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Abstract

While population studies have resulted in detailed maps of genetic variation in humans, to

date there are few robust maps of epigenetic variation. We identified sites containing clus-

ters of CpGs with high inter-individual epigenetic variation, termed Variably Methylated

Regions (VMRs) in five purified cell types. We observed that VMRs occur preferentially at

enhancers and 3’ UTRs. While the majority of VMRs have high heritability, a subset of

VMRs within the genome show highly correlated variation in trans, forming co-regulated net-

works that have low heritability, differ between cell types and are enriched for specific tran-

scription factor binding sites and biological pathways of functional relevance to each tissue.

For example, in T cells we defined a network of 95 co-regulated VMRs enriched for genes

with roles in T-cell activation; in fibroblasts a network of 34 co-regulated VMRs comprising

all four HOX gene clusters enriched for control of tissue growth; and in neurons a network of

18 VMRs enriched for roles in synaptic signaling. By culturing genetically-identical fibro-

blasts under varying environmental conditions, we experimentally demonstrated that some

VMR networks are responsive to the environment, with methylation levels at these loci

changing in a coordinated fashion in trans dependent on cellular growth. Intriguingly these

environmentally-responsive VMRs showed a strong enrichment for imprinted loci (p<10−80),

suggesting that these are particularly sensitive to environmental conditions. Our study pro-

vides a detailed map of common epigenetic variation in the human genome, showing that

both genetic and environmental causes underlie this variation.

Author summary

Multiple published studies have demonstrated that epigenetic variation can contribute to

phenotypic variation. In the present study, we identified regions of common methylation

variation in five cell types, observing that these show enrichments for functional genomic

features. Surprisingly, we found that these epigenetic variations can form biologically rele-

vant networks that are specific to each cell type, often occurring near genes that have
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functional relevance to the cell type. Further these regions show reduced heritability, sug-

gesting they may be responsive to environmental cues. We confirmed this by subjecting

isogenic fibroblast cultures to different environmental stress. Our study provides insight

into patterns of normal epigenetic variation in the human population.

Introduction

Understanding the causes and consequences of genomic variation among humans is one of

the major goals in the field of genetics. Over the past decade, studies such as the Hapmap and

1000 Genomes Projects have resulted in detailed maps of genetic variation in diverse human

populations, identifying millions of single nucleotide polymorphisms, copy number variants

and other types of sequence variation [1–6]. These maps have acted as the catalysts for thou-

sands of genome-wide association studies [7], and have provided insights into diverse pro-

cesses such as mechanisms of human disease, mutation, evolution, migration, selection and

recombination [8–11].

However, alterations of the primary DNA sequence are not the only type of genomic varia-

tions that occur among humans. In particular there are now well-documented examples of epi-

genetic marks, such as DNA methylation and histone modifications, that show significant

inter-individual variation [12–14]. However, in contrast to sequence polymorphism, relatively

few studies have examined the distribution of epigenetic variation across the genome, and as a

result our understanding of the causes and consequences of epigenetic polymorphism remains

limited.

Familial and twin studies in human and mice [12,13,15–20] have shown that a substantial

fraction of sites showing variable DNA methylation levels are highly heritable, and for some

loci this epigenetic polymorphism has been linked with nearby genetic variation [21–24].

However, these same studies have also demonstrated that a subset of methylation variation

exhibits low heritability [12,16–18,25]. While stochastic variation or technical variability could

explain reduced heritability levels, differing environmental exposures such as smoking [26–

28], diet/in-utero environment [29–31] and stress [32–35] have all been shown to modify the

epigenome. In addition, other natural processes such as aging and X chromosome inactivation

apparently underlie epigenetic variation of some sites [36–38]. Whatever the root cause of epi-

genetic polymorphism, several studies have demonstrated that a subset of these variations are

functionally significant and associate with the expression levels of nearby genes [23,39].

Accordingly there is now substantial interest in elucidating the role of epigenetic variation in a

variety of disease phenotypes [40–48], indicating that the study of epigenetic polymorphism

holds significant promise for understanding the molecular etiology of disease.

In this study, we have performed a screen to identify regions of common epigenetic varia-

tion using population data derived from five different human cell types. By searching for clus-

ters of probes with high inter-individual variability, we uncover hundreds of loci in the human

genome that exhibit highly polymorphic DNA methylation levels that we term variably meth-

ylated regions (VMRs). We show that VMRs co-localize with other functional genomic fea-

tures, are enriched for CpGs that influence gene expression, and provide evidence that

epigenetic variability at some of these loci is influenced by both genetic and environmental fac-

tors. We also show that VMRs form cis and trans co-regulated networks enriched for tran-

scription factor binding sites and genes with cell-type relevant functions. Finally, consistent

with the notion that the epigenome represents a dynamic link between our genome and the

environment[49,50], we experimentally demonstrate environmental effects on methylation at

VMRs using cultured fibroblasts, revealing signatures that overlap those observed in our
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population-level datasets. Together, our results provide novel insights into the biology of vari-

able methylation across the human genome.

Results

Identification of polymorphic DNA methylation in five human cell types

We performed an analysis of inter-individual variation of DNA methylation in five isolated

cell types from two human cohorts (Fig 1A): 1) Primary fibroblasts, EBV-immortalized lym-

phoblastoid cells, and phytohemagglutinin stimulated primary T cells taken from umbilical

cords of 204 newborns [23]; and 2) sorted glia and neurons from prefrontal cortical tissue

from 58 deceased donors [51]. Genome-wide methylation profiles were previously generated

for all samples using the Illumina Infinium HumanMethylation450 BeadChip (450k array)

(Illumina, San Diego, CA, USA). After filtering (see Methods), we analyzed methylation pro-

files for 293,782 filtered autosomal CpGs in each of the five cell types. We utilized a sliding

window approach (Fig 1B) to characterize VMRs composed of three or more neighboring

CpGs with variation�95th percentile of standard deviation of β-values in that cell type among

all samples of each cell type. To avoid the confounder of gender [52], identification of VMRs

Fig 1. (A) We studied population variability of DNA methylation in five different purified cell types derived from blood, skin and brain. (B) Utilizing a 1kb

sliding window we identified Variably Methylated Regions (VMRs), representing clusters of�3 probes within the top 5% of population variability within each

cell type. (C) An example VMR identified at the promoter region of EDARADD in fibroblasts. As indicated by the accompanying UCSC Genome Browser

tracks, ENCODE data identifies this locus as being bound by several different TFs. Dashed red lines represent DNA methylation profiles for each of the 90 cell

lines from the GenCord population, showing extreme epigenetic variability at this locus in the normal population.

https://doi.org/10.1371/journal.pgen.1007707.g001
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was performed separately on males and females, and then the resulting set of VMRs in each

gender were combined together for further analysis (see Methods).

In total, we identified 699 VMRs in fibroblasts, 1,423 VMRs in T cells, 699 VMRs in B cells,

1,137 VMRs in neuronal cells and 1,104 VMRs in glial cells. Hereafter, these VMRs are abbre-

viated as FVMRs, TVMRs, BVMRs, NVMRs and GVMRs, respectively. Genomic positions

and relevant annotations for VMRs partitioned by cell type are provided in S1 Table. VMRs

had a mean size of 863bp, and contained a mean of 6.4 CpGs (S1 Fig).

While many characterized VMRs were specific to a given cell type, others were common

across cell types and tissues. Examples of cell-type specific and shared VMRs are displayed in

Fig 2A. The extent of VMR sharing between different tissues was related to their relative devel-

opmental origin. For example, approximately one third of VMRs identified in glia were also

found in neurons, and ~68% of VMRs found in B cells were observed in T cells. In contrast

only 23% of VMRs found in fibroblasts were also seen in B cells (Fig 2B). Between fibroblasts,

blood, and brain cells, there were 149 shared VMRs (Fig 2B). In addition, by performing pair-

wise correlation of methylation levels at CpGs within VMRs shared in different cell types

taken from the same individual, we observed much higher correlations between closely related

cell types, suggesting that observed population variation is plausibly established in precursors

of these cell types and maintained, or influenced by common factors and regulatory mecha-

nisms. For example, methylation levels within VMRs shared between T cells and B cells had a

mean correlation coefficient of r = 0.79 (S2 Fig). Likewise for neurons and glia, shared

VMR-CpGs were highly correlated (mean r = 0.78, S2 Fig). However, the same degree of corre-

lation was not observed for comparisons between fibroblasts and either T cells (mean r = 0.56)

or B cells (mean r = 0.43, S2 Fig).

Fig 2. Epigenetic variation in different cell types. (A) While some VMRs are common to multiple different cell types, in contrast, other VMRs identified in

one cell type show minimal epigenetic variation in other tissues. (B) Venn diagram showing the degree of overlap for VMRs found in B-cells, T-cells,

Fibroblasts, Neurons and Glia.

https://doi.org/10.1371/journal.pgen.1007707.g002
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Replication of VMRs in additional cohorts

Before extending our analysis of VMRs, we first replicated our approach in two additional

populations. We applied our sliding window approach for identifying VMRs to (i) an addi-

tional cohort of 62 fibroblast cell lines [42,53], and (ii) a cohort of whole-blood methylomes

from 2,680 individuals sampled from the general population [54]. This led to the identification

of (i) 986 VMRs in fibroblasts, 230 of which were also observed in the original fibroblast

population, and (ii) 1,368 VMRs in whole blood. Because this latter dataset was composed of

methylation profiles generated from peripheral blood, rather than purified cell types, we com-

pared VMRs identified in these controls with shared VMRs that were identified in both B cells

and T cells in the Gencord cohort: 390 of the 477 shared B and T cell VMRs and were also

found in the replication cohort, yielding a 28-fold enrichment over that expected by chance

(p<2.5x10-321).

VMRs preferentially overlap specific gene/CpG island features and

functional elements in the human genome

Differentially methylated CpGs have been shown to often be enriched in specific regions of the

genome and to co-localize with other functional epigenetic signatures [55–57]. In order to

gain insight into the genomic context of CpGs in VMRs, we tested the enrichment of these

CpGs in relation to various genomic features compared to a background set of CpGs assayed

on the array (S2 Table).

We first performed enrichment analysis using Refseq gene and CpG island (CGI) annota-

tions, observing consistent trends across datasets (S2 Table). Specifically, we noted that in all

five of the cell types tested, VMRs were significantly enriched in 3’ UTRs and depleted in 5’

UTRs (enrichments in 3’ UTRs ranging from 1.1- to 1.4-fold across the different cell types,

p = 4.6x10-2 to p = 2.5x10-11). Likewise, the depletion of VMRs within 5’ UTRs ranged from

1.3- to 1.6-fold (p = 2.4x10-8 to p = 4.7x10-37) (S2 Table). The depletion in 5’ UTRs was also

reflected in enrichment tests conducted using CGI annotations, which revealed significant

depletions in CGIs and concomitant enrichments in CpG shores, shelves, and sea categories

(S2 Table).

To further explore the co-localization of VMRs with functional genomic regions, we

assessed the overlap of FVMRs and BVMRs with Chromatin State Segmentation annotations

from a normal human lung fibroblast (NHLF) cell line and an EBV-immortalized lymphoblas-

toid cell line (GM12878), respectively; these data were previously generated by the ENCODE

project [58], and included genome-wide annotations for 15 chromatin states characterized

using combined epigenetic signatures from various datasets. Consistent with observed deple-

tions in gene 5’ UTRs and CpG islands, which both tend to occur within or adjacent to gene

promoters and transcriptional start sites, we also noted significant depletions of both FVMRs

and BVMRs in regions defined by “Active Promoter” chromatin states in respective cell types

(S2 Table). The strongest VMR enrichments in both cell types occurred in chromatin states

associated with enhancer activity (S2 Table).

We also examined various other categories of genomic features in relation to VMRs, and

observed the following: (i) housekeeping genes [59] were strongly under-represented in VMRs

in each of the five cell types tested, (ii) loci from the GWAS catalog [60] were enriched in

VMRs found in T cells, glia and neurons, (iii) loci showing human-specific methylation levels

from a multi-primate analysis [61] were enriched in four of the five cell types, and (iv) loci

showing parent-of-origin specific methylation associated with imprinted regions were

enriched in neuronal VMRs.
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VMRs form both cis and trans co-methylated networks that are enriched for

genes and transcription factor binding sites with cell-type relevant functions

We next sought to investigate the positional relationships of co-regulated VMRs. In each cell

type we constructed pair-wise correlation matrices of all VMRs based on the β-values of the

probe with the highest population variance within each VMR. The resulting heat maps of pair-

wise correlations revealed the presence of strongly co-methylated blocks of CpGs, whose meth-

ylation levels varied together in both cis and trans, and that these patterns were distinct to each

cell type (Fig 3; S3 Fig). For example, as shown in Fig 3, FVMRs exhibit strong cis correlations

within several chromosomal regions. Significantly, evidence of strong co-regulation in trans
can also be seen, with several regions located on multiple different chromosomes also exhibit-

ing strong co-variation in epigenetic state. Visual inspection of the strongest trans correlations

in fibroblasts located on chromosomes 2, 7, 12 and 17 showed that each of these co-regulated

clusters of VMRs corresponded to different members of the HOX gene superfamily, suggesting

that such VMRs might correspond to coordinately regulated loci with shared biological

functions.

Fig 3. Heat map of pair wise correlation values between all CpGs located within VMRs defined in fibroblasts.

CpGs on both axes are ordered by genomic position, revealing the presence of multiple VMRs located on different

chromosomes that show highly correlated methylation levels in trans. Black bars (right and top) show the location of

the HOXA (chr7), HOXB (chr17), HOXC (chr12) and HOXD (chr2) gene clusters, which correspond to some of the

strongest regions of correlated methylation in both cis and trans. This observation suggests coordinated epigenetic

regulation among loci distributed genome-wide.

https://doi.org/10.1371/journal.pgen.1007707.g003
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Based on this observation, we sought to formally identify signatures of co-regulation

among different VMRs. We used weighted gene co-expression network analysis (WGCNA;

see Methods) [62,63], to identify co-methylated networks of VMRs within each cell type. This

identified seven co-regulated modules in fibroblasts, four in T cells, two in B cells, seven in

neurons, and five in glia, with each module composed of between 11 and 467 distinct co-regu-

lated VMRs (median module size, n = 41) (S4 Table, S4 Fig). Consistent with our initial visual

observations, WGCNA identified several co-regulated modules within the set of fibroblast

VMRs that included all four human HOX gene clusters (Fig 4A).

In order to assess the biological relevance of these co-regulated VMR networks, we per-

formed Gene Ontology (GO) enrichment analysis on the set of genes linked to the VMRs within

each module (Fig 4C, S4 Table, S5 Table, and S5 Fig). Although for many networks the number

of associated genes was too small to reach significance at 10% FDR, in four of the five cell types

tested we identified enrichments for GO terms that were of direct functional relevance to the

specific cell type. The five most significant GO enrichments and associated modules for each

cell type are presented in Table 1. For example, in fibroblasts, the most significant functional cat-

egories were within the blue module that included multiple HOX gene clusters, including terms

associated with the basic control of tissue growth and morphogenesis, such as “anterior/poste-

rior pattern specification” (GO:0009952; 52-fold enrichment, FDR q = 3.09x10-14) and “embry-

onic organ morphogenesis” (GO:0048598; 52-fold enrichment, FDR q = 6.4x10-12). In T cells,

the most significant GO enrichments were found for the blue module, made up of 95 co-regu-

lated VMRs enriched for genes involved in T cell function, including the terms “T cell aggrega-

tion” (GO:0070489; 11-fold enrichment, FDR q = 1.06x10-6) and “T cell receptor signaling

pathway” (GO:0050852; 12.8-fold enrichment, FDR q = 9.5x10-7). In glial cells, significantly

enriched terms included a module consisting of 467 VMRs linked to genes associated with “neg-

ative regulation of neurogenesis” (GO:0050768; 3.7-fold enrichment, FDR q = 2.4x10-4). Finally,

in neurons, the most strongly associated functional categories were with a module comprised of

18 VMRs including the GO term “synapse assembly” (GO:0007416; 61-fold enrichment, FDR

q = 1.1 x10-5). Complete lists of enriched GO terms and modules are provided in S5 Table.

Based on the trans nature of these co-regulated VMR networks, we hypothesized that coordi-

nated epigenetic regulation of these sites might be based on the binding of specific trans-acting

factors to the members of each VMR network. We therefore analyzed the overlap of each VMR

WGCNA module with validated transcription factor binding sites (TFBS) for 161 different tran-

scription factors (TFs) studied by the ENCODE project [64]. We observed significant enrichments

for TFBS in several VMR modules that were specific to each cell type (S6 Table). The top three

enriched TFBS per cell type are provided in Table 2. In several instances, the most significant

TFBS enrichments converged on modules highlighted by GO analyses. For example, EBF1 and

RUNX3, which are both involved in lymphocyte differentiation and proliferation [65], were sig-

nificantly enriched TFs in the blue module in T cells (RUNX3, 2.1-fold enrichment, p = 6.1x10-7;

EBF1, 2-fold enrichment, p = 2.7x10-5). Similarly, in fibroblasts, TFBS for SUZ12 (3.4-fold enrich-

ment, Fisher’s. p = 5.3x10-11) and EZH2 (2.3-fold enrichment, p = 1.5x10-9), were the most signifi-

cantly enriched among VMRs of the module that included multiple HOX-genes (Fig 4C). Prior

studies have shown that as part of the polycomb complex, SUZ12 and EZH2 have roles in the

establishment of epigenetic modifications, and specifically in the regulation of HOX genes [66].

Methylation levels at VMRs are influenced by both heritable and non-

heritable factors

Motivated by the signatures of co-methylation observed in our VMRs, we next sought to

broadly explore the potential underlying factors associated with the regulation of VMR

DNA methylation polymorphism in human genome
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Fig 4. Cis and trans co-regulation of VMRs located at functionally related networks of genes that govern key developmental pathways. (A) After selecting

one CpG per VMR with the highest variance, we applied WGCNA to identify networks of significantly co-regulated VMRs. The Circos plot shows a

representation of one of the largest co-regulated VMR modules identified in fibroblasts, which comprises 34 independent VMRs located on four different

chromosomes, comprising all four clusters of HOX genes (outer circle). CpGs within VMRs in the co-regulated module are represented by blue tick marks

(inner grey circle), with black lines joining VMRs that have methylation levels with pair wise absolute correlation values R�0.7 (highlighted in yellow). Green

bars show locations of genes at each locus. Blue bars show the location of transcription factor binding sites for SUZ12, EZH2 and CTBP2, all of which are

significantly enriched within this co-regulated module. (B) Analysis of transcription factor binding sites defined using ChIP-seq [64] showed that VMRs

within the co-regulated HOX gene module shown in (A) are significantly enriched for SUZ12, EZH2 and CTBP2 binding compared to all VMRs defined in

fibroblasts (Bonferroni corrected p = 5.3x10-11, p = 1.5x10-9 and p = 5x10-5, respectively). Thus, binding of these TFs represents a potential mechanism by

which epigenetic variation could be coordinated at multiple independent loci in trans. (C) Results of Gene Ontology (GO) analysis of genes associated with

VMRs in the most significant co-regulated module identified in fibroblasts. We identified highly significant enrichments for multiple biological processes,

including body patterning, growth and morphogenesis (S5 Table).

https://doi.org/10.1371/journal.pgen.1007707.g004
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methylation variability. To do this, we first assessed the relationships between CpGs within

VMRs, genetic variation, and gene expression. We tested for enrichment of FVMRs, BVMRs

and TVMRs with previously described CpG methylation:gene expression associations

Table 1. The top three Gene Ontology terms associated with co-regulated VMR modules found in each cell type.

Cell Type GO Term ID Gene Ontology (GO) Term Enrichment FDR

GO:0009952 anterior/posterior pattern specification 52.5 3.09x10-14

Fibroblasts GO:0009952 skeletal system morphogenesis 66.1 5.20x10-14

GO:0043565 sequence-specific DNA binding 10.5 5.22x10-13

GO:0006955 immune response 4.8 3.24x10-8

T Cells GO:0031295 T cell co-stimulation 24.0 9.55x10-7

GO:0050852 T cell receptor signalling pathway 12.9 9.55x10-7

GO:0045747 positive regulation of Notch signalling pathway 51.2 0.09261

B Cells GO:0045944 positive regulation of transcription from RNA polymerase II promoter 5.3 0.09261

GO:0008593 regulation of Notch signalling pathway 25.3 0.09354

GO:0007156 homophilic cell adhesion via plasma membrane adhesion molecules 65.7 1.22x10-14

Glia GO:0098742 cell-cell adhesion via plasma-membrane adhesion molecules 45.4 2.61x10-13

GO:0007399 nervous system development 31.7 6.49x10-12

GO:0007156 homophilic cell adhesion via plasma membrane adhesion molecules 70.1 5.61x10-15

Neuron GO:0007399 nervous system development 27.1 5.63x10-9

GO:0007416 synapse assembly 61.1 1.10x10-5

https://doi.org/10.1371/journal.pgen.1007707.t001

Table 2. Top 5 transcription factor binding sites overlapping with VMRs in various WGCNA modules in 5 cell types.

Cell type TFBS # VMRs overlapping TFBS # VMRs in Module Fold enrichment p-value

SUZ12 25 34 7.5 5.3x10-11

EZH2 30 34 6.8 1.5x10-9

Fibroblasts CTBP2 15 34 5.7 5x10-5

TCF7L2 8 14 15.0 0.0024

CHD1 17 52 3.0 0.012

RUNX3 39 95 2.1 6.1x10-7

ATF2 25 95 2.6 3.4x10-6

T cells NFIC 25 95 2.4 8.4x10-6

EP300 44 95 1.7 1.5x10-5

PML 28 95 2.2 2.5x10-5

RELA 12 15 5.2 2.9x10-8

STAT1 7 15 6.2 3.9x10-5

B cells TBP 12 15 2.7 6.6x10-5

BCL3 7 15 5.4 9.1x10-5

STAT3 8 15 4.4 1x10-4

SUZ12 11 14 8.2 1.1x10-9

EZH2 13 14 3.8 1.1x10-7

Glia CTBP2 10 19 5.9 1x10-6

GATA2 82 467 1.3 0.00094

CHD1 7 14 3.8 0.00098

CTBP2 9 32 4.2 0.00015

HNF4G 6 22 6.0 0.00029

Neurons EZH2 13 32 2.6 0.00047

HNF4A 6 22 5.1 0.00071

SUZ12 7 32 4.2 0.00086

https://doi.org/10.1371/journal.pgen.1007707.t002
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(eQTMs) and CpG methylation:SNP associations (cis mQTLs) in fibroblasts, B cells and T cells

[23]. We observed significant enrichments for VMRs in all three cell types for both CpGs that

function as eQTMs and those linked with mQTLs, with enrichments of 16-, 3.4-, and 2.8-fold

in eQTMs, and 4.7-, 4.8-, and 6-fold for association with mQTLs in FVMRs, BVMRs, and

TVMRs, respectively (all p-values <10−45, S2 Table). To further investigate the relationship of

VMRs with underlying genetic variation we used methylation heritability estimates character-

ized in peripheral blood leukocytes from a cohort of 117 families [19]. Overlaying heritability

estimates onto VMR-CpGs across the five cell types revealed that methylation levels for CpGs

within VMRs showed significantly increased heritability compared to non-VMR CpGs (Fig

5A). Thus, epigenetic variation at VMRs is often associated with nearby gene expression, and

methylation levels at many VMRs shows strong evidence of being under local genetic control.

However, despite this evidence for genetic influences underlying a large fraction of epige-

netic variability, the existence of co-regulated modules of VMRs in trans led us to hypothesize

that a subset of epigenetic variation might be linked to non-genetic influences, such as differ-

ing environmental exposures. To further explore the influence of non-heritable factors on the

epigenetic state of VMRs, we analyzed methylation profiles derived from whole blood samples

from 426 monozygotic (MZ) twin pairs [35]. Previous studies have shown increased discor-

dance of DNA methylation levels between MZ twins with age, presumably due to differing

environmental exposures and/or stochastic processes [67]. We first identified a total of 1,289

VMRs (8,251 CpGs) in these twins (S7 Table), which showed strong overlap with VMRs iden-

tified in both B cells and T cells (64% and 59%, respectively). Based on the premise that epige-

netic differences between MZ twin pairs provides a measure of the non-genetic component of

epigenetic variability, at each CpG we calculated the mean absolute methylation discordance

for all autosomal CpGs within each MZ twin pair. We observed a highly significant increase in

MZ twin discordance for CpGs within VMRs versus non-VMR CpGs (p<10−300) (Fig 5B).

While it is possible that this increased twin-twin discordance might be related to the inherent

variability of CpGs, these observations are also consistent with the influence of environmental

effects on methylation variability at a subset of VMRs.

To further investigate potential links of our VMRs with known environmental effects on

DNA methylation, we utilized a published data set of Illumina 450K data generated from 128

children conceived in the rural Gambia in either the rainy or dry seasons. Here, maternal

nutrition at conception shows substantial seasonal variation and is known to be associated

with epigenetic differences in children conceived in each season [34]. We applied a Student’s

t-test to compare methylation values in children conceived in the rainy versus dry season,

Fig 5. Methylation levels at VMRs are influenced by heritable and non-heritable factors. (A) Cell count corrected heritability [17] for VMRs in five cell

types. Shared VMRs found in>1 cell type show significantly higher heritability, suggesting these are mostly under genetic control. (B) Methylation differences

found within 426 pairs of monozygotic twins. CpGs that lie within VMRs show significantly increased MZ twin divergence compared to other CpGs, which is

consistent with an environmental influence on methylation levels at VMRs.

https://doi.org/10.1371/journal.pgen.1007707.g005
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calculating the resulting p-value for seasonal difference as a measure of environmental influ-

ence at each CpG. Comparing CpGs within VMRs to those in the background set of all non-

VMR probes, we observed a strong enrichment for CpGs influenced by season of conception

in VMRs from all five cell types when compared to the background set of p-values obtained

from all 293,782 non-VMR probes (p = 8.4x10-5 in Fibroblasts to 1.1x10-70 in T cells) (S6 Fig).

Experimental evidence for environmental influences on DNA methylation

from a cell culture model

To experimentally verify whether methylation levels at some VMRs are responsive to environ-

mental cues, we performed cell culture experiments in which we grew genetically identical

fibroblasts under different environmental conditions, varying the rate of culture media replen-

ishment and cell density with time (summarized in Fig 6A). Skin fibroblasts from a single nor-

mal male (GM05420) were seeded in parallel from a single master culture into eight separate

flasks, and allowed to grow under normal or low-nutrient conditions, achieving varying levels

of cell density at each time point. Every 48 hours one flask was harvested from each media

replenishment regime, DNA extracted and profiled on the 450k array, resulting in DNA meth-

ylation profiles for nine samples (see Methods).

We reasoned that as these fibroblast cultures shared an identical genetic background, any

epigenetic variations observed among them would be attributable to non-genetic factors, such

as varying culture environment. We applied the same sliding-window method to identify

VMRs in methylation data from these cultured isogenic fibroblasts, identifying 135 putatively

“environmentally responsive” VMRs. This included many of the same VMRs identified previ-

ously in our population-based analysis of umbilical cord-derived fibroblasts (S8 Table), with a

5.3-fold enrichment for overlap between these two sets of VMRs compared to the background

set of probes on the array (p = 2.9x10-29). Examples of VMRs showing changes in methylation

level with culture conditions are shown in Fig 6B.

Concordant with our population analysis, GO analysis of the 135 VMRs from cultured iso-

genic fibroblasts revealed enrichments for HOX genes, as well as several of the same GO terms

associated with the co-regulated FVMR modules (S9 Table). Strikingly, these environmentally

responsive VMRs were also enriched 35-fold for CpGs within known imprinted loci versus the

null (p = 5.6x10-79). This included overlaps with differentially methylated regions associated

with the imprinted genes MKRN3, IGFIR, ZNF331, PEG3, L3MBTL, GNAS and MEST (Fig 6C)

[68].

Discussion

Here we surveyed variation in DNA methylation patterns in five purified human cell types,

identifying hundreds of genomic loci that exhibit a high degree of epigenetic polymorphism in

the human population: we term these ‘Variably Methylated Regions’ or VMRs. We observed

that VMRs are enriched for various functional genomic features, most notably enhancers, sug-

gesting a potential role in regulating gene expression patterns. Unexpectedly, we found that

many VMRs form co-regulated networks both in cis and in trans, with multiple VMRs spread

across different chromosomes at which methylation levels vary in a coordinated fashion.

These co-regulated networks were specific to each cell type, had reduced heritability, and were

also enriched for gene sets with cell-type relevant functions. For example, we observed VMR

networks associated with genes enriched for synaptic transmission in neurons, regulation of

nervous system development in glia, and T cell activation in T cells. These observations suggest

that some VMRs represent loci that form co-regulated pathways that are implicated in the reg-

ulation of genes with cell-type specific functions. The dispersed nature of these co-regulated
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VMR networks indicates that they are potentially regulated by trans acting factors, and consis-

tent with this we found significant enrichments for relevant transcription factor binding sites

associated with some networks.

While many VMRs are influenced by local genotypes, our analyses of monozygotic twins, a

cohort of African samples conceived in divergent nutritional environments, and in-vitro cul-

ture of genetically identical fibroblasts cell lines indicates that epigenetic variation at some

VMRs is linked to environmental factors. Indeed, using isogenic fibroblast cultures derived

from a single individual that were grown under different environmental conditions, we were

able to replicate many of the same VMRs found in our original population analysis, thus show-

ing that epigenetic variation at these loci is an environmentally inducible trait. Intriguingly

Fig 6. Experimental manipulation of DNA methylation using cell culture shows enrichment for VMRs at HOX genes and imprinted loci. (A) To directly

assess the effect of varying environmental conditions on epigenetic state, we grew genetically-identical fibroblasts under conditions of varying cell density and

culture media replenishment. Cells from a single human fibroblast line were seeded in parallel at low density in ten culture flasks, and allowed to grow

continuously for up to 10 days, either with or without regular change of media. Every 48 hours one flask was harvested and genome-wide DNA methylation

patterns profiled. (B) Applying a sliding window approach identified 135 VMRs where methylation levels showed robust changes with varying culture

conditions, including loci at HOX genes and multiple imprinted loci. Gene ontology analysis of VMRs induced by cell culture showed enrichments for

fundamental control of growth, including similar GO categories to the co-methylated network identified in fibroblasts from the Gencord cohort (S9 Table). (C)

Environmentally-responsive VMRs induced by cell culture showed a 35-fold enrichment for probes within the differentially methylated regions associated with

seven different imprinted genes (p = 5.6x10-79). The left plot shows methylation profiles at the imprinted region of GNAS, which was also identified as a VMR

in cultured fibroblasts. Each line shows the methylation profile at a different time point, with lighter shades of grey with increasing time. The right plot shows

the change in methylation level with time at a single CpG (cg09885502) within the GNAS VMR.

https://doi.org/10.1371/journal.pgen.1007707.g006
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these environmentally-responsive VMRs showed a strong enrichment for imprinted loci

(p<10−94), suggesting that these genes are particularly sensitive to environmental conditions.

This observation that varying cell culture conditions result in epigenetic alterations across the

genome, presumably accompanied by changes in gene expression, highlights that the use of

cultured cells for investigating epigenetic phenomena should be approached with caution. We

suggest that unless carefully controlled, variations in cell culture conditions could easily intro-

duce significant epigenetic and transcriptional changes that could confound many in vitro
studies.

VMRs in fibroblasts comprised co-regulated modules that included all four HOX gene clus-

ters that are each located on different chromosomes. While a previous study has reported that

the HOX genes exhibit variable methylation that correlates with their expression levels [53],

our analysis builds on these observations by showing that methylation across multiple HOX
gene clusters is correlated in both cis and trans. Furthermore, using validated transcription fac-

tor binding sites, we found a significant enrichment for transcription factors EZH2 and

SUZ12 at these VMR sites associated with HOX genes. These two transcription factors are

components of the Polycomb Repressive Complex 2 (PRC2), which functions as a histone

H3K27-specific methyltransferase and regulates both epigenetics and expression of HOX
genes [66]. Thus, we propose a model where coordinated variation of DNA methylation at

multiple loci in trans, corresponding to a network of co-regulated genes, is under the control

of transcription factor binding in response to physiological and/or environmental cues. In the

case of the HOX gene network in cultured fibroblast cell lines, such cues could be the availabil-

ity of nutrients, local cell density and other growth conditions, allowing the cells to modify

their growth trajectories in response to the prevailing environment. Consistent with this

model, recent observations were made in macrophages, a type of immune cell that has a variety

of roles in different tissues around the body, which mirror our findings. Two prior studies

showed that the epigenetic state of enhancer elements in these cells responds to the tissue

microenvironment in which they reside, and is regulated by networks of tissue- and lineage-

specific transcription factors that drive divergent programs of gene expression [69,70]. Studies

of chromatin accessibility have also shown that manipulating the presence of specific tran-

scription factors can lead to global modification of epigenetic state at multiple loci in trans
[71].

We defined VMRs as clusters of probes with high variance, as the use of single probes to

determine epigenetic variability is inherently unreliable. This is because other phenomena

unrelated to epigenetic variance can influence the β-value reported by a probe, independent of

DNA methylation levels. These include, for example, underlying genetic variants that alter

probe binding, random technical effects such as hybridization or wash artifacts on the array,

or the simple fact that some probes might simply perform poorly and yield inherently more

variable results. By considering groups of multiple closely spaced probes that all show high var-

iability makes it much less likely that our results would be influenced by the effects listed

above, thus improving specificity for the detection of true epigenetic variability, and reducing

artifacts.

One of the strengths of this study is that we specifically utilized purified cell types for our

analysis, some of which were also of homogeneous age. This has the advantage of removing

the confounder of both cellular heterogeneity and age effects, both of which are known to

influence DNA methylation [36,37,72]. Such differences would otherwise result in many false

positive VMRs due to underlying differences in cell fractions or age among individuals.

One of the limitations of this analysis is that we used methylation profiles from the Illumina

450k array, which targets only a small subset (~3%) of CpGs in the human genome, and has

coverage that is biased towards gene promoters and CpG islands. As such, the maps of VMRs
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we provide here are far from comprehensive, and future work that utilizes more comprehen-

sive approaches (e.g. whole genome bisulfite sequencing) will undoubtedly provide more com-

plete genomic maps of epigenetic variation. However, to our knowledge currently no such

datasets on a population-scale are available. One other potential caveat is that the methylation

profiles for B cells, fibroblasts and T cells were all generated from cells that had been cultured

in vitro, and furthermore the B cells were also immortalized by Epstein-Barr virus infection, a

process which is known to induce widespread epigenetic changes [73]. However, we observed

good replication of the VMRs identified from cultured/immortalized B cells and T cells in an

independent cohort where DNA was extracted from uncultured blood, indicating that many

of these same VMRs observed even in immortalized B cells are also present natively.

One confounder that deserves mention is that there is potential that some of the enrich-

ments we identify between VMR probes and factors such as mQTLs and eQTMs could be

driven by the inherent variability of VMRs. This is because statistical power to identify an asso-

ciation with a locus is heavily influenced by the underlying variability of that site. Thus, it is

possible that some of enrichments we observe are due either partly or wholly to this effect.

Similarly, it is also possible that the increased discordance we observed in MZ twin pairs at

VMRs might be driven simply by the higher variability of methylation at these loci.

In conclusion our study of DNA methylation polymorphism provides novel insights into

the nature and function of epigenetic variation. The coordinated phenomenon we observed

where methylation levels at networks of multiple genomic regions varies in response to the

local environment is consistent with popular theories that the epigenome can indeed act as an

interface between the genome and environment [39,50,74].

Materials and methods

Data processing and statistical analysis

We obtained DNA methylation data generated using the Illumina 450k HumanMethylation

BeadChip from two published studies. We utilized data from the Gencord cohort from the

EMBL-EBI European Genome-Phenome Archive (https://www.ebi.ac.uk/ega/) under acces-

sion number EGAS00001000446, representing 90 fibroblast cultures, 61 T-cell cultures and

111 immortalized B-cell cultures derived from a cohort of newborns [23]. We also utilized

methylation data representing FAC-sorted glial and neuronal cells from 58 deceased donors

downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/) under accession number

GSE41826 [51]. Prior to analysis for methylation variation, each dataset underwent several fil-

tering and normalization steps, as follows. In each individual, probes with a detection p>0.01

(mean n = 348 per sample) or mapping to the X or Y chromosomes were removed. 482,421

probe sequences (50-mer oligonucleotides) were remapped to the reference human genome

hg19 (NCBI37) using BSMAP, allowing up to 2 mismatches and 3 gaps, retaining those

470,576 autosomal probes with unique genomic matches. Probe coordinates were converted to

hg19 using liftover. Probes that overlapped SNPs identified by the 1000 Genomes Project

(minor allele frequency�0.05) either including or within 5bp upstream of the targeted CpG

(n = 13,376 autosomal probes) were discarded, as such variants can introduce biases in probe

performance. We also removed probes overlapping copy number variants of�5% frequency

in CEU HapMap samples [75].

After filtering, we retained 457,200 autosomal and 11,021 chrX probes on which we per-

formed a two color channel signal adjustment and quantile normalization on the pooled sig-

nals from both channels and recalculation of average β-values as implemented in the lumi
package of R [76]. The Illumina Infinium HumanMethylation450 BeadChip contains two

assay types (Infinium type I and type II) which utilize different probe designs. As the data
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produced by these two assay types shows distinct profiles, to correct this problem we per-

formed a beta mixture quantile normalization method utilizing BMIQ [77] on the normalized

data. β-values were quantile normalized using the normalizeQuantile function in the aroma.

light R package. One pair of neuronal/glial samples was excluded on the basis that they showed

discrepant gender, as determined by PCA analysis of β-values on the sex chromosomes. We

further removed 22,267 probes where any of the cell types had >5% probes with detection p-

value >0.01. For sliding window analysis, we sub-selected 293,782 autosomal 1kb windows

containing 3 or more probes. CpGs in these regions were then annotated based on their posi-

tion relative to RefSeq genes using BEDTools v2.17 [78].

Pairwise correlation analysis

To compare similarity of VMRs across cell types, we utilized the fact that >1 cell type was

available from each individual (Fibroblasts, T cells and B cells in one cohort, and Neurons and

Glia in the other). We compared the similarity of VMRs between two cell types by first select-

ing probes from VMRs found in both cell types, and then computing pairwise Pearson correla-

tion coefficients on the β-values from the two cell types from each individual. The number of

individuals and probes in pairwise VMRs were:

1. FVMR-BVMR: 57 individuals, 725 probes

2. BVMR-TVMR: 58 individuals, 1886 probes

3. FVMR-BVMR: 87 individuals, 553 probes

4. NVMR-GVMR: 58 individuals, 1740 probes

Variably methylated regions

To identify regions of common highly variable methylation that should be robust to fluctua-

tions in single probes, we chose an approach to identify loci containing multiple independent

probes showing high population variance. To avoid gender effects creating false positives in

our analysis, either biological or technical due to cross-hybridization artifacts [52], we first

divided males and females and analyzed each gender separately. For each probe, we calculated

the standard deviation (SD) of the β-value separately in each cell type. We then utilized a 1kb

sliding window based on the start coordinate of each probe, beginning at the most proximal

probe on each chromosome and moving down consecutively to the last probe on each chro-

mosome. We defined VMRs as those 1kb regions containing at least 3 probes�95th percentile

of SD in that cell type, with an additional criterion that at least 50% of the probes in that win-

dow were also�95th percentile of SD. The relevant scripts used for this paper can be found at

Github (https://github.com/AndyMSSMLab/VariableMethyl). VMRs that were found in the

same cell type in either males or females were then combined, and used in all downstream

analysis.

Network analysis and gene ontology analysis

To identify potential co-regulation relationships among VMRs, we applied Weighted Gene

Correlation Network Analysis (WGCNA) to each set of VMRs identified per cell type [63].

Input values for each VMR were β-values for the variable probes within VMR which had stan-

dard deviation�95th percentile. As suggested in the WGCNA user manual, we plotted scale-

free topology fit indices and mean connectivity plots with varying soft-thresholding power.

Based on these plots in all five cell types, we chose power of 6 as our soft-thresholding power
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and scale free topology fit index>0.8 in all cases. We generated adjacency matrices by raising

the correlation matrix to the power of 6, which was then transformed into topological overlap

matrix (TOM). VMRs were then classified into modules using hybrid dynamic tree cutting

with a minimum cluster size of 10 VMRs. VMRs in each module were selected at Module

Membership value�0.7. We associated VMRs with gene annotations based on either their

localization within ±2kb of Refseq transcription start sites, overlap with DNAseI hypersensitive

sites that showed significant association in cis with gene expression levels within ENCODE

cell lines [79], and significant associations between methylation and gene expression levels

(eQTMs) in T cells, B cells, fibroblasts [23]. The fraction of VMRs that were linked to a gene

varied from a low of 78.4% in T cells, to a high of 81.8% in Fibroblasts. If two VMRs were

members of the same module, but located on different chromosomes, then this was considered

a trans association, cis otherwise. For each module we performed Gene Ontology enrichment

analysis using in house scripts. Each VMR was annotated with Refseq genes which either over-

lapped gene body or promoter region as described above. Refseq genes associated with 293,782

probes tested where used as background for gene ontology analysis. P-values for each GO term

were generated using the hypergeometric distribution and incorporated 5% FDR correction.

Enrichment analysis of transcription factor binding sites

We downloaded the track of Uniform transcription factor binding sites (TFBS) from the

UCSC Genome browser [80], containing experimentally determined binding sites for 162

transcription factors. As the precise boundaries of some VMRs were not well defined, we

extended TFBS coordinates by ±500bp prior to overlap with the set of VMRs identified in each

cell type. Enrichment analysis for TFBS to occur within each module of co-regulated VMRs

identified by WCGNA versus the background was performed using a Fisher’s exact test. The

2x2 table for Fisher’s exact test contained whether the probe is in a specific module or not and

whether they overlap TFBS or not.

Replication of VMRs in whole blood

Methylation dataset for Replication study (2,680 samples) was downloaded from GEO

(GSE55763) and was normalized the same way as described above [54]. VMRs were called

with same criteria. A VMR in discovery cohort was considered successfully replicated if the

VMR coordinates in discovery cohort overlap (minimum 1 bp) with VMRs found in replica-

tion cohort.

Publicly available datasets for enrichment analyses

We downloaded dataset for CpG features, Refseq gene annotations (3’ UTR, 5’UTR, CDS,

Intron & Intergenic), GWAS catalog, Segmental Duplications, Simple Repeats and

ChromHMM features from the UCSC table browser [80]. eQTMs and mQTLs were obtained

from Gutierrez-Arcelus M et al. [23]. Sites showing human-specific methylation patterns from

an analysis of multiple primate species was obtained from Hernando-Herraez et al. [61]. 647

genes thought to be linked with environmental response were obtained from NIEHS website

(https://www.niehs.nih.gov), and 1,847 genes categorized under the GO term “response to

environmental stimulus” were obtained from Amigo [81]. Cell-count corrected heritability

estimates for CpG methylation were obtained from McRae et al. [19], and annotations of CpG

islands showing evolutionary constraint and biased gene conversion (BGC) from Cohen et al.

[82].

All enrichment analyses were performed by overlapping probe coordinates in VMRs with

respective feature and using all 293,782 probes as background. The enrichment p-value was
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generated using Hypergeometric distribution (phyper function in R). The fold enrichment

was calculated using following formula: (probes in VMR overlapping Feature/probes in

VMR)/(probes in Background overlapping Feature/probes in Background).

Assessment of environmental effects using MZ twins

We downloaded published data set of Illumina 450K data generated from 430 monozygotic

(MZ) (GEO dataset GSE105018) [35], and 128 children conceived in the rural Gambia in

either the rainy or dry seasons (GSE99863) [34]. After normalization using the same methods

as described above, we applied a Student’s t-test to compare methylation values in children

conceived in the rainy versus dry season, and calculated the resulting p-value for seasonal dif-

ference, a measure of this environmental effect. A Wilcoxon Rank-Sum test was performed to

compare the distribution of this p-value between VMRs and non-VMRs.

Fibroblast cell culture and methylation profiling

A growing culture of human skin fibroblasts from a normal male individual (GM05420) was

obtained from Coriell Institute for Medical Research (Camden, NJ). Cells were grown in

RPMI1640 media supplemented with 1mM L-glutamine, 10% FBS and 100u/L each of penicil-

lin and streptomycin. A single vial of fibroblasts was initially grown in a 2ml culture plate, with

media changed every 24 hours. Once the cells attained 80% confluency they were trypsinized

and split equally into two T25 flasks. Each flask was treated identically, with media changed

every 24 hours until the cells achieved 80% confluency (approximately 7 days after seeding).

Both cultures were then trypsinized, mixed, and the cells seeded equally into a total of nine

T25 flasks, which were then harvested at set time points (TP) under different culture regimes,

as follows:

1. Harvested immediately

2. Time Point (TP) 1—harvested after 48 hours

3. TP2—fresh media given at TP1 and then harvested after a further 48 hours

4. TP3—fresh media given at TP1 and TP2, and then harvested after a further 48 hours

5. TP4—fresh media given at TP1, TP2 and TP3, and then harvested after a further 48 hours

6. TP5—fresh media given at TP1, TP2, TP3 and TP4, and then harvested after a further 48

hours

7. TP2a –No change of initial media, harvested after 96 hours

8. TP4a –No change of initial media, harvested after 192 hours

9. TP5a –No change of initial media and then harvested after 240 hours

At each time point, cells were harvested by trypsinization, pelleted by centrifugation, and

frozen at -20 Celsius. Once all cultures were harvested, DNA was extracted in a single batch

using the Qiagen DNeasy blood and tissue kit and these samples processed together on a single

chip using the Illumina 450k HumanMethylation BeadChip according to manufacturer’s

instructions. The resulting data were then processed and normalized as described above.

Given small sample size, we excluded the step where we performed quantile normalization on

β-values (aroma.light), and VMRs across these nine samples defined as 1kb regions containing

at least 3 probes�95th percentile of SD, with an additional criterion that at least 50% of the

probes in that window were also�95th percentile of SD. Methylation array data from cell line
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GM05420 have been deposited in the NCBI Gene Expression Omnibus (GEO) (http://www.

ncbi.nlm.nih.gov/geo) under accession number GSE76836.

Supporting information

S1 Fig. Distribution of number of CpGs and length of VMR in five cell types. VMRs con-

tained a mean of 6.4 CpGs, with average size of 863bp.

(TIF)

S2 Fig. Pairwise correlation between shared VMRs reveals varying levels of similarity

across cell types. To measure similarity in the distribution of VMRs between cell types, we

performed pairwise correlation of methylation levels at CpGs within VMRs shared in different

cell types taken from the same individual. VMRs found in fibroblasts show relatively low cor-

relations with other cells types, whereas there is much greater similarity in VMRs between T-

cells and B-cells (both of which are types of blood cell), and even greater similarity between

VMRs found in glia and neurons (both of which are derived from brain).

(TIF)

S3 Fig. Heat maps showing pair wise correlation values between all CpGs located within

VMRs defined in neurons, glia, B cells and T cells. In each plot, CpGs on both axes are

ordered by genomic position, revealing the presence of multiple loci located on different chro-

mosomes that show highly correlated methylation levels in trans.
(TIF)

S4 Fig. Examples of networks of genes associated with co-regulated VMRs identified in

four cell types. The outermost circle in each Circos plot represents segments of each chromo-

some. Gene names are shown inside. Blue tick marks on the inner grey shaded band represent

each VMR. The central black curved lines connect VMRs in the network that have methylation

levels with pair wise absolute correlation values R�0.7.

(TIF)

S5 Fig. Results of Gene Ontology (GO) analysis of genes associated with networks of co-

regulated VMRs identified by WCGNA. (A) T cells, (B) glia, and (C) neurons. No significant

enrichments were detected in B cells.

(TIF)

S6 Fig. Boxplot of association with seasonal nutrition shows significant enrichments for

environmental effects within VMRs. Boxplots show the -log10 p-value for t-test between β-

values for children conceived in the rural Gambia in the rainy versus dry season. The dotted

horizontal line corresponds to the median of non-VMR probes to allow visual comparison

across the categories. Below the x-axis are show p-values from a Wilcoxon Rank Sum test com-

paring the distribution of p-values in each boxplot with the background distribution.

(TIF)

S1 Table. VMRs defined in neurons, glia, B cells, T cells and fibroblasts.

(XLSX)

S2 Table. Enrichment analysis for various genomic features overlapping VMRs in five cell

types.

(XLSX)

S3 Table. Networks of co-regulated VMRs defined by WCGNA in neurons, glia, B cells, T

cells and fibroblasts.

(XLSX)
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S4 Table. Genes associated with networks of co-regulated VMRs defined by WCGNA in

neurons, glia, B cells, T cells and fibroblasts. Based on the Networks of co-regulated VMRs

defined by WCGNA (Supplementary S3 Table), VMRs were associated with the genes they

regulate based on either their localization within ±2kb of transcription start sites, overlap with

DNAseI hypersensitive sites that showed significant association in cis with gene expression lev-

els (Sheffield et al., 2013), and significant associations between methylation and gene expres-

sion levels (eQTMs) in T cells, B cells, fibroblasts (Gutierrez-Arcelus et al., 2013) and

monocytes (Liu et al., 2013).

(XLSX)

S5 Table. Significantly enriched Gene Ontology (GO) categories associated with genes

linked with networks of co-regulated VMRs in neurons, glia, B cells, T cells and fibroblasts.

For each module with at least 10 constituent genes, we performed Gene Ontology enrichment

analysis using GOrilla (Eden et al., 2009).

(XLSX)

S6 Table. Significantly enriched transcription factor binding sites overlapping networks of

co-regulated VMRs defined by WCGNA in neurons, glia, B cells, T cells and fibroblasts.

(XLSX)

S7 Table. VMRs defined by analysis of methylation in 426 individuals, representing 213

pairs of monozygotic twins.

(XLSX)

S8 Table. VMRs identified in cultured isogenic fibroblasts grown under conditions of

increasing cell density and nutrient deprivation.

(XLSX)

S9 Table. Results of GO enrichment analysis using genes associated with VMRs identified

in cultured isogenic fibroblasts grown under conditions of increasing cell density and

nutrient deprivation.

(XLSX)
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