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Genetic Diseases That Predispose to Early Liver Cirrhosis
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Inherited liver diseases are a group of metabolic and genetic defects that typically cause early chronic liver involvement. Most
are due to a defect of an enzyme/transport protein that alters a metabolic pathway and exerts a pathogenic role mainly in the
liver. The prevalence is variable, but most are rare pathologies. We review the pathophysiology of such diseases and the diagnostic
contribution of laboratory tests, focusing on the role of molecular genetics. In fact, thanks to recent advances in genetics, molecular
analysis permits early and specific diagnosis for most disorders and helps to reduce the invasive approach of liver biopsy.

1. Introduction

An early chronic liver involvement may be observed in a
number of genetic and metabolic diseases although with
different penetrance, age at onset, and outcome. Clinical
symptoms and laboratory data are frequently overlapping,
thus rendering a differential diagnosis difficult. A great
improvement both in imaging [1] and in molecular genet-
ics [2] in the last years helped to discriminate between
the different diseases thus reducing the need of pathology
(Table 1). On the other hand, liver biopsy is often complex
in children, mainly due to the smaller specimen size [3]. For
some diseases, prenatal diagnosis is also available [4].

Specific therapies are available for several genetic and
metabolic diseases and their effectiveness is strongly related
to the precocity of diagnosis. A growing number of children
with such diseases now survive well into adulthood [5]. On
the other hand, liver transplantation now offers a long-term
survival [6].

We will review the genetic and metabolic entities respon-
sible for early chronic liver diseases focusing on the contribu-
tion of laboratory and molecular diagnosis (Table 2).

2. Alpha-1 Antitrypsin Deficiency

Alpha-1 antitrypsin (AAT) deficiency (OMIM 613490) is an
autosomal recessive (codominant) disease due to mutations
in the SERPINA1 gene that encodes the serine protease
inhibitor AAT. The protein, mainly synthesized by liver
cells, inhibits proinflammatory proteases such as neutrophil
elastase, thus, protecting the lung from proteolytic damage.
AAT deficiency has an incidence of 1 : 2,000–5,000 but the
number of diagnosed patients is underestimated.

AAT deficiency appears with chronic obstructive pul-
monary disease, emphysema, and disseminated bronchiec-
tasis usually between the 4th and the 5th decade [7]. The
liver involvement is widely heterogeneous according to age
at onset (between the 1st year of life up to the 6th decade)
and clinical severity that ranges from chronic hepatitis
and cirrhosis to fulminant liver failure. The most likely
pathogenicmechanism is the accumulation of AAT polymers
in hepatocytes. The progression of liver disease is slow,
even if few cases develop early cirrhosis with the need for
transplantation; furthermore, hepatocellular carcinoma has
a very high incidence among AAT deficient subjects [8].
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Table 1: Inherited liver diseases that predispose to early cirrhosis.

Disease Incidence Gene
Disorders of bile acid synthesis

Wilson disease 1 : 30,000 ATP7B
Progressive familial intrahepatic cholestasis type 3 1 : 100,000 ABCB4

Disorders of carbohydrate metabolism
Hereditary fructose intolerance 1 : 20,000 ALDOB
Glycogen storage disease type IV 1 : 600,000 GBE1

Disorders of amino acids metabolism
Tyrosinemia type I 1 : 100,000 FAH

Urea cycle disorders
Argininosuccinate lyase deficiency 1 : 70,000 ASL

Citrin deficiency (CTLN2, NICCD) CTLN2 1 : 100,000
NICCD 1 : 19,000 SLC25A13

Disorders of lipid metabolism

Cholesteryl ester storage disease 1 : 40,000 (Germany)
1 : 300,000–1 : 500,000 LIPA

Other diseases
Alpha-1 antitrypsin deficiency 1 : 2,000–1 : 5,000 SERPINA1
Cystic fibrosis 1 : 2,500 CFTR
Hereditary hemochromatosis 1 : 250 HFE
Alström syndrome 1 : 1.000.000 ALMS1
Congenital hepatic fibrosis 1 : 20,000 Unknown

The replacement therapy has no effect because liver damage
is due to the accumulation of the AAT mutant polymers and
not to the lack of circulating AAT [9].

The indications to laboratory diagnosis include various
conditions exhaustively revised [10], but all infants with
prolonged jaundice or nonspecific signs of liver disease
should be tested for AAT deficiency.

Laboratory diagnosis includes serum AAT measured
by nephelometry followed by the qualitative determination
of AAT alleles by isoelectric focusing (IEF) and, finally,
genotyping [11]. Serum AAT must be performed in subjects
free from acute inflammation since AAT is an acute phase
protein, and thus inflammation enhances its serum levels
[12]. Then, AAT levels should not be considered if serum
C-reactive protein levels are increased. The IEF analysis
reveals the alleles of each subject. The M alleles (M1 to
M6) are the most common and are considered “wild type
alleles.” Most patients with liver or lung involvement are
homozygous for the Z or the S or compound heterozygous
for the two alleles. In these patients serum AAT levels are
reduced by 40–60%. Heterozygous individuals (MZ or MS)
rarely develop clinical signs. However, the IEF analysis may
provide false negative results. Also for this reason, molecular
analysis is indicated [11]. In the SERPINA1 disease gene
(official name: serpin peptidase inhibitor, clade A), more
than 120 allelic variants have been identified so far; thus
molecular analysis must be performed by gene sequencing.
Gene variants are classified according to their effect on serum
levels of alpha-1 antitrypsin [13]. Patients must be counseled
before molecular analysis, and when severe mutations are

identified the consanguineous should be counseled in turn
and analyzed to reveal asymptomatic carriers.

3. Cystic Fibrosis

Cystic fibrosis (CF, OMIM 219700) is themost frequent lethal
autosomal recessive disease among Caucasians (incidence:
1 : 2,500). CF is a systemic disease that appears mainly with
pancreatic insufficiency in more than 90% of cases and
pulmonary disease due to inflammation and opportunistic
colonization that gradually causes respiratory insufficiency
[14]. About 20% of patients experience meconium ileus.

Liver disease in CF appears mainly in the first decade of
life and it is observed in up to 30% of patients, but it is still
obscure why only some patients develop liver disease. In fact,
CF liver disease depends on the altered activity of cystic fibro-
sis transmembrane regulator (CFTR) chloride channel on
the apical membrane of cholangiocytes. It causes an altered
bile flow followed by a cholangiocyte-induced inflammatory
response with proliferation of stellate cells, which gives rise
to cholangitis and progressive periportal fibrosis [15]. CF-
associated liver disease is slowly progressive, but in up to
10% of patients it may rapidly evolve to multilobular biliary
cirrhosis and portal hypertension.

The possibility to predict CF patients that will develop a
severe liver involvement would be useful given the efficacy of
ursodeoxycholic acid in the early stages of liver disease [15],
but its pathogenesis is poorly known. The scarce correlation
between the CFTR genotype and liver expression in CF
patients is well known [16], as it is the discordant severity
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of liver disease in CF sib pairs [17]. A decade of studies
concluded that liver expression in CF patients is influenced
bymodifier genes like mannose-binding lectin and AAT [18],
but such genes modulate the risk for liver disease only in a
small percentage of CF patients.

Finally, clinical forms showing pancreatic sufficiency,
single organ involvement, and amilder outcome are included
under the term of CFTR-related disorders (CFTR-RD) [19].
These disorders are not associated with liver disease.

The gold standard for CF diagnosis is the sweat test (i.e.,
sweat chloride levels after pilocarpine stimulation) followed
by molecular analysis. Sweat test requires a specific skill and
the knowledge of all conditions thatmay cause false positives,
while the rate of false negative results is very low. However,
CF diagnosis or exclusion must be based on two concordant
sweat tests.The indications to sweat test include a large variety
of clinical conditions [14, 15].

The search of CFTR mutations is one of the most
diffuse molecular analyses worldwide, because it is used to
confirm CF diagnosis and prenatal [20] or preimplantation
[21] diagnosis. About 2000 mutations have been identified
in the CFTR gene so far (http://www.genet.sickkids.on.ca/).
Guidelines suggest a two-step molecular analysis. In the first
step a panel of the most frequent mutations is analyzed,
including the mutations peculiar to the geographic area of
each patient [22], and commercial kits are used [16, 23]. The
first step identifies about 80% alleles from CF patients; the
analysis ofmutations peculiar to specific ethnic or geographic
groupsmay increase the detection rate [24], and the scanning
ofCFTR coding regions revealsmutations in up to 90% alleles
[25]. Large gene rearrangements are present in about 2-3% of
CF alleles [16]. Finally, pathogenic mutations in noncoding
region of the CFTR gene have been described [26, 27], but
they are not analyzed for routine purposes. The detection
rate of molecular analysis is lower in CFTR-RD [28]. No
mutations are specifically associated with liver disease [29].

The diagnosis of liver disease in CF patients is difficult,
because neither laboratory nor imaging has a great specificity.
Liver biopsy contributes to the aim, but the patchy distribu-
tion of liver alterations in CF patients reduces its sensitivity
[15].

4. Wilson Disease

Wilson disease (WD, 277900) is an autosomal recessive
disorder with an incidence of about 1 : 30,000. It typically
appears with liver disease in the second decade and neu-
rological disorders in the third decade, even if cases with
earlier or later onset have been described [30].Wilson disease
depends on mutations in the gene encoding the ATP7B Cu
translocase, a protein mainly expressed by the hepatocyte
that regulates the levels of copper in the liver. Furthermore,
ATP7B modulates the synthesis of ceruloplasmin [31]. When
the activity of ATP7B is reduced, copper accumulates within
the hepatocyte. The severity of liver involvement in WD
patients is heterogeneous ranging from asymptomatic cases
with mild hepatomegaly to cirrhosis with severe liver failure
[32]. About two-thirds of patients show haemolytic anemia,

coagulopathy, and renal failure. About 6% of WD cases
appear with acute liver onset [33]. Kayser-Fleischer rings are
present in about 50% ofWD cases at diagnosis. About half of
patients show psychiatric alterations, up to psychotic symp-
toms, reverted by adequate therapy [34]. Novel therapies can
now effectively treatWDpatients and gene therapy is effective
in animal models [35].

Low serum ceruloplasmin and high urine copper help
to perform the diagnosis in most cases, even if some false
negatives are described [35].

Molecular analysis is available [36, 37]. Wilson disease is
due to mutations in the ATP7B gene: about 300 different
mutations are known so far (http://www.wilsondisease.med
.ualberta.ca/database.asp); thus gene sequencing is required,
reaching a detection rate of about 95%. Severe mutations
(i.e., nonsense, frameshift) are associated with the most
severe disease, while patients withmissensemutations (about
60% of all mutations) show a variable severity and outcome
[30]. Liver biopsy is now used in cases with ambiguous
biochemical parameters and to evaluate liver copper levels
[3].

5. Hereditary Hemochromatosis

Hereditary hemochromatosis (HH, OMIM 235200) is an
autosomal recessive disease characterized by iron overload
that may cause liver cirrhosis, cardiomyopathy, diabetes,
arthritis, and skin pigmentation that appear during the third
to fifth decade. The incidence is about 1 : 250. A myriad of
diseases cause secondary hemochromatosis. However, while
in secondary hemochromatosis the iron overload involves
macrophages; inHH ironmainly accumulates in hepatocytes,
causing chronic liver damage that ends in cirrhosis [38], with
a percentage of cases evolving to hepatocellular carcinoma
[39]. The pathogenesis of liver damage in HH is mainly due
to the iron-induced lipid peroxidation that occurs in hep-
atocytes and causes hepatocellular injury or death. Kupffer
cells become activated and produce cytokines, which in turn
stimulate hepatic stellate cells to synthesize collagen, thereby
leading to cirrhosis [38]. Symptoms of hemochromatosis
depend on the phase of the disease. When HH is diagnosed
by occasional laboratory evaluation, most patients are still
asymptomatic; if the diagnosis is performed for symptoms,
HHmay appear with cirrhosis, bronze-colored skin, diabetes
(and other endocrine diseases), joint inflammation, heart
disease, arthralgia, and hepatomegaly.

The diagnosis is based on enhanced serum ferritin that
correlates with the increased iron content of liver and the high
transferrin saturation. Unsaturated iron-binding capacity has
been proposed as an alternative to transferrin saturation
[40], but it has a higher biological variability [41]. Molecular
analysis in HFE gene with different protocols [42–47] would
confirm hereditary hemochromatosis but surprisingly it has
a lower diagnostic sensitivity because the mutations are
different in each geographic area. Homozygous patients for
p.Cys282Tyr have a higher risk for iron overload.

Liver biopsy is performed in suspected patients with neg-
ative molecular analysis and ambiguous laboratory results; in
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addition, it may be used to assess the degree of liver fibrosis
and cirrhosis and the degree of iron liver overload [3, 48].
Laboratory has a role also in the monitoring of patients
through biochemicalmarkers of (i) liver fibrosis [49]; (ii) liver
protidosynthesis [50]; and (iii) hepatocarcinoma in patients
with cirrhosis [51].

6. Type I Tyrosinemia

Type I tyrosinemia (TYRSN1, OMIM 276700) is an autoso-
mal recessive disease with an incidence of about 1 : 100,000. It
is the most severe form of genetic tyrosinemia and is the only
one that causes a severe liver involvement [52, 53].

Type I tyrosinemia is classified in two forms: the first,
more frequent, appears with a severe liver expression in the
first months of life that may progress to ascites, jaundice,
and gastrointestinal bleeding; the second includes cases
with acute liver failure at about one year and a chronic
evolution with renal-tubular dysfunction [54]. Untreated
patients die within the first decade of liver failure or of
early hepatocarcinoma. The use of nitisinone and a tyrosine-
restricted diet quite completely revert symptoms [55]. Type
I tyrosinemia is due to the altered activity of fumarylace-
toacetate hydrolase, which causes the elevation of plasma and
urine succinylacetone (diagnostic golden standard) and high
plasma concentration of tyrosine, methionine, and pheny-
lalanine. Sequence analysis in FAH gene may be performed
for molecular diagnosis including prenatal [56].

7. Glycogen Storage Disease Type IV

Glycogen storage disease (GSD, OMIM 232500) type IV is
an autosomal recessive disease with an incidence of about
1 : 600,000. It is due to mutations in the gene encoding the
glycogen branching enzyme (GBE1) that catalyzes the alpha
1,6 bond of the first glucose in the side chains of glycogen [57].
The altered glycogen branching reduces its solubility, thus
impairing the osmotic pressure within the hepatocyte [58].
Several clinical forms of GSD have been described including
(i) a neuromuscular form that appears in the perinatal age
or in childhood; most of these cases have an early fatal
evolution and are typically due to two null mutations; (ii) a
hepatic form that may have a progressive or a nonprogressive
evolution; patients are usually compound heterozygous for a
severe (null) and a mild (missense) mutation; and (iii) the
polyglucosan body disease that appears in adulthood with
upper and lower motor neuron involvement and executive
dysfunction [59]. The hepatic form is the most frequent
phenotype. In the progressive subtype, the clinical expression
appears in the first months of life with failure to thrive and
hepatomegaly that evolves (in a variable time) to cirrhosis
with portal hypertension requiring liver transplantation [60].
In the rare nonprogressive subtype the patients show a vari-
able combination of liver disease (that usually does not evolve
to cirrhosis), myopathy, and hypotonia.The diagnosis of GSD
is based on biochemical findings from a liver biopsy that
reveals an abnormal glycogen content, and on the evidence of
enzymatic deficiency in the liver, muscle, or fibroblasts. Now

it is based on molecular analysis, that is, the sequence of the
GBE1 gene followed by the search of large gene deletions [61].
In about 10% of patients a negative molecular analysis despite
clinical symptoms suggests to perform the enzyme assay on
cultured fibroblasts [62]. Prenatal diagnosis is possible if the
disease-causing mutations in the family proband are known
[63].

8. The Urea Cycle

The urea cycle includes a series of reactions that convert
nitrogen from ammonia and aspartate into urea [64]. Urea
cycle disorders (UCDs) are a group of inborn errors that
typically cause a life-threatening hyperammonemia. Among
these, argininosuccinate lyase (ASL) and citrin deficiency are
usually associated with severe liver disease.

8.1. Argininosuccinate Lyase Deficiency. Argininosuccinate
lyase deficiency (ASLD, OMIM 207900) is the second most
common UCD with an incidence of about 1 : 70,000 and is
due to the deficiency of the enzyme that cleaves argininosuc-
cinic acid into arginine and fumarate. The disease includes
a severe neonatal onset form and a late onset form: the
first appears with hyperammonemia within the first few
days of life with vomiting, lethargy, hypothermia, and poor
feeding. On the contrary, the late onset form ranges from
episodic hyperammonemia triggered by acute infections or
stress to cognitive impairment, behavioral abnormalities,
and/or learning disabilities in the absence of episodes of
hyperammonemia [65]. Symptoms of ASL deficiency are
unrelated to the severity or duration of hyperammone-
mic episodes and include neurocognitive deficiencies with
attention deficit hyperactivity disorder and developmental
disability [66]. Liver disease ranges from hepatomegaly to
severe liver fibrosis and cirrhosis [67]. Systemic hypertension
[68] and electrolyte imbalance may be present.

Laboratory diagnosis of ASL deficiency is based on
enhanced levels of citrulline and increased argininosuccinic
acid in plasma and/or in urine [64]. A newborn screening
for ASLD is available in all US citrulline testing. ASLD is
due to heterogeneous mutations in the ASL gene [69] and
sequence analysis detects mutations in about 90% of patients.
ASL enzyme activity can be measured in cell homogenates
from liver biopsy or from skin fibroblasts or erythrocytes [70].
Prenatal diagnosis is available [71].

8.2. Citrin Deficiency. Citrin deficiency is an autosomal
recessive disorder and may appear with two phenotypes:
neonatal intrahepatic cholestasis caused by citrin deficiency
(NICCD, OMIM 605814) and the adult form called cit-
rullinemia type II (CTLN

2
, OMIM 603471). A form that

appears with dyslipidemia (FTTDCD) was described more
recently [72]. Typically, citrin deficiency is characterized by
food preference (protein-rich/lipid-rich foods) or aversion
(carbohydrate-rich foods).

Neonatal intrahepatic cholestasis has an incidence of
about 1 : 19,000 and appears with aminoacidemias, galac-
tosemia, hypoproteinemia, cholestasis, and variable hepatic
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dysfunction [73]. Although such symptoms self-resolve by
the first year in most cases, some infants die of infection or of
liver cirrhosis [74, 75]. Citrullinemia type II has an incidence
of about 1 : 100,000 and appears later between second and
fourth decade with recurrent hyperammonemia with neu-
ropsychiatric symptoms; death can be due to brain edema
[76]. Symptoms are frequently triggered by alcohol and sugar
intake, medication, and/or surgery. Affected patients may or
may not have a prior history of NICCD or FTTDCD.

The diagnosis of citrin deficiency is based on clinical
and biochemical findings that include enhanced plasma
ammonia, citrulline and arginine, and threonine : serine
ratio. In neonatal intrahepatic cholestasis plasma threonine,
methionine, and tyrosine are elevated as bilirubin, bile
acids, and alpha-fetoprotein [73]. Plasma levels of galactose,
methionine, and/or phenylalanine are elevated in newborn
screening blood spots in about 40% of children.

Citrin deficiency is caused by mutations in SLC25A13
gene and is characterized by a liver-specific decrease in argini-
nosuccinate synthetase (ASS) [77, 78]. The liver reduction of
ASS in CTLN2 patients is secondary to citrin deficiency [79],
although its cause still remains to be clarified.

9. Cholesteryl Ester Storage Disease

Cholesterol ester storage disease (CESD, OMIM 278000) is
an autosomal recessive disorder of lysosomal storage with an
incidence ranging between 1 in 40,000 in the Germanic pop-
ulation and 1 : 300,000–1 : 500,000 in the general Caucasian
population [80]. It is due to deficiency of lysosomal acid
lipase (LAL), which catalyzes the intracellular hydrolysis of
triacylglycerols and cholesteryl esters. Its deficiency causes a
progressive accumulation of cholesteryl esters (CE), and to a
lesser extent, triglycerides, mainly in lysosomal hepatocytes,
adrenal glands, and macrophages [81].

Usually patients develop hepatomegaly that leads to fibro-
sis and micronodular cirrhosis [82] within the first ten years
of life. CESD can appear as two forms: Wolman disease, that
is, the severe pediatric form, fatal within 1-2 years of life, and
the later onset CESD, a more benign disease, associated with
some residual LAL activity [80].

Wolman disease is a rare, neonatal onset, lethal disorder
that appears in the first months of life with vomiting and
diarrhea and severe hepatosplenomegaly. About 50% of
patients show adrenal calcifications [83]. In contrast, CESD
is often undiagnosed, has a later onset, and may appear
in infancy or childhood, depending on the residual levels
of LAL activity [83, 84]. CESD should be suspected in
children with hepatomegaly and splenomegaly with elevated
transaminases, high cholesterol, and low HDL [85].

Liver biopsy helps the diagnosis even if false negatives
were reported [86, 87]. To confirm the diagnosis of CESD,
LAL activity and molecular analysis of the acid lipase gene
(LIPA) are available.

To date, over 40 LIPA mutations have been identified in
patients with CESD [88]. No genotype-phenotype correlation
has been established. Prenatal diagnosis is also available [80].

10. Alström Syndrome

Alström syndrome (ALMS, OMIM 203800) is a rare auto-
somal recessive disease with an incidence of 1 : 1,000,000. It
appears in infancy with a wide variability in age at onset
and severity, and typically leads to organ failure causing a
reduced life expectancy, rarely exceeding 50 years. Alström
syndrome appears with cone-rod dystrophy, obesity, progres-
sive sensorineural hearing impairment, dilated or restrictive
cardiomyopathy, the insulin resistance syndrome, and mul-
tiple organ failure [89, 90]. Therapy is complex due to the
combination of multiple endocrine disorders, sensorineural
deficits, cardiac, renal, and hepatic abnormalities [91]. Fibro-
sis develops in multiple organs [89]. Liver expression ranges
from steatohepatitis to portal hypertension and cirrhosis
and can cause hepatic encephalopathy and life-threatening
esophageal varices.The diagnosis is based on clinical features
[92], and genetic testing is used when major (vision) and
minor criteria do not permit a clinical diagnosis. Molecular
testing of the disease gene, ALMS1, detects mutations in up
to 80% of patients of northern European descent, and in
about 40% of cases worldwide [93, 94]. Carrier and prenatal
diagnosis can be offered if the disease-causingmutations have
been identified in a family proband [95].

11. Congenital Hepatic Fibrosis

Congenital hepatic fibrosis (CHF) is an autosomal recessive
disease characterized by periportal fibrosis and irregularly
shaped proliferating bile ducts. The incidence is about
1 : 20,000 [96].

In most patients, the first symptom is portal hyperten-
sion (PH) with gastrointestinal bleeding [97]. Pulmonary
hypertension and pulmonary vascular shunts are typical
complications of PH. Frequently CHF is associated with
ciliopathies and renal disease, the so-called hepatorenal
fibrocystic disease [98].

Congenital hepatic fibrosis involves various organs (e.g.
renal, central nervous system, etc.), but most cases are
referred for liver diseases. Four clinical forms have been
described [99]: (i) portal hypertension (most common and
more severe in the presence of portal vein abnormality); (ii)
cholangitis with cholestasis and recurrent cholangitis; (iii)
both portal hypertension and cholangitic symptoms; and (iv)
latency that appears at a late age with hard hepatomegaly.

Symptoms of CHF are nonspecific, making the diagnosis
difficult.The late onset and the clinical evolution suggest that
CHF is a dynamic and progressive condition [100, 101].

The diagnosis of CHF can be made by liver biopsy that
shows a progressive hepatic fibrosis with nodular formation.
Such findings may be mistaken for cirrhosis, but, unlike
cirrhosis, hepatic lobules are usually normal with normal
hepatocyte morphology, particularly in the early phases [100,
102]. The gene/s causing CHF is/are unknown.

12. Hereditary Fructose Intolerance

Hereditary fructose intolerance (HFI, OMIM 229600) is
an autosomal recessive disease (incidence 1 : 20,000) due to
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the deficiency of fructose 1-phosphate aldolase (aldolase B)
involved in the metabolism of fructose-1-phosphate (exoge-
nous fructose) into dihydroxyacetone phosphate and D-
glyceraldehyde [103].

Onset of symptoms can occur at any age. The persistent
intake of fructose, sucrose, or sorbitol in childhood leads to
chronic toxicity [104, 105] that causes irreversible damage to
the liver (early cirrhosis) and kidney [105]. The strict dietary
exclusion leads to normal growth and longevity, but it is
difficult to achieve [106].

The early diagnosis of HFI is crucial to start the
strict exclusion diet thus avoiding tissue injury and grow-
thretardation. 31P nuclear magnetic resonance spectroscopy
has been used successfully [107]. The fructose tolerance test
(breath test) has a high diagnostic sensitivity [106].Molecular
diagnosis of HFI consists in direct sequencing of the gene
encoding aldolase B (ALDOB). About 45 different mutations
are known so far (http://www.bu.edu/aldolase/HFI/hfidb/
hfidb.html) and it is now the diagnostic gold standard [108–
111].

13. Progressive Familial Intrahepatic
Cholestasis Type 3

Progressive familial intrahepatic cholestasis (PFIC) refers
to a heterogeneous group of inherited cholestatic disor-
ders that impair bile formation and appear with cholestasis
of hepatocellular origin. Three types of PFIC are known.
Progressive familial intrahepatic cholestasis type 3 (PFIC3,
OMIM 602347) is an autosomal recessive disorder with a
prevalence estimated of about 1 : 100,000 [112].

PFIC3 may appear in infancy, in childhood, or during
young adulthood. Main symptoms include gastrointestinal
bleeding due to portal hypertension, early cirrhosis, and
moderate pruritus [113]. The phenotypic expression of PFIC3
ranges from neonatal cholestasis to cirrhosis in young adults
[114]. The evolution of the disease is characterized by chronic
icteric or anicteric cholestasis, portal hypertension, and liver
failure. In about 50% of the patients, liver transplantation is
required at a mean age of 7.5 years [115]. Laboratory findings
show high serum gamma-glutamyl transferase (𝛾-GT) activ-
ity (while other two types of PFIC have normal serum 𝛾-GT
activity), normal cholesterol levels, andmoderately enhanced
bile acid concentrations. Liver histology shows portal fibrosis
and true ductular proliferation with mixed inflammatory
infiltrate and, in advanced phases, signs of biliary cirrhosis.
Interlobular bile ducts are seen inmost portal tracts and there
is neither periductal fibrosis nor biliary epithelium injury
[113].

PFIC3 is caused by mutations in the ABCB4 gene encod-
ing the multidrug resistance protein 3 (MDR3) protein.
This gene is expressed in the canalicular membrane of the
hepatocyte and is responsible for phospholipid transport into
bile [116]. Reduced or absent activity of theMDR3 transporter
causes impaired phospholipid secretion, previously identified
as “lowphospholipid syndrome” [117].Thediagnosis of PFIC3
is confirmed by molecular genetic analysis of the ABCB4
gene by sequencing of exons and their splice junctions

(http://evs.gs.washington.edu/EVS/) [118]. There are several
mutations in ABCB4 that have a clear effect on the protein
and a genotype-phenotype correlation is observed [119–122].
Prenatal diagnosis is available.

14. Conclusions and Future Prospects

A chronic liver involvement that can predispose to cirrhosis
may be observed in a number of genetic diseases with a
different penetrance, age at onset, and outcome. Clinical
symptoms and laboratory data are frequently overlapping,
thus rendering a differential diagnosis difficult. In the present
review we critically discussed the genetic entities responsible
for early liver cirrhosis, describing for each disease the
laboratory diagnosis and molecular genetics.

In fact, the recent advances made in understanding the
genetics and pathophysiology of inherited liver diseases can
contribute to the identification of novel strategies for the
diagnosis of these conditions. Molecular analysis changed
the diagnostic approach in these genetic diseases and led to
reduction of invasive and expensive procedures and diagnos-
tic errors.

Disease-genes identification is a step forward in the diag-
nostic approach to a patient in whom early liver cirrhosisis
strongly suspected. However, we have to point out some
critical points: (i) molecular analysis would be based on scan-
ning procedures using the gene sequencing; (ii) the negative
result of molecular analysis does not exclude the disease,
because mutations may involve noncoding, regulatory areas;
(iii) some liver diseases are very rare; it is necessary that
laboratories also offer molecular diagnosis for such diseases.

However, the availability of new technologies as high
throughput sequencing at reasonable costs could help to
perform extensive analyses, especially in cases in which more
disease genes are involved. No clear genotype-phenotype
correlation has been established in most cases, so proteomic
and functional studies on the effect of the mutations may
guide physicians in the prescription of treatment procedures.
In some cases, molecular analysis has been used for prenatal
diagnosis to help high risk couples to better plan their
reproductive options.

However, given the increased number of genetic liver
diseases, the complexity of genotype-phenotype correlations
and the need of multidisciplinary counseling to the families,
a strict collaboration between physicians and molecular
laboratories is mandatory in this field.
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