lakes,
rivers, and streams), the pore water in sediments of water bodies
and streams, estuarine systems with deltas, etc. In such ecosys-
tems, because dispersal for microbes is passive at macroscopic
scales10,11 (albeit active dispersal like chemotaxis12 operating
at microscopic scales), transfer of material is positively correlated
to immigration. This can homogenize environments across a
metacommunity, weakening selection. Thus dispersal could
homogenize a metacommunity indirectly and only when it
weakens selection (Fig. 1a). Alternatively, dispersal could homo-
genize a metacommunity directly via the immigration of indivi-
duals without selection being weakened (Fig. 1b). In the latter
case, selection is strong and the taxa in the different communities
are growing differently, but immigration of individuals due to
dispersal homogenizes their populations along the metacommu-
nity. In this scenario, the metacommunity would be homogenized
only when a certain ratio between growth and immigration of
individuals is reached. To investigate such mechanisms regarding
the role of selection and dispersal, targeted experiments, rather
than static observations, are required13.

Here we investigate the mechanism by which dispersal
homogenizes a metacommunity where dispersal and selection are
coupled. We use a synthetic bacterial community (Fig. 2a) and a
sequencing-independent monitoring strategy to quantify the
absolute abundances of each bacterial population along the
metacommunity (Fig. 2b). We deploy a controlled experimental

set-up using a closed circulation system where the medium is
flowing among three incubation vessels, each one set at a different
temperature (Fig. 2c). We follow the dynamics of the meta-
community in this system under varying degrees of dispersal and
temperature-driven selection in five experiments, each one per-
formed at a different circulation speed (Fig. 2d). We first grow the
communities without dispersal, imposing only variable selection
because the growth of each strain varies depending on tempera-
ture (Fig. 2e). We then grow the metacommunity at four different
circulation speeds. This causes dispersal to increase and selection
to decrease because the temperature difference among the three
incubation vessels decreases (Fig. 2d) and that should decrease
the differences in the growth of each strain among the vessels.

Finally, we simulate the heat transfer and population dynamics
of the system in 100 scenarios of intermediate dispersal to pin-
point exactly at which circulation speed, and how, dispersal
effectively homogenizes the metacommunity. We find that dis-
persal homogenizes the metacommunity directly via immigration
and that happens without selection being weakened. Homo-
genization occurs not only when dispersal is strong, as theoreti-
cally expected7,14, but also when it is weak, i.e., even when
immigration is four times slower than growth.

Results
Creating a traceable synthetic bacterial metacommunity. We
first aimed to build up a synthetic community composed of easily
detectable strains. To that end, we isolated 317 bacterial strains
from soil (Supplementary Table 1, Supplementary Figure 1) and
we screened their forward and side-scattering profiles with
staining-free flow cytometry. We discriminated three isolates
(namely, B42, E111, and E310) whose scattering profiles overlap
minimally during the lag and the exponential phases of growth
(Supplementary Table 2, Supplementary Figure 2, Supplementary
Movies 1–3), indicating that their populations could be easily
discriminated in a mixed culture. The distinct profiles of the
isolates correspond to their different morphologies (Fig. 2a and
Supplementary Figure 3). We drew non-overlapping gates in
the front/side scatter (FSC-A/SSC-A) plots that contained the
majority of the events of samples from pure cultures (Fig. 2b—top
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Fig. 1 Proposed ecological mechanisms by which dispersal can homogenize a metacommunity. a Dispersal homogenizes a metacommunity indirectly, by
weakening selection across habitats via transfer of material, and only after selection is weakened. In this case, the critical dispersal rate required for
homogenization (Dc) is high. b Dispersal homogenizes a metacommunity directly via immigration of individuals and the metacommunity is homogenized
before selection is weakened. In this case, Dc is lower than in scenario A and depends on the ratio between growth and immigration of individuals. In both
scenarios, Dc will depend on how strongly selection and dispersal are coupled
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and Supplementary Table 3). We defined these gates as “repre-
sentative” and we used them to quantify the total populations of
each strain in the synthetic community, correcting for over-
lapping of one population to the other two “representative” gates
(Fig. 2b—bottom and Supplementary Tables 4-6). We monitored
the growing populations with a temporal resolution of 30 min
and with a high accuracy (average accuracy of 92–99.6%; Sup-
plementary Table 7).

We then created a metacommunity of three initially identical
synthetic communities that were physically connected (Fig. 2c),
and we grew this metacommunity under variable selection and
increasingly strong dispersal (Fig. 2d). We applied variable
selection by incubating the three synthetic communities at 25, 37,
and 42 °C (nominal). This creates different community dynamics
at different temperatures (Fig. 2e) because the growth of the three
strains depends strongly on temperature irrespectively of the
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stage of growth (Supplementary Figure 4A). We monitored the
first 4 h of incubation in order to capture the temperature-
dependent differences in the duration of the lag phase and in the
early exponential phase among the strains (Fig. 2e, Supplemen-
tary Figure 4B). We recorded significant mutualistic interactions
among the three strains during this 4-h incubation at all
temperatures; the growth of the strains was promoted in the
mixed cultures compared to the pure cultures at all temperatures
(analysis of covariance (ANCOVA), n= 9, 0.041 > p > 3.95E-06,
Supplementary Data 1). We then placed the incubation vessels
within a closed circulation system where medium is flowing at
a specific direction and with a constant flow via peristaltic
pumps (Fig. 2c), creating a metacommunity of three connected
communities. We applied increasingly strong dispersal to this
metacommunity by growing it at four different circulation speeds
(Fig. 2d).

Laboratory experiments with increasing dispersal. We next
examined at which circulation speed the metacommunity was
effectively homogenized by defining two metrics that are based on
the Bray–Curtis (BC) similarity and that are calculated for each
circulation speed: “BC within” and “BC across” (Fig. 3a). “BC
within” is the mean pairwise similarity within the metacommu-
nity and quantifies how similar the communities among the three
incubation vessels are to each other (Fig. 3a, solid two-headed
arrows). “BC across”, on the other hand, quantifies how much the
communities change compared to when there is no dispersal
(Fig. 3a, dashed two-headed arrows). Both metrics compare
communities from the same time point, i.e., every 30 min, starting
at the 60th min of incubation because before that communities
are very similar due to lack of growth (Supplementary Figure 5).
If at a given circulation speed “BC within” is significantly higher
than “BC across”, we call the metacommunity homogeneous
because the communities are more similar among them than
when there is no dispersal.

We found that the metacommunity is homogeneous in the
experiments with circulation speeds of 5, 12 and 71.5 μl s−1

(Fig. 3b). At zero circulation speed, “BC within” is 46.97% and it
gradually increases to 60.51, 78.26, 89.92, and 97.96% at
circulation speeds of 1.75, 5, 12, and 71.5 μl s−1, respectively. At
the same time, “BC across” is 73.72% at a circulation speed of
1.75 μl s−1 (it cannot be defined for zero dispersal) and it
decreases to 59.75, 53.67, and 54.13% at circulation speeds of 5,
12, and 71.5 μl s−1, respectively. The increase in the standard
deviation while both indices decrease reflects the increasing
differences in the compared communities with increasing
incubation time (Supplementary Figure 5). The metacommunity
is non-homogeneous at 1.75 μl s−1 (“BC across” > “BC within”,
linear mixed-effects model, n= 63, t=−3.194, two-sided
p= 0.009) and becomes homogeneous at circulation speeds of

≥5 μl s−1 (“BC within” > “BC across”, linear mixed-effects model,
n= 63, 9.75 < t < 13.37, two-sided p < 0.001) (Fig. 3b). This
indicates that the metacommunity becomes homogeneous at a
circulation speed between 1.75 and 5 μl s−1.

Simulations with increasing dispersal. To pinpoint exactly at
which circulation speed the metacommunity becomes homo-
geneous, we simulated the dynamics of the metacommunity
under 100 scenarios of intermediate circulation speeds using
an Ordinary Differential Equation (ODE) modeling framework.
We split the range of circulation speeds logarithmically, sampling
more densely at low speeds, because our experimental results
suggested that the transition point was between 1.75 and 5 μl s−1.
In our ODE framework, the 4-h incubation at each scenario
is split into very small time steps where three processes occur:
(1) the temperature in each community changes according to
heat gain or loss (from the vessel, the ambient environment,
and the transported medium), (2) the populations of each strain
in each community grow depending on temperature, and (3) cells
are transferred passively from community to community
according to the circulation speed and the direction of the flow.
We modeled the changes in temperature based on energy equi-
librium (Fig. 4a), the growth of each strain with a lag phase
followed by an exponential phase, with both phases depending
on the strain and on temperature (Fig. 4b–d), and the transfer
of cells depending on the volume of the transferred medium
(for details, see Methods). Our modeling framework replicates
accurately the growth dynamics of the metacommunity in the
experiments with dispersal (0.93 < R2 < 0.999, Supplementary
Figure 6, Supplementary Table 8), and the resulting modeled
communities are 84–98% similar (in terms of BC similarity)
compared to the actual communities from the respective
experiment.

Using the output of the ODE modeling, we calculated “BC
within” and “BC across” for all the simulations with intermediate
dispersal and we found that the metacommunity becomes
homogeneous at a circulation speed of 3.85 μl s−1 (generalized
linear mixed-effects model, n= 21, z= 4.46, p= 0.0016; Fig. 5a).
More specifically, we found that “BC within” was significantly
lower than “BC across” from 0 to 2.17 μl s−1 (generalized linear
mixed-effects models, n= 21, −21.45 ≤ z ≤−3.54, 0.0001 < p ≤
0.04), indicating that at this range of circulation speed the
metacommunity was still significantly heterogeneous. After
that, we observed a transition zone from 2.23 to 3.55 μl s−1

where “BC within” was not significantly different from “BC
across” (generalized linear mixed-effects models, n= 21, −3.28 ≤
z ≤ 3.05, 0.1 ≤ p ≤ 0.23). From 3.85 μl s−1 and on, “BC within”
was significantly higher than “BC across” indicating that the
metacommunity is homogenized (generalized linear mixed-effects
models, n= 21, 4.46 ≤ z ≤ 18.73, 0.0001 < p ≤ 0.0016).

Fig. 2 Overview of the synthetic community and experimental approaches. a Scanning electron microscopic (SEM) image of the three bacterial members of
the synthetic community. E111: Bacillus sp., E310: Staphylococcus sp., B42: Chryseobacterium sp. b Forward scatter area (FSC-A—x axis)/side scatter area
(SSC-A—y axis) plots of pure cultures (top) and of a mixture of the three bacteria (bottom). Colored lines represent non-overlapping gates that we drew
based on pure cultures to calculate each population in the mixed culture. We show all three gates for the pure cultures (top) as examples for the
calculation of spillover ratios (Methods). c Overview of the experimental set-up. Flasks represent incubation vessels at different temperatures (nominal
values indicated on the flasks), gray curves represent tubing, and triangles within circles represent peristaltic pumps and the direction of the flow. All three
bacterial strains were present within each incubation vessel at a 1:1:1 initial ratio, and all pumps had the same flow direction and speed. d The mean
temperature difference among the three incubation vessels in the experiments with increasing dispersal. The x axis is in logarithmic scale and therefore
zero is put at the beginning of the axis conventionally for illustration purposes (the real value at that point is 0.05 μl s−1). Error bars correspond to
one standard error (n= 3). Source data are provided as a Source Data file. e The growth of each strain in the community over 4 h at each incubation
vessel without dispersal. Each point represents the average of three replicate samples with an average coefficient of variation of 4.1%. We excluded the
error bars to assist visualization. Source data are provided as a Source Data file
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Examining how the metacommunity is homogenized. We fur-
ther examined whether dispersal homogenizes the metacommu-
nity indirectly via weakening selection or directly via immigration
of cells and we found that it does so via the latter (Fig. 5b). We
used the variability (coefficient of variation (CV)) in the growth
rates of each strain among the incubation vessels within the
metacommunity as a proxy for selection, because it expresses how
differently the strains grow at the different vessels. We used the
growth-over-immigration ratio to examine how fast the popula-
tions within the vessels are replaced by immigrant cells at a given
circulation speed. We found that the growth-over-immigration
ratio decreases fast, while the CVs of the growth rates are stable
(for strain E310), increase slightly (for strain E111), or decrease
slightly (for strain B42) at circulation speeds of <5 μl s−1 (Fig. 5b).
At the transition point of 3.85 μl s−1 where the metacommunity is
homogenized, the growth-over-immigration ratio decreased 283-
fold compared to the simulation at the lowest circulation speed

(0.05 μl s−1). On the contrary, the mean temperature difference
decreased by 0.5 °C (Supplementary Figure 7), resulting in a 56%
decrease in the CV of the growth rates for strain B42 (the strain
with the lowest growth overall—Fig. 4b, Supplementary Figures 6,
11), no changes for strain E310, and an 11% increase for strain
E111 (Fig. 5b, Supplementary Data 2). This indicates that, at the
transition point, the strains are still growing very differently
within each incubation vessel but immigration is sufficiently high
to homogenize the metacommunity. Surprisingly, the growth-
over-immigration ratio at the transition point is 4.187, which
indicates that the average growth rate is more than four times
higher than the average immigration rate.

To further examine the role of immigration and heat coupling
in homogenizing the metacommunity, we performed simulations
under two scenarios in which: (a) the vessels are thermally
coupled but there is no migration of cells across vessels and
(b) there is migration of cells but no thermal coupling across
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vessels. We then compared the community dynamics from these
simulations to the original model (Fig. 6a) at a range of
circulation speeds up to 5.72 μl s−1 where the metacommunity
is already homogenized in reality (Figs. 3b and 5). We found that
the metacommunity is homogenized very similarly to the original
model without thermal coupling (Fig. 6c) but not without
immigration (Fig. 6b) where “BC within” and “BC across” do not
converge and the metacommunity is non-homogeneous at the
examined range of circulation speeds. The transition zone in the
scenario without thermal coupling is between 2.4 and 3.55 μl s−1

and the community becomes homogenized again at 3.85 μl s−1

(generalized linear mixed-effects model, n= 21, z= 3.83, p=
0.0129) where the growth-over-immigration ratio is 4.5.

Finally, we tested the generality of our findings by simulating
the entire system two more times and we found similar results
at both simulations (Supplementary Figures 8–9). In these
simulations, we dissected a circulation speed gradient from 0 to
200 μl s−1, and we caused dispersal to weaken selection faster by
lowering ~3 times the heat-buffering capacity of the incubation
vessels. We also relaxed the initial strength of selection by making
the growth profiles of the strains more similar than in reality
along the temperature gradient (Supplementary Figures 8A–9A).
The latter caused the starting value of “BC within” to be higher
than in reality in both of the simulations; 57.8 and 58.9%
compared to 46.97% in reality (Supplementary Figures 8B–9B).
Despite these differences, we found, overall, similar results in
both simulations compared to the main experiment. Dispersal

homogenizes the metacommunity not via weakening selection
but via immigration, and at the transition point the growth
rate is at least two times faster than the immigration rate
(Supplementary Figures 8C–9C).

Discussion
In this study, we examined the roles of immigration and selection
in a synthetic bacterial metacommunity that is analogous to
natural ecosystems where immigration and the strength of
selection are inversely coupled. Our experimental system repre-
sents the general case of a metacommunity under strong variable
selection whose strength can be gradually alleviated by increasing
dispersal. Analogous natural systems include all those habitats
where bacteria can disperse passively via the flow of water;
practically, this means all aquatic systems where metacommunity
theory is applicable15.

Our results show that dispersal homogenizes communities via
immigration even at low rates, thus providing insights into open
microbial ecology questions. Conceptually, dispersal is expected
to become homogenizing only at high rates7,8,14 or not homo-
genizing at all13, and observations in nature have supported both
cases16–20. However, in the latter studies only few dispersal
conditions were tested and the communities were screened qua-
litatively. Moreover, our study concerns changes in community
structure (species abundances), not in community composition
(presence/absence of species—in our study, all strains were
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initially present in all communities at a 1:1:1 ratio), whereas other
studies focused on both compositional and structural changes.
Differences in community composition are less likely to occur
at small spatial scales, because at these scales the distribution of
microorganisms is rarely found to be dispersal-limited10. This can
explain why homogenizing dispersal is evident at relatively small
spatial scales8,9,14,21; at these scales, differences in communities
are structural rather than compositional and according to our
results such communities can be homogenized at low immigra-
tion rates compared to growth.

Our findings also offer a benchmark for sequence-based studies
in natural microbial communities where researchers often use
models like that of Sloan et al.22 to examine where a meta-
community is neutrally assembled (and therefore homogenous).
Our findings suggest that a metacommunity can be homogenized
even when the probability that a new individual within a com-
munity arrives from the metacommunity rather than from within
the community itself is less than one out of five. This corresponds
to an m parameter of the neutral model of Sloan et al.22 of <0.2.
Thus m parameter values of ≥0.2 in natural surveys may suggest

that homogenizing dispersal is prevalent in the examined meta-
community. However, complementary approaches such as the
null modeling framework of Stegen et al.8 should also be applied
to such studies to support that notion.

Furthermore, our flow cytometry-based method offers a sig-
nificant advantage over conventional phylogenetic screening.
Our method captures changes in the absolute population den-
sities of each community member accurately, whereas conven-
tional phylogenetic screening14,23,24 captures changes in relative
abundances25,26 (which can also be distorted27) and requires large
sampling efforts26. Assessing β-diversity based on changes in the
absolute abundances of taxa can reveal patterns that are unde-
tectable with conventional screening28. This is because changes
in relative abundance can reveal how a taxon’s dominance within
a community, but not its proliferation, changes29. For example,
in two communities consisted of three species with populations
of 100, 100, 100 and 200, 200, 200 cells, respectively, the BC
similarity based on relative abundance would be 100%, whereas
the same metric based on absolute abundances would be 33.33%.
In this example, the use of relative abundances overlooks the fact
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Fig. 5 The modeled changes in community dynamics with increasing dispersal. a Bray–Curtis similarity as a function of increasing circulation speed
(in logarithmic scale). Vertical dashed lines delimit the range of dispersal under which “BC within” is significantly lower than “BC across” (on the left of
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that in the second community all species have double the
populations compared to the first community. Furthermore,
absolute population counts allow for precise mathematical
modeling through ODE, as we applied in this study, or through
individual-based modeling30.

Moreover, our framework can be applied to a broad range of
isolates in combination with the recent method of Rubbens
et al.31. Here we used manual gating and bacterial strains that
have very distinct front/side scattering profiles at all the different
growth stages, because these profiles served as an “internal con-
trol” to verify the validity of our gating strategy. However, this
can limit the number and morphological diversity of the suitable
strains. In future studies, isolates with less distinct profiles can be
used and their populations can be classified with the supervised
learning algorithm of Rubbens et al.31 on any combination of
parameters that may also include fluorescence (and thus naturally
fluorescent strains).

Overall, our study is based on a simple synthetic meta-
community and mathematical modeling and thus comes with
some important limitations. Even though synthetic communities
and controlled in vitro experiments offer ideal systems to test
ecological hypotheses32, they cannot reproduce the complexity of
natural systems. For example, in our study we impose selection by
only one abiotic factor (temperature), whereas in nature selection
is imposed by a wide range of co-occurring and interacting
biotic and abiotic factors. However, in principle, the homo-
genization of the physicochemical parameters within a meta-
community due to the physical transfer of material (including not
only carbon sources and nutrients but also bacterial predators)
should relax multiple selection factors simultaneously. Another
limitation of our monitoring method is the limited number of
taxa in our synthetic community; more complex patterns could
have emerged if we repeated the same experiment with more taxa

(even though we obtained the same results by changing twice the
growth characteristics of our taxa in silico). Future works that
investigate more diverse synthetic communities and different
kinds of abiotic and biotic selection like limiting resources
or predator–prey dynamics would give further insights to the
interaction between variable selection and homogenizing dis-
persal. In addition, in our experiments we started from a perfectly
even metacommunity, but since community evenness influences
community functionality33,34 we cannot exclude that it could
also affect our experimental outcome. For example, the growth of
the strains at different temperatures could differ if we started
from a metacommunity that was not even because of the sig-
nificant interactions among the strains. Finally, our findings
regarding the importance of migration and weakening of selec-
tion can be further verified experimentally using set-ups where
migration and selection can be uncoupled. For example, selection
could be isolated by circulating sterile medium so that there is
no migration, and migration can be isolated by starting from
communities of varying composition and evenness under iden-
tical environmental conditions. Despite its limitations, our study
highlights the potential of dispersal to homogenize microbial
metacommunities and paves the way for similar future studies to
tackle questions that are otherwise very hard to answer in natural
systems with sequence-based approaches.

Methods
Isolation and identification of strains. We isolated bacteria from three samples
(~100 g each) of an arid soil at King Abdullah University of Science and Tech-
nology (22.308442 N, 39.107747 E) to find strains that form discrete populations
using fluorescent-independent flow cytometry. We plated soil suspensions diluted
at 10−6 on two types of agar media, R2A soil extract35 and Luria Bertani (LB)
(Sigma-Aldrich), and we incubated the plates at 30 °C for a minimum of 48 h. After
incubation, we picked single colonies from the plates and streaked them in new
plates three consecutive times to ensure the purity of the isolated strains. We
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selected colonies based both on their physical characteristics and randomly. We
then screened the selected isolates phylogenetically by sequencing of the full-length
16S rRNA gene by performing two PCR reactions for each isolate: one reaction
using primers 27F (5’-AGAGTTTGATCATGGCTCAG-3’)36 and 806R (5’-GGAC
TACHVGGGTATCTAAT-3’)37 and the other one reaction using primers 515F (5’-
GTGCCAGCMGCCGCGGTAA-3’)37 and 1492R (5’-TACGGTTACCTTGTTAC-
GAC-3’)38. The amplification conditions were as follows: 2 min initial denaturation
at 95 °C followed by 30 cycles of denaturation at 95 °C for 30 s, annealing at 54 and
52 °C for 30 s for the first and the second reaction, respectively, and elongation at
72 °C for 1 min. We performed each 20 μl reaction using 1 unit of native Taq DNA
polymerase (Thermo-Fisher Scientific), 0.5 μM of each primer, 1× of the respective
reaction buffer, 1.5 mM MgCl2, 0.25 mM dNTPs, and 1 μl of template DNA. We
prepared the template DNA fresh by diluting colonies of each isolate into 50 μl of
Tris-HCl buffer (10 mM, pH= 8) and incubating each dilution for 15 min at 95 °C.
We clustered the 16S rRNA gene sequences of each isolate into operational taxo-
nomic units (OTUs) of ≥95% of sequence similarity, broadly corresponding to
different bacterial genera39, using the UCLUST40 algorithm. Finally, we identified
the taxonomy of one representative strain from each OTU using the online BLAST
platform and comparing against the “refseq_rRNA” database of NCBI (https://
blast.ncbi.nlm.nih.gov/Blast.cgi).

Screening of isolates with flow cytometry. We screened liquid cultures of one
representative isolate per OTU using a BD Accuri C6 flow cytometer (Becton
Dickinson) to find isolates that form distinct populations on a FSC (x axis)/SSC
(y axis) biplot. Our aim was to use isolates with distinct scattering profiles to
assemble a synthetic community in which we could trace the populations of the
different strains using fluorescent-independent flow cytometry.

For each representative isolate, we diluted overnight cultures, which were
prepared by inoculating a single isolate colony into 5 ml of LB medium, in filtered
(through a 0.2-μm syringe filter, Corning, Germany) and sterilized physiological
solution (NaCl 0.9% w/v) to a final dilution of 10−1–10−3 depending on the strain.
We analyzed aliquots of the final dilution at “Slow” acquisition speed (14 μl min−1)
for 2 min. We set the threshold of recording an event at 10,000 regarding the height
signal of the FSC. Using these settings we recorded at least 50,000 events for
each strain, while the filtered and sterile physiological solution had negligible
background noise, i.e., 10–20 events per μl that were also widely scattered
(Supplementary Figure 10—left side). We plotted the events on FSC area (x axis)/
SSC area (y axis) biplots with the axes at a logarithmic scale. Finally, we calculated
the mean values and the CV for FSC and SSC area signals of each isolate
(Supplementary Table 2).

Scanning electron microscopy of bacterial cultures. We filtered pure and
mixed liquid cultures of strains B42, E310, and E111 onto 0.1 μm polycarbonate
Whatman filters (Nucleopore) before fixation in 2.5% glutaraldehyde in 0.1 M
cacodylate buffer for 72 h. After washing in 0.1 M cacodylate buffer, we post-fixed
the samples in osmium tetroxide. We then rinsed the samples in sterile distilled
water, washed them with an ethanol gradient (from 20% to 100%) and subjected
them to critical point drying (Autosamdri-815B, Tousimis). We attached the
filters to aluminium stubs with carbon tape and coated them with a 5-nm layer
of Au/Pb using a K575X sputter coater (Quorum). We acquired the images
using a Quanta 600 FEI (Thermo Scientific) scanning electron microscope at an
acceleration voltage of 5 kV.

Representative populations, spillover, and growth rates. We grew the three
selected strains in pure cultures to find the “representative” gates, i.e., non-
overlapping two-dimensional areas in the FSC-A/SSC-A plots that contain the
majority of the total recorded events of each pure culture at a given time, and
the spillover ratios, i.e., the proportion of the events of a pure culture that fall
in the “representative” gates of the other two pure cultures at a given time. The
spillover ratios were expressed in relation to the “representative” populations.
As an example, we show the FSC-A/SSC-A profiles of each pure culture at the
beginning of the incubation on the upper side of Fig. 2b. The “representative” gate
for the pure culture of B42 (green color, top left plot) contains 76.9% of the total
recorded events, while 1.3% of the total events of the same sample fall in the
gate of E310; therefore, at this time point, the spillover ratio of B42 to the gate
of E310 is 0.0169. Likewise, the spillover ratio of E310 to the gates of B42 and
E111 is 0.135 and 0.007, respectively (blue color, top middle plot), and the spillover
ratio of E111 to the gates of B42 and E310 is 0.127 and 0.064, respectively
(red color, top right plot). At least 50,000 events were recorded for the calculation
of the “representative” gates and the spillover ratios, using a threshold of 10,000
regarding the height of the FSC signal.

We incubated the cultures of the three strains at 25, 37, and 42 °C for 4 h;
the temperatures and duration were chosen to correspond to the temperature
gradient and to the duration of the circulation experiments, respectively. We
sampled, drew the “representative” gates, and calculated the spillover ratios at the
beginning of the incubation and at every 30 min until the end of the fourth hour
of incubation (Supplementary Tables 4–6). We used the “representative” gates and
the spillover ratios of pure cultures to find the individual populations of each strain
in mixed cultures. To that end, we solved the following system of equations for

each time point:

B42r ¼ B42o � E310r ´ SE310=B42 � E111r ´ SE111=B42 ð1Þ

E310r ¼ E310o � B42r ´ SB42=E310 � E111r ´ SE111=E310 ð2Þ

E111r ¼ E111o � E310r ´ SE310=E111 ð3Þ
where B42r, E310r, and E111r are the real “representative” populations of B42,
E310, and E111, respectively, B42o, E310o, and E111o the observed events in the
gates of B42, E310, and E111, respectively, at the same time point, and Sa/b the
spillover ratio of strain “a” to the “representative” gate of strain “b”. Since the
spillover of B42 to the “representative” gate of E111 was negligible (<0.0025 at all
time points), the respective term was omitted from Eq. 3. Then we found the total
individual populations of each strain by considering the percentage of total events
of each isolate that fell within the corresponding “representative” gate at each
temperature, based on the profiles of samples of pure cultures (Supplementary
Table 3). To assess the accuracy of the method, we performed tests where we
measured the population densities of the three strains in pure cultures and then
mixed 100 μl of each pure culture and calculated the population densities in the
mixed culture. We compared the expected population densities from the pure
cultures to the observed ones from the mixed cultures after tripling the latter to
account for the three-fold dilution due to mixing (Supplementary Table 7).

For the incubation, we placed 30 ml of sterile LB medium (Sigma-Aldrich) in
50 ml falcon tubes at each temperature (in triplicate) and we inoculated each one
with overnight cultures of all three strains at a starting cell density of 453–473 cells
μl−1 (~150 cells μl−1 of each strain). The recorded events in the sterile LB
(Supplementary Figure 10—right side) were deducted from the total counts for
each gate prior to any downstream calculation. We incubated the selected strains at
25, 37, and 42 °C (corresponding to the temperature gradient of the experiment),
and we calculated the population densities in each community at every 30 min
for 4 h of incubation.

To examine potential interactions among strains, we compared the growth
rates in the mixed cultures versus the growth rates in monocultures at 25, 37, and
42 °C (Supplementary Data 1). For that, we grew the strains in monocultures as
described above, starting both from population densities comparable to the total
starting population densities in the mixed growth assays and from population
densities comparable to the per strain starting population densities in the mixed
growth assays.

Set-up of the circulation experiment. We set up a system where LB medium
was circulated among three falcon tubes (50 ml capacity) with the aid of a 3-head
Masterflex® FH 100M peristaltic pump (ThermoFisher Scientific, USA). We placed
each of the falcon tubes, henceforth called “incubation vessels”, within a Ther-
momixer (Comfort model, Eppendorf, Germany) that we set at a constant nominal
temperature: one at 25 °C, one at 37 °C and one at 42 °C. All three incubation
vessels were shaken at a constant speed of 300 rpm to facilitate homogeneous
mixing. We drilled the caps of the falcon tubes to insert plastic tubing for the
entrance and exit of medium to and from the falcon. We performed four individual
experiments, each one replicated three independent times, where the speed of
the peristaltic pump was set at 1.75, 5, 12, and 71.5 μl s−1 and the flow of LB
was from 25 to 37 to 42 °C and back to 25 °C (Fig. 1c). All falcon tubes, tubing,
caps, and valves were ethanol-sterilized before the experiment, and the whole
system was placed under a laminar flow hood to ensure sterile conditions.

On the day before each experiment, we placed 30 ml of sterile LB within
each incubation vessel, keeping the flow off, to ensure that the medium reaches
temperature equilibrium within the incubation vessel. The recorded starting
temperatures before the beginning of each experiment were 25, 35.5, and 40 °C for
the medium within thermomixers at nominal temperatures of 25, 37, and 42 °C,
respectively.

At the beginning of the experiment, we inoculated each incubation vessel with
a starting population density of 120 ± 2.8 cells μl−1 for each strain. To start with
as similar as possible communities, we prepared a single inoculum by mixing
overnight pure cultures at a 1:1:1 cell ratio and we inoculated the same volume
from that inoculum to each incubation vessel. We collected and analyzed triplicate
samples of 333 μl from each vessel immediately after the inoculation before turning
on the flow and at every 30 min after that until the end of the fourth hour of
incubation, for a total of 9 samples per time point.

Experimental data acquisition and analysis. We analyzed the culture samples
during the experiments with a BD Accuri C6 flow cytometer (Becton Dickinson)
using the “low” acquisition speed, i.e., 14 μl min−1 and, for 90 s per sample,
recording events above a 10,000 threshold at the FSC-H. This flow cytometer
comes with standard factory settings for the voltage of the lasers that cannot be
changed by the user. We gated the individual populations of the three strains based
on the scattering profiles of the pure cultures, also considering the shifts in the
populations through time (Supplementary Movies 1–3) and correcting for spillover
(Supplementary Tables 4–6). To determine the instrument variability, we measured
6 different mixed culture samples 12 times each and we found that the average CV
in the mean values of the counts in each gate was 3.75%. To test whether our
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sampling in “Slow” speed setting yields significantly different results compared to
the minimum recommended settings according to the instructions of the instru-
ment’s manufacturer, we performed additional measurements of all the three pure
cultures in both settings. We used overnight cultures, we made the appropriate
dilutions, and we split the diluted cultures in six subsamples of 1 ml per strain to
create as identical samples as possible. We placed all the subsamples on ice and we
measured three of them, per strain, with “Slow” settings and three of them, per
strain, with the “minimum recommended” settings. We drew new gates for the
subsamples at “minimum recommended” settings because the increase in the flow
speed compared to “Slow” settings causes the events to shift slightly upwards in the
FSC-A/SSC-A biplots and the populations of the different strains to be resolved less
well (Supplementary Figure 11). We sampled volumetrically 20 μl per sample with
both settings. We found that there were no significant differences between the
recorded events at the different settings (t tests, n= 3, p > 0.05 at all cases), with
the counts using the “minimum recommended” settings being consistently 3–5%
lower on average than the counts using the “Slow” settings. This difference is,
however, indistinguishable from the recorded background noise of the instrument
(CV= 3.75%).

Modeling changes in temperature at intermediate dispersal. To model how
temperature changes in scenarios with dispersal, we started from the energy con-
servation principle, which dictates that the change in energy in each tube, ΔEtube, is
equal to the sum of the energy transferred from the thermomixer, Ethermomixer, and
the energy of the LB medium being pumped in and out, Epumped in/out. To this end,
we use the following energy balance equation for each of three tubes:

Ethermomixer þ Epumped in=out ¼ ΔEtube ð4Þ
When the experimental time course t advances by a small time step dt, we obtain
the following expression for Ethermomixer:

Ethermomixer ¼ h ´A ´ Tthermomixer � T tð Þð Þdt ð5Þ
In Eq. 5, h represents the heat transfer rate, A the contact area, Tthermomixer the

temperature on the walls of the thermomixer (kept constant), and T(t) the time-
dependent temperature of the growth media inside the tube.

For Epumped in/out, we obtain:

Epumped in=out ¼ m ´Cp ´Mfrac;speeddt Tin � Toutð Þ ð6Þ
Here m denotes the mass of the growth media, Cp its heat capacity (we used
the heat capacity of water), and Mfrac,speed is the mass fraction circulation speed.

Finally, the change of energy in the tube can be written in terms of the
temperature in the tube:

ΔEtube ¼ m ´Cp ´ dT tð Þ ð7Þ
where dT(t) represents the change in temperature resulting from the energy
transfer.

In order to measure the heat transfer rate, we set the thermomixer temperature
to 42 °C and the initial temperature of the growth media to the ambient
temperature of the laboratory (25 °C). Moreover, we took into account the heat loss
in the tubing connecting the incubation vessels. The complete experimental set-up
is visually depicted in Fig. 2c, where each colored flask represents a thermomixer
set at nominal temperatures of 25, 37, and 42 °C (yellow, light orange, and orange
flasks, respectively), gray lines represent the tubing connecting the incubation
vessels, and triangles within circles represent peristaltic pumps and the direction of
the flow. We obtained the necessary additional parameters by measuring the length
and the diameter of the tubing and the laboratory’s ambient temperature. The heat
transfer rates were 342.6975 and 82.3414Wm−2 K−1 for the thermomixers and
the tubing, respectively. Solving the above equations gives the time-dependent
temperatures (T(t)) for each of the three tubes. Our modeling reproduces the
temperatures that we observed at the end of the actual experiments with dispersal
with a mean error of 0.267 °C (Supplementary Table 9).

Modeling growth at intermediate circulation speeds. We modeled the growth of
each strain with a lag phase followed by an exponential phase, with both phases
depending on the strain and on temperature. To quantify the lag phase and the
exponential growth phase for each of the strains at a given temperature, we use the
following formula:

n tð Þ ¼ n0 for t � t0 ð8Þ

n tð Þ ¼ n0 ´ exp rgrowth ´ t � t0ð Þ
� �

for t>t0 ð9Þ
where n(t) is the population density at time t, n0 is the initial population density, t0
is the length of the lag phase, and rgrowth is the constant exponential growth rate.
We next grew the synthetic community at nominal temperatures of 25, 28, 34, 37,
40, and 42 °C without dispersal for 4 h (with the same starting population densities
as in the experiments with dispersal and in three different falcon tubes—biological
replicates—at each temperature) and we fit the observed population densities to the
formula above while minimizing the SSE (Sum of Squared Errors) to obtain t0
and rgrowth. Our predicted population densities were in good agreement with the
observed ones (0.964 < R2 < 1, Supplementary Figure 12, Supplementary Table 10).

The population density n(t) satisfies the equation:

dn tð Þ=dt ¼ r tð Þ´ n ð10Þ
where r(t) is the growth rate, i.e., r(t) is 0 during the lag phase and equal to rgrowth
during the exponential phase.

To find the growth at the intermediate temperatures across the 25–40 °C
temperature gradient that corresponds to the minimum and maximum observed
temperatures during the experiments, we interpolated the calculated growth
rates that we acquired from the growth assays of the mixed cultures without
dispersal (i.e., at 25, 28, 34, 37, 40, and 42 °C—nominal temperature) using
Piecewise Cubic Hermite Interpolating Polynomial (pchip). We used the growth
rates of the mixed cultures because they include the interactions among the
strains. We observed that strain B42 had an overall short lag phase (<30 min,
Supplementary Figure 12) and a growth profile with two local maxima (at 31
and 36.5 °C) (Fig. 4b), that strain E310 had a longer lag phase than strain B42
(~60 min) and one global maximum (at 40 °C) (Fig. 4c), and that strain E111 had
the longest lag phase (~ 120 min) and the sharpest growth maximum (at 37 °C)
among the three (Fig. 4d).

For the scenarios with dispersal, we used the temperature model above to obtain
the temperatures over time in all three vessels. We then added transport between
the vessels according to the direction of the flow (Fig. 2c) and the circulation speed.
Additionally, we subtracted a penalty term from the population density to account
for the observed stress of the community due to dispersal (Supplementary
Figure 6). We obtained the penalty term from the data as the best fitting parameter
to the experimental data at the four different circulation speeds. This penalty
manifested both as an increase in t0 and as a decrease in rgrowth and was non-linear
with increasing dispersal and strain-specific. For strain B42, the penalty affected
mostly rgrowth and was up to −32% of rgrowth and up to +7.2 min for t0. For strain
E310, the penalty affected both rgrowth and t0 and was up to −40.5% of rgrowth and
up to +31 min for t0. For strain E111, the penalty affected mostly t0 and was up
to −9% of rgrowth and up to +53.3 min for t0.

For each strain, the dynamics at each vessel and each time point are modeled
by:

dn25 tð Þ=dt ¼ r ´ T25 tð Þ; tð Þ ´ n25 þ dispspeed ´ n42 � n25ð Þ ð11Þ

dn37 tð Þ=dt ¼ r ´ T37 tð Þ; tð Þ ´ n37 þ dispspeed ´ n25 � n37ð Þ ð12Þ

dn42 tð Þ=dt ¼ r ´ T42 tð Þ; tð Þ ´ n42 þ dispspeed ´ n37 � n42ð Þ ð13Þ
where n25(t), n37(t), and n42(t) are the population densities at time t in the vessel
with initial nominal temperature of 25, 37, and 42 °C, respectively, r(T,t) is the
interpolated growth rate with penalty subtracted at temperature T and time t, and
dispspeed is the circulation speed. The second part of the equations gives the
immigration (I) at each time point.

Quantifying the homogeneity of the metacommunity. To examine whether
the metacommunity is homogenized at a given circulation speed (in the actual
experiments and in the modeled scenarios of intermediate dispersal), we used the
BC similarity. In specific, we compared for each dispersal rate the average pairwise
BC within the metacommunity (“BC within”) to the average pairwise BC among
communities growing under a given degree of dispersal compared to the respective
communities growing without dispersal at the same temperature (“BC across”)
(Fig. 3a).

For a given dispersal rate, “BC within” quantifies how similar the communities
are within the metacommunity and “BC across” quantifies how much they change
compared to when there is no dispersal. When the metacommunity is non-
homogeneous, “BC across” should be significantly higher than “BC within”,
indicating that the communities did not change much compared to the zero
dispersal conditions, whereas when the metacommunity is homogeneous “BC
across” should be significantly lower than “BC within”.

For the calculation of “BC within” and “BC across”, we compared sample pairs
from the same time point starting after the first hour of incubation. This was to
avoid the artificial inflation of the BC indices; the populations of the three strains
within the first hour of incubation are very close to their starting populations,
irrespectively of the temperature (Supplementary Figure 12) or the circulation
speed (Supplementary Figure 6) so the communities are always very similar during
that time. Thus we calculated “BC within” and “BC across” based on 63 pairwise
comparisons for the experimental data, i.e., three pairwise comparisons at seven
time points for three independent replicate experiments per circulation speed,
and based on 21 pairwise comparisons for the modeling data (three pairwise
comparisons at seven time points). For both indices, the standard deviation
increases as the mean similarity decreases (Fig. 5a, Supplementary Figures 8–9)
because the communities become increasingly dissimilar within the
metacommunity (for “BC within”) and compared to when there is no dispersal
(for “BC across”) with increasing incubation time (Supplementary Figure 5).
Communities from independent replicate experiments sampled at the same
circulation speed, vessel, and time point were 96.2% (90.7–98.8%) similar on
average (in terms of BC similarity).
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Calculating the strength of selection and immigration. To examine the relative
contribution of immigration and selection at the 100 scenarios with intermediate
circulation speed, we computed the CV of the growth rates of each strain at
different vessels, the average growth-over-immigration ratio in the metacommu-
nity, and mean temperature difference among the vessels. For each circulation
speed, we calculated the growth-over-immigration ratio at 10-min intervals for the
whole period of 4 h before averaging. We calculated the CV of the growth rates of
each strain and the mean temperature difference after the first 20 min of incubation
when the temperature was stabilized (Fig. 4a). Finally, we examined the relative
importance of immigration and selection by examining how the growth-over-
immigration ratio, the CV of the growth rates of each strain, and the mean tem-
perature difference change at the scenarios with intermediate circulation speeds.

Additional simulations. To further examine the importance of immigration and
selection, we performed additional simulations under two scenarios where we
excluded either the transfer of cells or the transfer of heat from vessel to vessel.
Thus, in the scenario where the transfer of cells was excluded, the temperature of
the vessels changed as in reality, according to the circulation speed (Fig. 4a).
Likewise, in the scenario where the transfer of heat was excluded, the temperature
of the vessels remained constant and cells were migrating according to the circu-
lation speed. We examined the homogeneity of the metacommunity under both
scenarios up to a circulation speed of 5.72 μl s−1.

To further test the generality of our findings, we performed another two
simulations where the dynamics of heat transfer, the range of circulation speed, and
the growth of the strains were different compared to the actual experiment. In these
simulations, we set the heat transfer rate from the thermomixers to the incubation
vessels ~3 times lower than in the actual experiment. This caused the temperatures
among the vessels to converge fast due to mixing for dispersal rates >4 μl s−1

(Supplementary Figures 8A and 9A, upper left), because the thermomixers were
not heating/cooling as fast as in the actual experiments. We further changed the
range of circulation speed from 0 to 200 μl s−1 (rather than from 0 to 71.5 μl s−1 in
the actual experiment). We also changed the growth profiles of the strains
compared to what we observed in the actual experiment. In the first simulation,
we gave a single global maximum to the growth of strain B42 at 35–35.5 °C, to
the growth of strain E310 at 40 °C, and to the growth of strain E111 at 37 °C
(Supplementary Figure 8A). We set the maximum of B42 higher than the maxima
of the other two strains, followed by E310 and E111 (Supplementary Figure 8A). In
the second simulation, we set the growth of strain B42 higher than the other two
strains at a temperature range of 25–37 °C and the growth of strain E310 higher
than that of E111 at all temperatures with a local maximum at 37.5 °C
(Supplementary Figure 9A). Unlike the main model, here we applied a non-specific
uniform penalty only to the exponential part of the growth of the strains. This
penalty increased linearly with increasing dispersal at both simulations.

Statistics. For the comparison of “BC within” to “BC across”, we used linear
mixed-effects models regarding the experimental data and generalized mixed-
effects models regarding the modeling data because the latter were not normally
distributed (Anderson–Darling tests, two-sided p > 0.1 for all datasets). We set the
BC to be the dependent variable “across/within” and “dispersal” to be the fixed
effects and “time” and “vessel” to be the random effects. We corrected the p values
for multiple testing using the Bonferroni correction. The intercepts (random
effects) were always very significant and there was no apparent autocorrelation of
the residuals (Supplementary Figure 13). We performed the models in R41 using
the package lme442. We performed the non-metric multidimensional (nMDS)
analysis (for Supplementary Figure 5) in PRIMER v643 based on the BC similarity.
We calculated the BC similarity for all analyses using the raw population densities
(cells μl−1) without any transformation, because these densities represent absolute
abundance counts in communities where sampling is random, large, and fully
covering the diversity. The large number of recorded events per sample, according
to the Central Limit Theorem, allows us to safely estimate the mean population
densities at a given time within an incubation vessel. That was also confirmed from
the CV among the three technical replicates from each incubation vessel in the
experiments with dispersal, which did not differ significantly from the expected
variability caused by the instrument (F-test, n= 108, two-sided p= 0.45, compared
against the instrument’s CV of 3.75%). To examine potential interactions among
the strains, we compared their growth rates in monocultures versus that in mixed
cultures at 25, 37, and 42 °C using ANCOVA. In this analysis, we set the experi-
mental time as the covariate and the log-transformed cell density as the dependent
variable, and we examined the null hypothesis that the growth rates between
monocultures and mixed cultures are equal.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Flow cytometric data are available in.fcs format online (http://flowrepository.org) under
the “FR-FCM-ZYG6” and “FR-FCM-ZYTD” identifiers. The 16S rRNA gene sequences
of the representative isolates have been deposited in the GenBank database under
accession numbers MH998420–MH998449. Modeling code is available on GitHub

(https://github.com/alexanderlorz/dispersal_vs_selection). The source data underlying
Figs. 2d, e, 3b, 5a, and 6b, c are provided as a Source Data file.
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