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Abstract: Understanding and controlling vesicle shapes is fundamental challenge in biophysics and
materials design. In this paper, we employ the Monte Carlo method to investigate the shape of soft
vesicle induced by semiflexible polymer outside in two dimensions. The effect of bending stiffness κ

of polymer and the strength εVP of attractive interaction between vesicle and polymer on the shape
of vesicle is discussed in detail in the present paper. It is found that the shape of vesicle is influenced
by κ and εVP. Typical shape of vesicles is observed, such as circular, cigar-like, double vesicle, and
racquet-like. To engineer vesicle shape transformations is helpful for exploiting the richness of vesicle
geometries for desired applications.

Keywords: Monte Carlo method; semiflexible polymer; vesicle; vesicle shape

1. Introduction

Vesicles have existed since the first cells, and they are concerned with many biological
processes and materials science, and they can be exploited for multitude of functional-
izations in diverse fields, notably in DNA transfection of target cell, drug delivery [1,2],
templating nanochemistry [3,4], micro-reactors [5], and the realization of relevant biological
processes like endocytosis via the shape transformations of cell membrane [6]. Over the
past few decades, a great deal of work about vesicles has been reported [7–10].

In biological systems, a large number of macromolecules, such as polysaccharides,
membrane proteins, glococalix and cytoskeletons, decorate the extracellular part of the
cell membrane. These “ornaments” are usually semiflexible or even rigid macromolecules,
and the interactions between them and target cells bear an important interest, based on
biomedical applications. An important advantage of synthetic polyanions is taken to protect
mammalian hosts against a broad variety of viruses owing to the cytotoxic effect of the
polyanion, e.g., copolymers of maleic anhydride, against both DNA and RNA pathogenic
viruses [6,11]. In addition, they also play an important role in the other regulation of
biological functions, such as signal transduction, endocytosis and exocytosis, cell motility,
and cell mitosis.

Some researchers began to investigate responsive vesicles in the original basis of
surfactant mixture systems via changing the external environments of vesicles, such as
temperature [12] and PH [13]. Some researchers began to investigate responsive vesicles
via changing the internal environments of vesicles, for example changing the concentration
of polymers [14] and removing the water inside at different rates [15]. Yang et al. study
the shape of vesicles which the rigid rods are anchored to, based on the self-consistent
field theory [16]. Their results show that shape of vesicle is induced to change by the
rod. However, subtle and complicated shape changes of membranes arising from the
adsorption of polymer chains onto vesicle membranes have attracted considerable effort,
based on theoretical approaches, computer simulations, and experiments [17–24]. Owing
that the vesicle is impenetrable to polymer chains, the available space for the polymer
decreases. Therefore, the inhomogeneous entropic pressure on the membrane is induced by
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the anchored polymer chains, and it give rise to the deformation of vesicle. As it was found
that there exists adsorptive or repulsive interactions between the vesicle membrane and
chain segments, the anchored polymers not only give rise to the inhomogeneous pressure
on the membrane but also alter the local tension of the membrane in order to drive the
vesicle deform remarkably. The local inhomogeneous curvature and bending rigidity of the
membrane can be controlled by the polymer attached/adsorbed to the membrane [17–24].
The studies have suggested that polymer grafting leads to a stiffening of the membrane. The
past studies pay more attention to the effect of flexible polymers on the vesicle shape. The
influence of semiflexible polymer outside vesicle on the vesicle shape is studied by Monte
Carlo method in the paper. The elasticity of vesicle is destroyed in the paper, therefore,
the vesicle is flexible. The effect of attraction strength between polymer and vesicle, and
rigidity of polymer on the vesicle shape is studied. The results presented here provide
valuable insights to various biological processes, including cell motility, cell shape, and cell
functions.

2. Model and Methods

In the paper, the Monte Carlo (MC) method is used to simulate phase transition
process of vesicles induced by linear semiflexible polymer outside in the two-dimensional
space. Vesicle can be considered as a ring polymer in two dimensions. Therefore, linear
polymer and ring polymer composite can be used to simulate the interaction process of
linear polymer and vesicle in two dimensions. Both the vesicle and the semiflexible polymer
contain N + 1 effective monomers (where N is the chain length of semiflexible polymer),
and their monomers are totally identical.

In the coarse-grained model of linear polymer, the potential of linear polymer is
defined as the following form:

Ulinear = UFENE + UM + Ub (1)

The neighboring monomers are connected by the finitely extendable nonlinear elastic
(FENE) potential [25,26]

UFENE = −kr0
2 ln[1− (

li − l0
r0

)
2
] (2)

Here li is i-th effective bond length, which alter in the range of lmin < li < lmax (where
lmin = 0.4 and lmax = 1.0), and its equilibrium distance l0 is 0.7 (where lmax is chosen to
be the unit of length). r0 = lmax − l0, and the spring constant k is set to 20 in the units
of kBT (where kB and T are the Boltzmann constant and the thermodynamic temperature,
respectively). kBT is the unit of energy.

The excluded volume interaction among all non-bonded monomers is modeled by a
Morse-type potential [25]

UM = ∑|i−j|>1 ε(exp(−2α(rij − rmin))− 2 exp(−α(rij − rmin))) (3)

where rij is the distance between the i-th monomer and the j-th monomer, and we set α = 24,
rmin = 0.8, and ε = 1, respectively. Because of the large α, UM decays to zero very rapidly
for rij > rmin, and can be neglected completely for rij > 1.0. The combination of FENE bonds
with excluded volume interactions can prevent unphysical crossing of the polymer.

The bending energy which is used to describe the stiffness of polymer chain is modeled
by an angle potential between adjacent bonds [25,26]

Ub = κ(1 + cos θ) (4)

where θ is the bond angle, and κ is the bending stiffness. The chain rigidity can be altered
by κ. Here, κ is in the units of kBT.
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In the paper, the vesicle is soft. The potential of vesicle contains the finitely extendable
nonlinear elastic (FENE) potential and the Morse-type potential, which are the same as the
semiflexible polymer’s.

The interaction between vesicle and linear polymer chain is via Lennard-Jones poten-
tial [27]

ULJ = 4εVP[(
σ

r
)

12
− 2
(σ

r
)6
]

(5)

where r is the distance between the monomer of vesicle and the monomer of linear polymer
chain. The energy parameter εVP is used to adjust the attractive strength between vesicle
and linear polymer chain.

All results are acquired by the off-lattice Monte Carlo (MC) simulations [28]. MC sim-
ulations are carried out based on the Metropolis algorithm, and MC method is extensively
used to study phase transition of polymer chains at low temperature or strong attractive
interactions [29] because some complex transition behavior should be studied by sophis-
ticated computer simulation methodologies [30], such as generalized ensemble Monte
Carlo simulation algorithms such as multicanonical sampling [31] or the Wang–Landau
method [32]. In detail, for each trial move, a monomer is randomly chosen and trys to move
from its position (x0, y0) to a new position (x, y) with increments ∆x and ∆y, which are
selected randomly from the intervals (−0.25,0.25), respectively. The trial move is accepted
if ∆ > η, where η = min(exp (−∆U/kBT),1) is the transition probability depending on the
difference in energy ∆U between the trial and old states and ∆ is chosen from the interval
[0, 1] by the random function. The time unit is one Monte Carlo step (MCS) during which
2(N + 1) moves are tried. Direct simulation of phase transition faces the obstacle of high
free energy barriers. At phase transition points, metadynamics method is employed here to
surmount the free energy barrier. The free energy profile is calculated to determine the ac-
curate transition points [33,34]. To ensure the composite reach equilibrium, 3.0× 108 MCSs
are performed. The data are collected by averaging over 100 independent runs. The initial
conformation of the system is different, and seed of random generator is different for each
independent run. We measure once every 1.0× 106 MCSs, and 100 measurements are
performed in each independent run. Therefore, each statistical quantity is averaged over
10,000 samples. Their errors are less than symbol, therefore they are not shown in the
Figures. We set chain length N = 60.

3. Results and Discussion
3.1. Effect of Bending Stiffness of Polymer on the Shape of Vesicles

For semiflexible polymers, the mechanical properties are well described by a self-
avoiding walk [35]. Kuhn length is changed to vary the rigidity of biopolymer [36]. The
snapshots of Figure 1 show that rigidity of linear polymer has very obvious effect on the
shape of vesicles. Figure 1a shows that the shape of vesicle is two-fold asymmetry at
κ = 10, i.e., it forms asymmetrical double vesicle; its shape is circular at κ = 50 and 100;
its shape becomes oval at κ = 150; its shape is random loop at κ ≥ 200 for εVP = 2. As κ
is small, the polymer is flexible. The entropy takes the dominate role and the attractive
polymer-vesicle interaction is weak, thus, the conformation of vesicle is disorder. Double
vesicle is helpful to decrease the attractive energy so as to reduce the free energy of the
system. As κ is moderate, polymer is semiflexible. The bending energy of polymer takes
important role. The competition between the bending energy and entropy is main. The
polymer folding into loop is helpful to decrease the bending energy so as to decrease the
free energy to minimum. As κ is large, polymer is rigid. For small εVP, the bending energy
plays the dominate role. The polymer becomes rod-like, therefore, only part of vesicle
adsorbs onto the polymer. Figure 1b shows that the vesicle has two-fold asymmetry firstly,
then has two-fold symmetry, finally it has two-fold asymmetry again with κ increase from
10 to 100 for εVP = 8; its shape is cigar-like at κ = 150; with κ increase further, its shape
becomes circular. For εVP = 8, the attractive polymer-vesicle interaction is moderate. As
κ is not very large, the attractive interaction plays dominate role. Two-fold is helpful to
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decrease the attractive energy so as to reduce the free energy to minimum. The role of
bending energy becomes more and more important with κ increase, and it becomes more
and more difficulty for polymer to bend. Therefore, the cigar-like shape is determined by
the balance between attractive interaction and bending energy for κ = 150. Even if κ = 200
or 300, the bending energy is not rigid enough for polymer to separate from the vesicle.
The vesicle becomes circular. It is helpful to reduce the bending energy so as to decrease
the free energy to minimum. Figure 1c shows that the vesicle has two-fold symmetry at
κ = 10, 50, and 100, its shape becomes bent-cigar-like at κ = 150 and 200, its shape becomes
racquet-like at κ = 300 for εVP = 12. The results are in agreement with recent simulation
results on the structure formation (in two-dimensions) in colloidal particles [37]. The shape
of vesicle is determined by the balance among the bending energy of semiflexible polymer,
attractive energy between linear polymer chain and vesicle, and entropic pressure exerted
by the semiflexible polymer. The results of de la Cruz et al. show that the vesicle shape
can be cigar-like, whistle-like, double vesicle or sphere-like by removing water from the
vesicle at different rates [16]. The study results of Yang et al. show that vesicle anchored by
rigid rod or polymer has two-fold symmetry at certain condition [16,38]. Our results are in
agreement with theirs.
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Figure 1. The snapshots of semiflexible polymer/vesicle composites. The blue one represents the
linear polymer, and the red one represents vesicle. In the snapshots, the bending stiffness of polymer
is 10, 50 100, 150, 200, and 300 from left to right for (a) εVP = 2, (b) εVP = 8, and (c) εVP = 12.

The average attractive polymer-vesicle energy <UVL> is discussed. <UVL> increases
from −53.83 to −47.19 with κ increase from 10 to 50, firstly, then almost keeps constant
in the range of κ = 50~150, then increases with κ increase from 150 to 200, finally keeps
constant with κ increase for εVP = 2, as shown in Figure 2. It indicates that the vesicle
undergoes two phase transition with κ increase. It is in agreement with the results of
Figure 1. For εVP = 8, <UVL> has a little fluctuation in the range of κ = 10~100, then
increases with κ increase from 100 to 200, finally keeps constant in the range of κ = 200~300.
It indicates that there is an intermediate shape with κ increase. For εVP = 12, <UVL> slightly
increases with κ increase in the range of κ = 10~100 firstly, then increases quickly with κ in
range of κ = 100~150, finally begins to increase slightly again with κ increase in the range
of κ = 150~300. It indicates that the vesicle shape at κ = 10~100 is different from those at
κ = 150~300. The results of mean end-to-end distance <Ree> of semiflexible polymer are in
agreement with the results of Figure 2, as shown in Figure 3.
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Next, the vesicle shape is studied by the tangent–tangent correlation <bk·bk+s> [39,40]
which is an ideal observable reflecting the statistics along the whole contour of the two-
dimensional vesicle (where bk is the kth bond vector), as shown in Figure 4. Figure 4a
shows <bk·bk+s> at different κ for εVP = 2. <bk·bk+s> presents periodicity for κ = 10, and
the number of periods is in agreement with the number of folds; it is perfect cosnusoid
for κ = 50, 100 and 150; it presents a perfect “V” for κ = 200 and 300. It indicates that the
vesicle has two-fold for κ = 10, the shape of vesicle is circular for κ = 50, 100 and 150, a part
of vesicle adsorbs onto rigid polymer for κ = 200 and 300. Figure 4b shows <bk·bk+s> at
different κ for εVP = 8. <bk·bk+s> decreases linearly in the range of s < 31, and it slightly
increases linearly in the range of s = 31–51, then increases sharply in the range of s > 51 for
κ = 150. It indicates that shape of vesicle is cigar-like. In addition, the results of <bk·bk+s>
indicate that the vesicle forms double vesicle for κ = 10, 50, and 100, and the shape of vesicle
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is circular for κ = 200 and 300. Figure 4c shows <bk·bk+s> at different κ for εVP = 12. The
results of <bk·bk+s> at κ = 10, 50 and 100 indicate that the vesicle forms double vesicle. The
curve of κ = 300 is different from the curve of κ = 150 and 200, The main reason is that
shape of vesicle is bent-cigar-like for κ = 150 and 200, while it is racquet-like for κ = 300.
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3.2. Effect of VP on the Shape of Vesicles
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3.2. Effect of on the Shape of Vesicles

The effect of attractive polymer-vesicle interaction on the vesicle shape is studied, as
shown in Figure 5. For κ = 10, the vesicle has a two-fold asymmetry for εVP = 2; vesicle
has three-fold asymmetry with εVP increase to 4; with εVP increase further, the vesicle
becomes double vesicle again and the double vesicle becomes more and more symmetrical
with ε increase from εVP = 6 to εVP = 12, as shown in Figure 5a. For κ = 150, the shape of
vesicle is oval at εVP = 2 and εVP = 4, it becomes racquet-like at εVP = 6, and finally becomes
cigar-like at εVP = 8 and becomes bent-cigar-like with εVP increase further, as shown in
Figure 5b. For κ = 300, only partial vesicle adsorbs onto polymer at small εVP, the shape of
vesicle shifts from oblate oval to swelled oval with εVP increase from εVP = 4 to εVP = 8; the
shape of vesicle becomes racquet-like at εVP = 12.

Figure 6 shows that the average attractive polymer-vesicle energy <UVL> decreases
with εVP increase. <UVL> of κ = 300 is more than twice that of κ = 10 and 150 at εVP = 2. It
means that only partial polymer adsorbs onto vesicle. The slope of κ = 10 is larger than that
of κ = 150 and 300. It indicates that the conformation of vesicle for κ = 10 is more compact
than that for κ = 150 and 300 at any εVP. To understand the shape transformation further,
mean end-to-end distance <Ree> of semiflexible polymer is studied, as shown in Figure 7.
For κ = 10, <Ree> decreases firstly and reaches minimum at εVP = 4.0, then increases, finally
it almost keeps constant with ε increase. It indicates that vesicle shape of εVP = 4 is different
from that of other εVP, and the shape of vesicle adjusts slightly for εVP ≥ 6. The results of
κ = 150 indicate that the vesicle shape of εVP = 2~4 is different from that of εVP = 6~12. For
κ = 300, <Ree> is about 39.40 at εVP = 2. The value is almost equal to the length that the
polymer totally extends. It means that only partial vesicle adsorbs onto polymer. <Ree>
fluctuates around 2.0 in the range of εVP = 4~12. It indicates that the vesicle is totally
enveloped by polymer.
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Next, the vesicle shape is studied by the tangent–tangent correlation <bk·bk+s>. Figure 8a
shows that <bk·bk+s> of εVP = 4 has three troughs, while <bk·bk+s> of other ε has two troughs
for κ = 10. It indicates that the vesicle forms triple vesicle for εVP = 4, while it forms double
vesicle for other εVP. The results of Figure 8b indicates that vesicle shape of εVP = 2, 4
and 6 is circular, the vesicle shape of εVP = 8 is cigar-like, the vesicle shape of εVP = 12 is
bent-cigar-like for κ = 150. The results of Figure 8c indicate that the vesicle shape firstly
shifts from a random shape to a circular shape, then shifts to a racquet-like shape with ε
increase for κ = 300.
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Figure 8. Tangent–tangent correlation of vesicle whose transformation is induced by linear polymer
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4. Conclusions

The shape transition of vesicle induced by semiflexible polymer outside is studied
by the off-lattice Monte Carlo method in two dimensions. We discuss the effect of κ and
εVP on the vesicle shape in detail. Typical vesicle shapes are observed. When εVP is small,
the vesicle firstly transforms from asymmetrical double vesicle to circular vesicle, then
shifts to random vesicle with κ increase. When εVP is moderate, the vesicle transforms from
double vesicle to cigar-like vesicle, then becomes circular vesicle with κ increase. When
εVP is large, the vesicle transforms from double vesicle to bent-cigar-like vesicle firstly,
then becomes racquet-like vesicle with κ increase. When the rigidity of polymer is weak,
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the vesicle shape is the double vesicle for all εVP. When κ increases, more types of vesicle
shape are observed. For moderate κ, vesicle transforms from circular vesicle to racquet-like
vesicle, then becomes cigar-like vesicle with κ increase. For large κ, shape of vesicle is
circular at moderate εVP, while it becomes racquet-like at large εVP. The results presented
here provide valuable insights to various biological processes, including cell motility, cell
shape, and cell functions.
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