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Abstract
Design quality guidelines typically recommend that multiple baseline designs include
at least three demonstrations of effects. Despite its widespread adoption, this recom-
mendation does not appear grounded in empirical evidence. The main purpose of our
study was to address this issue by assessing Type I error rate and power in multiple
baseline designs. First, we generated 10,000 multiple baseline graphs, applied the dual-
criteria method to each tier, and computed Type I error rate and power for different
number of tiers showing a clear change. Second, two raters categorized the tiers for 300
multiple baseline graphs to replicate our analyses using visual inspection. When
multiple baseline designs had at least three tiers and two or more of these tiers showed
a clear change, the Type I error rate remained adequate (< .05) while power also
reached acceptable levels (> .80). In contrast, requiring all tiers to show a clear change
resulted in overly stringent conclusions (i.e., unacceptably low power). Therefore, our
results suggest that researchers and practitioners should carefully consider limitations in
power when requiring all tiers of a multiple baseline design to show a clear change in
their analyses.

Keywords Error rate . Multiple baseline design . Power . Single-case design . Visual
analysis

In behavior analysis, researchers and practitioners typically use single-case designs
such as the reversal design, the alternating-treatment design, and the multiple baseline
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design to demonstrate experimental control (Gast & Ledford, 2018; Horner et al., 2005;
Kratochwill et al., 2010). Among these designs, researchers have found that multiple
baseline designs were the most frequently used (Coon & Rapp, 2018; Shadish &
Sullivan, 2011; Smith, 2012). In contrast with other single-case designs, the multiple
baseline design does not require the withdrawal of the treatment or the establishment of
a criterion to be gradually changed, which may explain its predominant use in single-
case research (Baer, Wolf, & Risley, 1968; Kratochwill & Levin, 2014).

The multiple baseline design involves the sequential introduction of an independent
variable across behaviors, contexts, or participants (see Fig. 1 for two examples of
multiple baseline graphs). When analyzing multiple baseline graphs, experimenters
depict each behavior, context, or participant with a different AB comparison. We may
refer to each of these individual AB comparisons as tiers. For example, the left graph of
Fig. 1 contains three different tiers. Each tier must remain functionally independent;
that is, the introduction of the independent variable in one tier should not be expected to
produce changes in another tier (i.e., behavior, context, or participant). When the

Fig. 1 Multiple Baseline Graphs wherein the Observers and the Dual-Criteria Method Always Agreed on the
Presence or Absence of a Clear Change
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purpose of the study is to demonstrate experimental control, the experimenter should
only introduce the independent variable in a tier when the previous tier (i.e., preceding
AB comparison) shows a clear change.

Through the initiative of the What Works Clearinghouse (WWC), Kratochwill
et al. (2010) developed highly cited guidelines for evidence-based single-case
research, which include specific design criteria for multiple baseline designs.
For multiple baseline designs to meet the criteria without reservation, the intro-
duction of the independent variable must be staggered across tiers, the design must
contain a minimum of three AB tiers, and each phase must have at least five data
points. For the results of a three-tier multiple baseline design to qualify as strong
evidence of a functional relationship between the independent and the dependent
variables, all three temporally independent replications must demonstrate an
effect. This criterion is not unique to the WWC guidelines: Other standards to
evaluate the quality of single-case designs recommend three demonstrations, too
(e.g., Tate et al., 2013). In a recent textbook, Gast, Lloyd, and Ledford (2018) also
suggest that researchers and practitioners should aim for three or four demonstra-
tions of effects when using a multiple baseline design.

Despite its widespread adoption, the current recommendation of requiring three
demonstrations of effects does not appear grounded in empirical evidence. One concern
is that this recommendation may be overly stringent. Assuming that the analysis of AB
designs had an average power of .80, we would statistically expect the three tiers of
multiple baseline designs to agree only 51.2% of the time (i.e., .803) in the presence of a
true effect. Thus, the current recommendation would lead to erroneous conclusions in a
large proportion of cases. The main purpose of our study was to address this issue by
assessing Type I error rate (false positives) and power in multiple baseline designs with
varying numbers of tiers.

Study 1: Error Rate and Power with a Structured Visual Aid

The most studied structured visual aids in single-case research are the dual-criteria
and conservative dual-criteria methods (Fisher, Kelley, & Lomas, 2003). Several
researchers have shown that these methods adequately control for errors of
analyses in single-case AB designs (Falligant, McNulty, Hausman, & Rooker,
2020; Lanovaz, Huxley, & Dufour, 2017; Manolov & Vannest, 2020). To apply
the dual-criteria method, the researcher or practitioner must first draw the baseline
(i.e., Phase A) data mean and trend lines. Both lines are then extended into the
intervention phase of the comparison (i.e., Phase B). To assess the reliability of an
intervention effect, the researcher must compare the number of data points in the
intervention phase that fall above or below both lines to a threshold quantity. The
conservative dual-criteria method is similar; however, it requires raising or low-
ering the mean and trend lines by 0.25 standard deviations. Despite being specif-
ically recommended for multiple baseline designs (Fisher et al., 2003; Swoboda,
Kratochwill, & Levin, 2010), we found no studies examining its error rate when
applied to this type of design. In our first study, we applied the dual-criteria
method to individual tiers, and then examined the Type I error rate and power
based on different numbers of tiers in multiple baseline graphs.
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Dataset

The first author programmed R code to generate the multiple baseline graphs in
the dataset by adapting code developed by Lanovaz et al. (2020). Each multiple
baseline graph had five tiers with 20 points each. To remain consistent with the
results of prior research, Phase A never contained fewer than three points whereas
Phase B never fewer than five points (Falligant et al., 2020; Lanovaz,
Giannakakos, & Destras, 2017). Moreover, each tier within a multiple baseline
graph had three more baseline points than the previous tiers while maintaining an
equal number of total points (i.e., 20 points). Thus, the number of points for Phase
A and Phase B were respectively, 3 and 17 for the first tier, 6 and 14 for the
second tier, 9 and 11 for the third tier, 12 and 8 for the fourth tier, and 15 and 5
for the final tier.

To generate the values of the multiple baseline graphs, R code first used the
following equation for each tier:

xt ¼ axt−1 þ εt

where x was a univariate times series, t an index of time (i.e., 1 to 20), a the
autocorrelation value1 and ε a normally distributed error term with a mean of 0 and a
standard deviation of 1. The autocorrelation term had a value that varied randomly
according to a normal distribution with a mean of .20 and a standard deviation of .15
(see Lanovaz et al., 2020; Shadish & Sullivan, 2011). The autocorrelation remained
consistent across tiers within the same multiple baseline graph. Then, we transformed
the univariate time series using this second equation:

yt ¼ xt þ cþ SMD

where yt was the value of a data point on session t, c was a constant of 10 to avoid
negative values, and SMD the standardized mean difference. The R code gener-
ated graphs in pairs that each had the same autocorrelation value. In the first graph
of the pair, the SMD remained at zero for all data points. In the second graph of
the pair, we set the SMD at zero for points in Phase A whereas we added a SMD
value to points in Phase B. This latter SMD value varied randomly according to a
normal distribution with a mean of 3 and a standard deviation of 1. The value
remained the same across tiers within the same multiple baseline graph but varied
across graphs.

We used the first graph (with no SMD) of each pair to measure Type I error rate and
the second graph (with SMD added to Phase B) to assess power. The code generated
10,000 graphs in total: 5,000 simulated no effect and the other 5,000 simulated an
effect. The raw data and code used for the analyses are freely available on the Open
Science Framework for replications and extensions (https://osf.io/5ua3v/).

1 Autocorrelation in single-case graphs refers to the observation that the frequency or duration of a behavior
during a session is often correlated with the frequency or duration of this same behavior in prior sessions.
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Analyses

Given that our concern involved power and that the dual-criteria method is more
powerful than the conservative dual-criteria method (Fisher et al., 2003), our study
only applied the dual-criteria method. The analyses first involved applying the dual-
criteria method to all tiers for each graph (i.e., 50,000 tiers in total). The function
recorded a score of 1 if the graph showed a clear change according to the dual-criteria
method and a 0 when there was no clear change.

The next step entailed computing Type I error rate and power depending on the
number of tiers that showed a clear change for one to five tiers. In single-case research,
a Type I error occurs when an analysis method (e.g., dual-criteria method, visual
inspection) concludes that the independent variable produced a change in behavior
when there was no true change in behavior. In this step, our R code computed Type I
error rate by dividing the number of graphs with no simulated effect that had a specific
number of tiers showing a clear change (according to the dual-criteria analysis) by the
total number of graphs with no simulated effect.

In contrast, power represents the proportion of tiers showing a true clear change that
were correctly identified by the analysis method. Calculating power involved dividing
the number of graphs with a simulated effect that had a specific number of tiers
showing a clear change (as indicated by the dual-criteria analysis) by the total number
of graphs with a simulated effect. We repeated these analyses for all combinations of
tiers. For example, when analyzing graphs with three tiers, our code extracted all
possible combinations of three tiers for each graph (out of five) and then examined
the number of tiers showing a clear change. Next, our analysis involved measuring
Type I error rate and power when we required one or more of three tiers to show a clear
change, two or more of three tiers to show a clear change, and three of three tiers to
show a clear change.

Results and Discussion

Table 1 presents the Type I error rate and the power based on the number tiers that
needed to show a clear change. Analyzing tiers individually indicated that the
dual-criteria method produced a Type I error rate of .08 and a power of .80. As
expected, Type I error rate and power decreased when the number of tiers showing
a clear change increased. The only analyses that produced both adequate Type I
error rate (> .05) and power (< .80) are those with at least three tiers in total. To
adequately control for errors, the multiple baseline needed to include at least two
tiers with a clear change for graphs with three tiers, and at least two or three tiers
with a clear change for graphs with four tiers or five tiers. It should be noted that
requiring three of three tiers to demonstrate a clear change, which is often the case
in single-case research, would lead researchers and practitioners in drawing
incorrect conclusions in more than 40% of cases showing a true effect (assuming
that the distribution of parameters in nonsimulated graphs is similar to the one
simulated in the current study). Because this result runs counter to a previously
established recommendation and three-tier multiple baseline designs are common
in research, we conducted a more in-depth analysis of designs with three tiers
using visual inspection.

609



Perspectives on Behavior Science (2020) 43:605–616

Study 2: Error Rate and Power with Visual Inspection

For single-case research, decision on the effect of the independent variable primarily
relies on visual inspection of graphs, which is also recommended by the WWC
guidelines (Kratochwill et al., 2010, 2013). Although visual inspection remains a
subjective practice (Manolov & Vannest, 2020; Ninci, Vannest, Willson, & Zhang,
2015; Wolfe, Seaman, Drasgow, & Sherlock, 2018), power of visual inspection is
largely undocumented. As such, one may argue that visual inspection could be more
powerful than the dual-criteria method and circumvent the issues observed in the first
study. We thus replicated and extended our first study by having expert raters visually
inspect each tier.

Dataset

To reduce the number of tiers and graphs to visually inspect, our second study involved
300 new graphs with three tiers containing 14 points each. The other parameters and
the data generation procedures remained the same as in the first study.

Visual Inspection

We hired two independent raters blind to the purpose of the current study to conduct the
visual inspection. Each rater was a college-level professor in a course sequence verified

Table 1. Type I Error Rate and Power Based on the Number of Tiers that Show a Clear Change

Total Number of Tiers Number of Tiers with Clear Change

At Least 1 At Least 2 At Least 3 At Least 4 5

1

Type I Error Rate .077

Power .804

2

Type I Error Rate .149 .006

Power .951 .658

3

Type I Error Rate .215 .017 .001

Power .982 .888 .542

4

Type I Error Rate .276 .031 .002 <.001

Power .992 .953 .823 .448

5

Type I Error Rate .333 .049 .005 <.001 <.001

Power .996 .975 .919 .760 .370

Note. The highlighted numbers identify combinations of tiers that simultaneously achieved a Type I error rate
lower than .05 and a power higher than .80
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by the Association for Behavior Analysis International® and a Board Certified Behav-
ior Analyst-Doctoral® (BCBA-D). The raters inspected each tier individually (900 in
total) and responded to the following question, “Would the change observed from
Phase A to Phase B be indicative of functional control showing an increase in behavior
if similar patterns were replicated across two additional multiple baseline tiers?” The
raters recorded a positive response (i.e., 1) when the tier showed a clear change and a
negative response (i.e., 0) when the tier showed no clear change. To prevent bias, each
tier was presented individually on a page and the order of presentation of tiers was
randomized. Therefore, the raters remained unaware of the multiple baseline graph to
which each tier belonged and of the results of the other rater.

Analyses

First, the R code repeated the analyses described in the first study with the data from the
second study using the dual-criteria analysis, the inspection from the first rater, and the
inspection from the second rater. As power remained an issue following this analysis,
we examined the effects of autocorrelation and effect size on power. For autocorrela-
tion, our functions split the graphs showing a simulated effect in two based on the mean
of our equation (i.e., autocorrelation < .2 vs. autocorrelation > .2) and then computed
power for each half separately. The R code repeated the same procedure for the mean
effect size in our equation (i.e., SMD < 3 vs. SMD > 3).

Results and Discussion

When considering each tier individually, the Type I error rate was .09 for the dual-
criteria method, .05 for the first rater, and .02 for the second rater. Power was .74, .89,
and .69 for the dual-criteria method, the first observer, and the second observer,
respectively. Agreement between the two raters was .87. Table 2 presents the Type I
error rate and power based on the number tiers that needed to show a clear change for
each analysis. The Type I error rate remained near or below .01 for all analyses,
indicating that it was not a concern when analyzing multiple baseline graphs. On the
other hand, power varied considerably across analyses. The dual-criteria method
produced adequate power only when at least two of three tiers showed a clear change.
Rater 1 achieved adequate power for two of two tiers and at least two of three tiers, and
nearly attained a power of .80 for three of three tiers. In contrast, the analyses of the
second rater never produced adequate power. Similar to the first rater, the power of the
second rater was also highest for at least two of three tiers showing a clear change.

Figure 1 shows an example of two multiple baseline graphs wherein the two raters
and the dual-criteria method all agreed on the presence or absence of a clear change.
For the left graph, the analyses agreed that all tiers showed a clear change. For the right
graph, the opposite was true: each analysis concluded that all tiers showed no clear
change. Figure 2 shows two examples of multiple baseline graphs wherein the raters
and dual-criteria method disagreed. The left graph showed a simulated change in all
tiers. Only the first rater detected a clear change in all tiers. The dual-criteria method
failed to detect a clear change in the first and second tiers whereas the second rater only
detected a clear change in the first tier. The right graph showed no simulated change in
all tiers. Despite this lack of simulated effect, the dual-criteria method detected a change
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in the first two tiers and the first rater in the last two tiers. In this example, the second
rater correctly concluded that there was no clear change in all tiers. These latter results
show that different raters may perform inconsistently on graphs with different distri-
butions (i.e., the first rater scored the left graph correctly whereas the second rater
performed adequately on the right graph).

Table 3 shows the power of the analyses across different values of autocorrelation
and SMD. Higher autocorrelation values led to marginally lower power. In contrast,
high values of SMD produced considerably higher power. Only the first rater produced
acceptable power for both small and large autocorrelation and SMD values but only
when two of two tiers or at least two of three tiers showed a clear change.

General Discussion

Overall, our results suggest that requiring all tiers to show a clear change in multiple
baseline designs may be an overly stringent practice. When a design has at least three
tiers and two or more of these tiers show a clear change, the Type I error rate remained
adequately controlled while power also reached acceptable levels. This result seems
inconsistent with the WWC recommendation requiring at least three demonstrations of
effects within a multiple baseline to consider an experiment as adequate without
reservation. Even when a design only contains three tiers, requiring at least two tiers
to be significant leads to few Type I errors. The advantage of this approach is a
considerable increase in power. Requiring all tiers to show a clear change may increase
the burden of proof on behavior analysts and lead to the rejection of smaller or more
variable (true) effects. To understand human behavior, we cannot discard true effects
only because they are small or display high variability, which is what the current
recommendation may be doing.

Table 2. Type I Error Rate and Power Based on the Dual-Criteria Method and the Visual Analysis of Two
Raters

Number of Tiers with Clear Change

2 of 2 At Least 2 of 3 3 of 3

Dual-Criteria Method

Type I Error Rate .004 .013 0

Power .587 .813 .473

Rater 1

Type I Error Rate .004 .013 0

Power .831 .907 .793

Rater 2

Type I Error Rate 0 0 0

Power .518 .753 .400

Note. The highlighted numbers identify combinations of tiers that simultaneously achieved a Type I error rate
lower than .05 and a power higher than .80
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Taken together, the results of the two raters support concerns involving the reliabil-
ity of visual inspection (DeProspero & Cohen, 1979; Fisher et al., 2003; Ninci et al.,
2015). Given that both raters were college-level professors with the same level of
certification, we would have expected them to produce similar conclusions based on the
data. Although agreement was .87 on individual tiers and both raters adequately
controlled for Type I error rate, the analysis of power shows how small differences
in visual inspection between two raters may be amplified to produce different conclu-
sions regarding the effect of an intervention. For example, the first rater had power near
or above .80 for all combinations of tiers tested whereas the second rater never achieved
this criterion. It is important to note that the first rater clearly demonstrates that it is
possible for visual inspection to outperform the dual-criteria method. Given that the two
raters had similar credentials, our results indicate that training in visual inspection needs
to be further improved and systematized (e.g., Retzlaff, Phillips, Fisher, Hardee, &
Fuhrman, 2020; Stewart, Carr, Brandt, & McHenry, 2007).

Fig. 2 Multiple Baseline Graphs wherein the Observers and the Dual-Criteria Method Disagreed on the
Presence or Absence of a Clear Change
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Our study may have produced different results if the raters had been allowed to
analyze the multiple baseline graphs as a whole (rather than individual tiers) or use
analysis methods that consider all tiers simultaneously (Bouwmeester & Jongerling,
2020). If two of three tiers show a clear change and the final tier is ambiguous, some
practitioners and researchers may overlook this last tier. For example, Wolfe, Seaman,
and Drasgow (2016) found that 35% of their raters considered that two of three tiers
with clear changes was sufficient to show a functional relation in a study on the visual
analysis of multiple baseline graphs. Moreover, researchers should manipulate other
variables such trend and variability (e.g., DeProspero & Cohen, 1979; Kahng et al.,
2010) to examine their impact in the future because these dimensions may interact with
others to influence responding.

The study has some additional limitations that should be noted. First, we arbitrarily
set the initial the SMD value at a mean of 3, which is considered as relatively small in
single-case research (Rogers & Graham, 2008; Lanovaz et al., 2020). Because smaller
changes typically have lower power, replicating our study with larger SMD values may
produce different outcomes. Second, our study limited its analysis to the dual-criteria
method and visual inspection. In the future, researchers may also explore other methods
of data analyses to examine whether the results remain consistent (e.g., Krueger, Rapp,
Ott, Lood, & Novotny, 2013; Manolov & Vannest, 2020). Third, our analyses only
involved simulated data as it is impossible to measure power on nonsimulated data
without delving into circular reasoning. Nevertheless, researchers could examine Type
I error rate on nonsimulated data in the future (Falligant et al., 2020; Lanovaz et al.,

Table 3. Power across Smaller and Larger Values of Autocorrelation and Standardized Mean Difference

Number of Tiers with Clear Change

2 of 2 At Least 2 of 3 3 of 3

Dual-Criteria Method

a < 0.20 .605 .831 .492

a > 0.20 .573 .800 .459

SMD < 3 .406 .679 .269

SMD > 3 .782 .958 .694

Rater 1

a < 0.20 .867 .969 .815

a > 0.20 .804 .859 .776

SMD < 3 .675 .821 .603

SMD > 3 1 1 1

Rater 2

a < 0.20 .585 .831 .462

a > 0.20 .467 .694 .353

SMD < 3 .295 .551 .167

SMD > 3 .759 .972 .653

Note. The highlighted numbers identify combinations of tiers where power was at least .80 regardless of the
parameter values. a = autocorrelation, SMD = standardized mean difference
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2017). Finally, the distribution of our simulation data was limited by our choice of
starting parameters (e.g., autocorrelation values, SMD), which may not perfectly
represent the distribution of data in nonsimulated graphs. Until our results are replicated
by an independent research team, we do not recommend that practitioners and re-
searchers adopt a new criterion involving the analysis of multiple baseline design (e.g.,
requiring at least two of three tiers showing a clear change). That said, researchers and
practitioners should carefully consider limitations in power when requiring all tiers of a
multiple baseline design to show a clear change in their analyses.
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