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Abstract

In an era of big data, the availability of satellite-derived global climate, terrain, and land

cover imagery presents an opportunity for modeling the suitability of malaria disease vectors

at fine spatial resolutions, across temporal scales, and over vast geographic extents.

Leveraging cloud-based geospatial analytical tools, we present an environmental suitability

model that considers water resources, flow accumulation areas, precipitation, temperature,

vegetation, and land cover. In contrast to predictive models generated using spatially and

temporally discontinuous mosquito presence information, this model provides continuous

fine-spatial resolution information on the biophysical drivers of suitability. For the purposes

of this study the model is parameterized for Anopheles gambiae s.s. in Malawi for the rainy

(December–March) and dry seasons (April–November) in 2017; however, the model may

be repurposed to accommodate different mosquito species, temporal periods, or geographi-

cal boundaries. Final products elucidate the drivers and potential habitat of Anopheles gam-

biae s.s. Rainy season results are presented by quartile of precipitation; Quartile four (Q4)

identifies areas most likely to become inundated and shows 7.25% of Malawi exhibits suit-

able water conditions (water only) for Anopheles gambiae s.s., approximately 16% for water

plus another factor, and 8.60% is maximally suitable, meeting suitability thresholds for water

presence, terrain characteristics, and climatic conditions. Nearly 21% of Malawi is suitable

for breeding based on land characteristics alone and 28.24% is suitable according to climate

and land characteristics. Only 6.14% of the total land area is suboptimal. Dry season results

show 25.07% of the total land area is suboptimal or unsuitable. Approximately 42% of

Malawi is suitable based on land characteristics alone during the dry season, and 13.11% is

suitable based on land plus another factor. Less than 2% meets suitability criteria for cli-

mate, water, and land criteria. Findings illustrate environmental drivers of suitability for

malaria vectors, providing an opportunity for a more comprehensive approach to malaria

control that includes not only modeled species distributions, but also the underlying drivers

of suitability for a more effective approach to environmental management.
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Introduction

Despite a long, complicated history of disease control efforts, malaria remains a significant

challenge to global public health [1]. Human malaria is caused by a single-celled parasite (Plas-
modium) transmitted by mosquitoes of the Anopheles genus [2, 3]; approximately seventy

Anopheles species vector malaria parasites [4, 5]. Malaria is a disease of poverty with poorer

countries disproportionately bearing the largest burden of infection [6, 7]. Prevention and

control encompasses numerous techniques including targeting either vectors or parasites [8,

9] making malaria vector distribution maps an integral component of vector control strategies

[10].

The literature on predicted distributions of malaria vector species’ is robust (e.g., [5, 10–

13]). An important distinction between different types of models is their intended aim: model-

ing species fundamental or realized niche. A fundamental niche refers to the geographic space

wherein environmental conditions permit the species to exist, absent of biotic interactions;

realized niche is the space the species is known to occupy, including biotic interactions such as

competitive exclusion [14–16]. As phrased by Guisan & Zimmerman [16], “Differentiating
between the fundamental and the realized niche of a species is particularly important because it
distinguishes whether a simulated distribution is predicted from theoretical physiological con-
straints or rather from field-derived observations.” Modeling fundamental niche can be

expressed as a combination of environmental variables that meet species’ physiological and

habitat requirements. Conventionally, realized niche has been modeled using methods such as

Species Distribution Models (SDM) that depend on presence and/or absence data that reflect

the species distribution observed empirically [17, 18]. Such methods allow projections of

where species might expand in range to suitable habitat outside the observed or “native” range,

as in the case of invasive species.

A notable open-access repository of malariometric data, including maps of predicted vector

distributions is the Malaria Atlas Project (MAP). The MAP is a non-profit collaborative of

researchers working to “disseminate free, accurate, and up to date geographical information on
malaria and associated topics” [19]. MAP includes global databases on malaria risk, vector

occurrence, modeled species distributions, cross-sectional surveys of parasite rate, and envi-

ronmental data pertinent to malaria transmission. The MAP includes five types of vector

occurrence data, categorized as: Multiple Vectors (dominant and secondary), Vector Occur-

rence (Archive), Vector Occurrence (Current), and Vector Occurrence Surveys. Data from

MAP are regularly cited in prominent, international research studies (e.g., [20–22]) including

the World Health Organization’s World Malaria Report [23].

Dominant species distributions data for MAP are taken from Sinka et al.’s [5] global map of

dominant malaria vectors produced using Boosted Regression Tree (BRT) methodology for

forty-one dominant vector species. Input data include environmental and climatic grids at a

spatial resolution of 5-km [24], presence and/or absence of species data acquired through com-

prehensive literature searches conducted by Hay et al. [10], and expert opinions on species

geographic range [5]. Forty-one predictive distribution maps at a 5-km spatial resolution were

generated using BRT, then combined to indicate species presence with a>0.5 probability of

occurrence [5]. Where dominance of one species in an area is unknown, two or more species

were grouped [5]; for example, for the dominant sub-Saharan African malaria vectors, there

were four combinations of species presence data: (1) Anopheles gambiae s.s., Anopheles ara-
biensis and Anopheles funestus (80.86%), (2) An. arabiensis and An. funestus (15.16), (3) An.

gambiae s.s and An. funestus (2.4%), and (4) An. funestus (1.58%).

The archived predicted distribution maps for MAP were produced by Sinka et al. [25]. Pre-

dictions were generated using similar methodology to the dominant species distributions
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maps using BRT models (see: [5]). Predicted distribution data are presented for the sub-Saha-

ran Africa region at a 5-km spatial resolution, on a scale of 0–1. Current predicted distribu-

tions of malaria vectors for MAP are produced by Wiebe et al., [13] at ~5km resolution.

Models were constructed using BRT methodology where presence data included previously

collected species data culminated from a combination of literature review and insecticide resis-

tance records. Results elucidate a relative probability of occurrence not only for An. gambiae,

but sibling species within the Anopheles gambiae s.l. species complex.

A limitation of existing modeled products of malaria vector species distributions is that

their output spatial and temporal resolutions inadequately characterize local scale vector habi-

tat or actual presence. Moreover, many SDMs rely on sampled presence data that are spatially

discontinuous and temporally static. Further, there is a gap in information related to the driv-

ers of environmental suitability that work to define vector species’ distributions. It is one thing

to predict where a species might exist in space; it is quite another to address what conditions

allow or prohibit a species from occupying an area in a given timeframe (see: [26]). Informa-

tion on the drivers of physiological suitability (or unsuitability) can have considerable implica-

tions for vector management as countries continue to work toward malaria control in the

wake of changing environmental conditions. In resource-poor settings unable to conduct reg-

ular surveys, the availability of high-precision remote sensing information on potential drivers

and distributions of vectors can fill a critical deficiency of data and complement existing MAP

data products.

The availability of satellite-derived global climate, terrain, and land cover data is transform-

ing the ability to model the suitability of disease vectors across geographies and time scales,

and at fine spatial resolutions. Leveraging Google Earth Engine, a raster-based mosquito suit-

ability model was constructed using data as fine as 30-m spatial resolution. The model’s out-

comes are intended to assist in identifying Anopheles gambiae s.s. fundamental niche and

plausible mosquito habitat in Malawi to assist with subsequent spatially targeted management

efforts for malaria mitigation. Additionally, any outcome must incorporate seasonality as a pri-

mary influence on the fundamental niche owing to the interaction of precipitation, human

activity such as cultivation and irrigation for agriculture, and the resultant appearance and dis-

appearance of larval habitats [12, 27]. For the purposes of this study the model is parameter-

ized for Anopheles gambiae s.s. in Malawi for the rainy (December–March) and dry seasons

(April–November) in 2017 [28, 29]; however, the model may be re-parameterized for any mos-

quito species (where adequate characterization of the species physiological requirements for

survival are available), time periods, or geographical boundaries. For Malawi, it is particularly

applicable to Anopheles arabiensis, a sympatric member of the Anopheles gambiae s.s. species

complex and a dominant vector in much of the country [30].

Google Earth Engine

Google Earth Engine (GEE) is an open-access, cloud-based platform designed for users to

ingest and process either their own private data, or work with data from GEE’s multi-petabyte

geospatial catalog [31]; newly acquired global monitoring satellite image data from platforms

such as NASA MODIS (Moderate Resolution Imaging Spectroradiometer) are added to the

GEE repository as they become available. Users access GEE through a web programming inter-

face with an extensive collection of geospatial analytical tools. While traditional methods of

data storage and analysis typically preclude users from storing, managing, and processing very

large geospatial datasets, GEE removes these barriers, allowing users to more readily process

data and disseminate their results [31]. For a complete review of the GEE platform, including

system architecture and data distribution models see [31]. The GEE platform offers a
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generalizable model across spatial and temporal scales, enhances accessibility, and ensures that

the widest possible audience may access and manipulate the model without limitations related

to data storage or computational processing power.

Malawi and Anopheles gambiae s.s.

Malawi is a landlocked country in southern Africa with a predominantly agrarian society [32]

and long-standing burden of malaria (Fig 1). In 2017, the World Health Organization reported

4,901,344 confirmed cases of malaria and 3,614 deaths as a result of the disease [33]. Malaria is

endemic and stable throughout Malawi, albeit with marked variations in spatio-temporal

response to seasonal climate patterns. Areas of highest infection risk are concentrated along

the Lake Malawi lakeshore, within the Shire River valley, and the central plains [34, 35]. These

areas are characteristically hotter and wetter than other parts of the country. Plasmodium fal-
ciparum, the most harmful of malaria parasites [36], accounts for 100% of infection in Malawi

[37]. Dominant vectors of transmission in Malawi are An. arabiensis, An. gambiae s.s., and An.

funestus [37]. Anopheles gambiae s.s. is an efficient vector in transmitting malaria [35] and

belongs to the Anopheles gambiae sensu lato (s.l.) species complex, itself comprised of nine

Fig 1. Malawi’s location in sub-Saharan Africa and its major water bodies. Major cities and lakes highlighted.

https://doi.org/10.1371/journal.pone.0235697.g001
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morphologically indistinguishable sibling species: An. gambiae sensu stricto (s.s.), An. coluzzii,
An. arabiensis, Anopheles quadriannulatus species A, Anopheles quadriannulatus species B,

Anopheles melas, Anopheles merus, Anopheles amharicus, and Anopheles bwambae [38, 39].

The geographical distribution of An. gambiae s.s. is widespread across sub-Saharan Africa,

though predominately concentrated along 10˚N latitude and between 10–20˚S latitude in Tan-

zania, Malawi, Mozambique, and Zambia [13]. Anopheles coluzzii was elevated to species status

from the so-called molecular M biotype whilst An. gambiae s.s. was synonymized with the

molecular S form. An. gambiae s.s. is modeled here as a single species, rather than these molec-

ular forms or the taxa to which they refer.

Materials and methods

Model construction

The spatio-temporal distribution of An. gambiae s.s. was determined using a raster-based envi-

ronmental suitability model constructed in GEE that uses abiotic and biotic (i.e., living organ-

ism) variables specific to the species’ biological requirements and habitat preference. Suitable

areas are defined as those that facilitate the creation and persistence of breeding sites for ovipo-

sition and development of An. gambiae s.s. larvae. Parameter thresholds for each of the input

variables were selected based on published findings in the scientific literature (see below)

regarding An. gambiae s.s. habitat: Temperature, Normalized Difference Vegetation Index

(NDVI), Land Cover, Precipitation, Flow Accumulation, and Water Resources (Table 1). Each

threshold was used to create binary, (suitable [1] or unsuitable [0]), maps for each predictor

during the defined time-period. All predictor variable maps are then combined using Boolean

logic to produce suitability maps for the target species. Results are displayed by combined suit-

ability types (Climate, Land, Water) to convey the factors contributing to suitability. Tempera-

ture was the sole climate variable; NDVI and Land Cover were combined using an ‘AND’

operator to create the binary land suitability grid; Precipitation, Flow Accumulation, and

Water Resources were combined using an ‘OR’ operator to create the binary water suitability

grid (Fig 2). The ‘OR’ operator was selected for the water suitability grid to ensure that perma-

nent water bodies, dambos, and small depressions were all captured.

Suitability data and parameters

Suitability parameters are partitioned into three categories: climate, land, and water. Data

sources, resolutions, and threshold values are presented in Table 1.

Table 1. Model parameterization and data sources used for habitat characterization.

Data Source Product Spatial Resolution Temporal Resolution Threshold

Temperature NASA MODIS MOD11A2.006 1-km 8-day min: 18˚C max: 32˚C

NDVI NASA MODIS MOD13Q1.006 250-m 16-day min: 0.35

Land Cover ESA & UCLouvain GlobCover 2009 V2.3 300-m - see Table 2

Precipitation UCSB Climate Hazards Group CHIRPS Pentad ~5.5-km Pentad min: 330mm max: 3224mm Q1–4�

Flow Accumulation WWF HydroSHEDS 500-m - >Q2��

Water Resources JRC GSW1_0 30-m - >0% water occurrence

�Quartiles 1–4 of the precipitation range are presented to identify areas of varying water inundation potential.

��A threshold for flow accumulation areas and streams was selected using visual imagery interpretation.

https://doi.org/10.1371/journal.pone.0235697.t001
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Climate

Temperature. Temperature is critical to mosquito life-history [40–42]. During aquatic

life stages, higher ambient temperatures encourage faster development, but have also been

shown to cause declining larval survivorship. Likewise, higher environmental temperature

increases adult mortality [43]. Bayoh & Lindsay [44] demonstrated that the lower and upper

temperature thresholds for An. gambiae s.s. larval development were 18˚C and 32˚C. At higher

(38–40˚C) or lower (10–12˚C) temperatures, larval survivorship was reduced and development

hindered. Temperature of water in occupied larval habitats near the equator in western Kenya

never exceeded 35˚ C, whereas nearby mud and soil reached as high as 50˚ C [45]. Throughout

most of sub-Saharan Africa, larvae may regularly experience high temperatures, particularly

during dry seasons, though in some cases only for a limited number of hours during the day.

Because eggs are commonly found on moist soil around larval habitats [45, 46] and tempera-

tures of that soil commonly exceed 40˚ C, high temperature is a limiting factor to distribution.

Minimum and maximum temperature thresholds in this model were set to 18˚C and 32˚C,

respectively [44]. Data were acquired from the Moderate Resolution Imaging Spectroradi-

ometer (MODIS) Terra Land Surface Temperature and Emissivity 8-Day Global dataset

(MOD11A2 V006) at a 1-km spatial resolution [47] Data are available from 02-18-2000

through the present (correct as of 01-01-2020).

Land

Land use and land cover. There is a significant correlation between Land Use and Land

Cover (LULC) and distributions of mosquito species [48]. The geography of vector abundance

is a product of numerous factors including the availability and productivity of aquatic habitats,

proximity of larval habitats to sugar and blood meal sources, and species-specific site prefer-

ences. LULC data were acquired from the GlobCover 2009 V2.3 product [49]. While MODIS

land-use/land-cover data (MCD12Q1) offer a finer temporal resolution, it does not

Fig 2. Model conceptual framework. Suitability is defined by the parameter thresholds for each input variable—refer

to Table 1.

https://doi.org/10.1371/journal.pone.0235697.g002
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consistently characterize the complex mosaic of land cover in Malawi, with subtle thresholds

determining land cover classifications [50]. To determine whether a class of LULC was suit-

able, class descriptions from the LULC data product were compared to habitat requirements

of the species based on the literature review described below (Table 2).

An. gambiae s.s. larval habitats are characterized as open sunlit pools [51] that are not

completely shadowed by vegetation [25]. Habitats occupied by larvae and productive for

pupae include soil burrow pits, drainage channels and ditches within planted fields, aggrega-

tions of cattle hoof prints, tire ruts and road puddles, and other similar ground water habitats

created by humans and often associated with agriculture, deforested and cultivated highland

swamps [27, 52, 53]. Further, An. gambiae habitats are often associated with human activity

including rice cultivation, wheel ruts, and cropping systems that facilitate water pooling [25].

To that end, GlobCover Class ID’s 11, 14, 20, and 30 (Table 2) were set to suitable for model

construction. The environmental niche of the M- and S-forms of An. gambiae s.s. (now known

as An. coluzzii and An. gambiae s.s. respectively) were assessed by Simard et al. [54] in Camer-

oon. Results showed that habitat suitability for S-form mosquitoes included dry savannah,

areas of higher evapotranspiration and lower water vapor pressure, and spaces highly degraded

by human activity; S-form’s avoided evergreen forest, preferring dry savanna and deciduous

Table 2. ESA GlobCover 2009 global landcover map classifications.

Class

ID

Class Description Suitable An. gambiae

Land Cover

11 Post-flooding or irrigated cropland Yes

14 Rainfed crops Yes

20 Mosaic cropland (50–70%) / vegetation (grassland, shrubland, forest) (20–

50%)

Yes

30 Mosaic vegetation (grassland, shrubland, forest) (50–70%) / cropland (20–

50%)

Yes

40 Closed to open (>15%) broadleaved evergreen and/or semi-deciduous forest

(>5m)

No

50 Closed (>40%) broadleaved deciduous forest (>5m) No

60 Open (15–40%) broadleaved deciduous forest (>5m) No

70 Closed (>40%) needleleaved evergreen forest (>5m) No

90 Open (15–40%) needleleaved deciduous or evergreen forest (>5m) No

100 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) No

110 Mosaic forest-shrubland (50–70%) / grassland (20–50%) Yes

120 Mosaic grassland (50–70%) / forest-shrubland (20–50%) Yes

130 Closed to open (>15%) shrubland (<5m) Yes

140 Closed to open (>15%) grassland Yes

150 Sparse (>15%) vegetation (woody vegetation, shrubs, grassland) Yes

160 Closed (>40%) broadleaved forest regularly flooded—Fresh water No

170 Closed (>40%) broadleaved semi-deciduous and/or evergreen forest regularly

flooded—saline water

No

180 Closed to open (>15%) vegetation (grassland, shrubland, woody vegetation)

on regularly flooded or waterlogged soil—fresh, brackish or saline water

Yes

190 Artificial surfaces and associated areas (urban areas >50%) GLOBCOVER

2009

No

200 Bare areas No

210 Water bodies No

220 Permanent snow or ice No

230 Unclassified No

https://doi.org/10.1371/journal.pone.0235697.t002
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forest [54]. M-form mosquitoes preferred forested areas, greater sunlight exposure, higher

water vapor pressure, and lower temperatures and evapotranspiration. To account for these

preferences in landcover, GlobCover Class ID’s 110, 120,130, 140, and 180 were set to suitable.

NDVI. The Normalized Difference Vegetation Index (NDVI) is a measure of vegetation

presence, health, and canopy leaf area index [55] and is calculated as a ratio of the Red and

Near-infrared (NIR) spectral bands:

NDVI ¼
ðNIR � RedÞ
ðNIRþ RedÞ

Higher values of NDVI are associated with healthier vegetation or plants with substantial

leaf biomass, whereas lower values typically signal poor vegetative health, or little to no vegeta-

tion present. The NDVI measure is used here as an identifier for suitable land areas for larval

breeding sites and mosquito development. Vegetation has several functions during mosquito’s

life history including providing necessary plant sugars for energy and nutrition [56]. Vegetated

areas also provide natural resting sites, particularly for mosquitoes that preferentially feed out-

doors. During resting-periods, shade provided by vegetated cover may inhibit excess water

loss, reducing mosquito’s risk of dehydration and desiccation [57].

Vegetative cover is an important factor in the distribution of larval habitats. For example, in

contrast to An. gambiae s.s.’ preference for dominantly sunlit pools, Anopheles flavirostris is

characterized as ‘shade-loving’ for its propensity to breed in pools that are partially shaded

[58]. Further, shade from overhanging plants may reduce the risk of predation on mosquito

larvae and provides protection from surface disturbance [59]. Studies on the relationship

between mosquito species presence and NDVI are prevalent among the literature (e.g., [60–

62]). Notably, Kelly-Hope, Hemingway, & McKenzie [63] found that mean NDVI values mea-

sured in three mosquito species habitats (An. gambiae s.s., An. arabiensis, and An. funestus)
ranged from 0.46–0.52 in Kenya. Findings showed mean NDVI was significantly correlated

with each of the three species; An. funestus was positively correlated with NDVI while An.

gambiae s.s. and An. arabiensis were negatively correlated [63]. Similarly, other studies have

established a relationship between NDVI and the presence of infectious disease vectors such as

the tsetse fly, attributing the relationship to available moisture [64].

Beyond an association with mosquito distributions, there is a well-established relationship

between NDVI and malaria (e.g., [65–67]). Hay, Snow, & Rogers [66] demonstrated that

malaria infection was associated with a minimum NDVI threshold of 0.3–0.4 at three sites in

Kenya. These findings were corroborated by the work of Sewe, Ahlm, & Rocklöv [67] who

found that malaria mortality incidences were correlated with NDVI values in the 0.3–0.4

range, but also demonstrated that larval mortality decreased as NDVI increased. Considering

the findings from these studies, a value of�0.35 was adopted herein to define suitable areas

and the LULC data described above was used to filter out areas with the greatest canopy cover

and dense vegetation (e.g., evergreen and deciduous forests). NDVI data were acquired from

the MODIS Terra Vegetation Indices 16-day Global archive (MOD13Q1 V006) at a spatial res-

olution of 250-m.

Water

Precipitation. Water is critical for mosquito larvae development and survival; mosquito

distributions should covary with precipitation. To estimate inundated, or likely to become

inundated areas that would support breeding, annual average precipitation was calculated

from the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS Version
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2.0) product at a resolution of 0.05 arc degrees (~5.5km) [68]. Mosquito eggs are laid either on

or in water, or in areas likely to pool; only a film of water is necessary to support mosquito

development through the larval and pupal stages [56]. Estimating an accurate precipitation

range that provides adequate water resources for breeding pool formation to support larval

development is an under researched area of inquiry and may require complex hydrological

modeling. Lindsay et al. [69] examined the relationship between climate variables (including

precipitation) and the geographic ranges of An. gambiae s.s. and An. arabiensis throughout

Africa. Results showed that total annual precipitation necessary for An. gambiae s.s. ranged

between 330–3224mm [69].

Rainy season analysis showed that the 330 mm minimum precipitation threshold rendered

virtually all of Malawi suitable for An. gambiae s.s. habitat during the rainy season; everywhere

in Malawi is justifiably suitable at a suboptimal level during this season. In order to locate the

most suitable areas, precipitation amount was parsed by quartiles. The top quartile (Q4) was

adopted to locate areas that are most prone to water inundation, while still abiding by the

annual maximum threshold described by Lindsay et al. [69] (3224mm). The production of lar-

val habitats should expand and proliferate during periods of seasonal rainfall and accumulated

precipitation.

Flow accumulation. Flow accumulation (FA) assists in identifying areas prone to pond-

ing based upon movement of sheet water and channeled drainage characteristics of the land-

scape. These data assist in water flow, water channels, dambo catchment areas, and are

necessary for calculating other hydrologic indices, such as the Topographic Wetness Index

(TWI), that have been used in previous mosquito distribution models (e.g., [12, 70]). In

Kenya, McCann et al. [12] showed that TWI along with distance to nearest stream were the

two most important environmental variables for predicting An. gambiae s.l. larval habitats.

FA and TWI differ only slightly; TWI is calculated as a function of FA and slope of a land-

scape. To delineate probable breeding habitat as a function of FA, the World Wildlife Fund

HydroSHEDS Flow Accumulation mapping product at a spatial resolution of 15 arc-seconds

(~500-m) was used. Given the 500-m spatial resolution of this product, areas in close proxim-

ity to the flow accumulation areas become inherently characterized as suitable, which was the

desired effect. The HydroSHEDS Flow Accumulation product is based on elevation data

derived from NASA’s Shuttle Radar Topography Mission (SRTM) [71]. To calculate FA, Dig-

ital Elevation Models are used to determine the natural drainage from a given pixel to adja-

cent, downslope pixels. Based on flow direction, the accumulated flow to each pixel is

calculated [72]. Suitable areas (i.e., streams, water channels, and dambo areas) were deter-

mined by setting a threshold that corresponded with visual interpretations of satellite images

in Malawi.

Water resources. A water resources layer was used to capture areas along the margins of

permanent and large water systems (e.g., rivers, streams, and lakes) that are likely to pool and

support vector breeding. Water resources were identified using the JRC Global Surface Water

Bodies Mapping Layer, v1.0 data product [73]. These data were generated from a composite of

>3 million Landsat 5/7/8 scenes acquired between March 16, 1984 and October 10, 2015 at a

spatial resolution of 30-meters [73]. Water bodies were buffered by 250-m to approximate

water-rich soils within proximity to permanent water areas. A 250-m buffer was selected to

match the spatial resolution of the flow accumulation layer and maintain consistency in char-

acterizing water prone areas. Primary water bodies and stream/river channels were subse-

quently masked to remove areas where larvae habitat is unsupported due to regular

disturbance (e.g., water flow and waves).
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Results

Seasonal Anopheles niche and targeting vulnerable areas

Rainfall in Malawi follows a distinct unimodal pattern; average rainfall is 1305mm during the

rainy season and 342mm in the dry season [74]. Mosquito abundance varies between rainy

and dry seasons, due in part to the availability and quality of breeding sites [75]. Rainy Season

(December–March) and Dry Season (April–November) maps are presented to elucidate the

spatio-temporal variations in habitat suitability driven by seasonality. Rainy season results are

presented for each quartile of precipitation; Quartile four (Q4) identifies areas most likely to

become inundated (Fig 3). Mapping a range of potential inundation areas from precipitation

provides useful information for developing spatially and temporally-targeted management

strategies that are resource efficient and can address areas most vulnerable to mosquito pro-

duction and malaria transmission. Using all four precipitation quartiles for characterizing suit-

ability depicts the maximum extent of An. gambiae s.s. fundamental niche; however, parsing

suitability classifications in this manner can benefit government and other aid stakeholders in

scenarios where available resources cannot meet the complete demand and allocation determi-

nations needed to be made based on risk. One inherent challenge associated with a quartile

approach is the influence of the Modifiable Areal Unit Problem (MAUP) [76]: Different areal

units will contain different ranges of precipitation, resulting in characterizations unique to

each area. However, the generalizability of this method manages MAUP by allowing classifica-

tions to vary across administrative levels [77]; a country-scale classification will benefit

national-scale decisions, while a district-scale classification will benefit policymakers at the dis-

trict level. An alternative approach would be to use universal thresholds to define areas of

water inundation, but this approach may also require complex hydrological modeling and

accurate soil characteristics data.

Fig 3. Spatio-temporal variations in habitat suitability in Malawi. Rainy season results are shown for each quartile

of precipitation; Q4 is indicative of area most likely to become inundated.

https://doi.org/10.1371/journal.pone.0235697.g003

PLOS ONE Mapping malaria vector suitability in Malawi with Google Earth Engine

PLOS ONE | https://doi.org/10.1371/journal.pone.0235697 August 4, 2020 10 / 21

https://doi.org/10.1371/journal.pone.0235697.g003
https://doi.org/10.1371/journal.pone.0235697


According to Q4 results, 7.25% of Malawi exhibits suitable water conditions (water only)

for Anopheles gambiae s.s., approximately 16% for water plus another factor, and 8.60% is

maximally suitable, meeting suitability thresholds for water presence, terrain characteristics,

and climatic conditions. Overall, approximately 44% of Malawi is highly prone to water inun-

dation during the rainy season, though a larger proportion of the country is water-suitable

(refer to quartiles 1–3 in Fig 3). Nearly 21% of Malawi is suitable for breeding based on land

characteristics alone and 28.24% is suitable according to climate and land characteristics. Only

6.14% of the total land area is suboptimal, predominately located in northern Malawi near

Mzuzu and characterized by broadleaved deciduous forest; these areas only meet suitability

criteria for NDVI. Dry season results show 25.07% of the total land area is suboptimal or

unsuitable. Approximately 42% of Malawi is suitable based on land characteristics alone dur-

ing the dry season, and 13.11% is suitable based on land plus another factor. Less than 2%

meets suitability criteria for climate, water, and land criteria (Fig 3).

Decadal aggregations: Anopheles niche by month

Mosquito habitat and environmental niche are inextricably linked. While the biophysical con-

straints that permit mosquito persistence may be definitionally static, seasonal variations in cli-

mate impact the spatial arrangement of environmental niche across temporal scales. Fig 4

demonstrates two temporal scales of observation—the rainy and dry seasons across 2017 and

2018—and Fig 4 illustrates monthly An. gambiae s.s. niche across a decade (2009–2018).

Fig 4. An. gambiae s. s. suitability for each month averaged across 2009–2018 in southeastern Malawi near Lake

Malombeand the Shire River. Suitable precipitation is demarcated using quartile 4, i.e., areas most likely to become

inundated—refer to Fig 3.

https://doi.org/10.1371/journal.pone.0235697.g004

PLOS ONE Mapping malaria vector suitability in Malawi with Google Earth Engine

PLOS ONE | https://doi.org/10.1371/journal.pone.0235697 August 4, 2020 11 / 21

https://doi.org/10.1371/journal.pone.0235697.g004
https://doi.org/10.1371/journal.pone.0235697


Biophysical conditions for each month are averaged across the 10 years, then parsed into suit-

ability categories using the thresholds from Table 1. Suitable precipitation is demarcated here

using quartile 4. This series of maps tracks what one would expect with niche contracting dur-

ing the dry season and expanding during the rainy season, with maximum suitability occur-

ring during the peak of Malawi’s crop production season (January, February, and March). The

area proportion that each suitability category occupies during each month is described in

Table 3. In February and March, approximately 13.24% and 12.9%, respectively, of the area

under observation contain conditions maximally suitable for An. gambiae s.s. (i.e., climate and

land are both suitable and water inundation likelihood is highest). In February, only 0.03% of

the area is suboptimal; 92.04% is optimal for climate and 68.99% for land. September and

October are the least suitable months, with suboptimality characterizing approximately

83.89% and 85.06% of the area, respectively.

Discussion

Niche expansion, contraction, and suitability corridors

This study is the first to present modeled An. gambiae s.s. habitat suitability for Malawi based

solely on environmental factors wherein clear spatio-temporal distinctions can be made of the

drivers of suitability during both the rainy and dry seasons. Understanding the spatial hetero-

geneity of suitability for malaria mosquitoes is an important component for malaria preven-

tion efforts, particularly for vector control-mediated reduction strategies. Though this study

focused specifically on modeling An. gambiae s.s., results may elucidate areas of An. arabiensis
suitability, as well. An. arabiensis and An. gambiae s.s. are sympatric [78]—their distributions

often overlap and both species are primary malaria transmitting mosquito species in Malawi

[79].

There are marked seasonal differences in suitability for An. gambiae s.s. in Malawi. Higher

temperatures and the scarcity of water bodies for oviposition substantially decrease the likeli-

hood of breeding during the dry season; however, some areas maintain suitability across sea-

sons. Of particular note is a lengthy corridor extending along the northern and central regions

of Lake Malawi that persists during the dry season, as well as suitable patches in the southern

and central regions (Fig 3). One unsurprising hypothesis emerging from this research is that

malaria vector mosquitoes may be concentrated in suitable dry season patches, expanding out-

ward as seasonal climate permits (i.e., periods of rain, vegetation abundance, and hospitable

temperatures). These patches may in part be related to the dambo hydrologic features of much

of the Malawi landscape, which reflects the dynamic nature of the local water shed in

Table 3. Land area percentage of each category within the geographic bounds of Fig 4 for each month.

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

S 57.56 18.38 7.35 0.03 0.15 10.07 23.3 27.88 44.35 75.29 83.89 85.06

W 26.57 11.87 4.31 2.85 3.28 3.17 4.03 4.77 5.81 8.86 10.79 11.08

C 0.07 0.49 9.21 16.18 16.33 14.15 3.09 0.03 0 1.43 1.26 0.06

L 6.83 48.38 37.79 1.2 1.92 23.08 56.19 60.2 43.79 11.15 2.95 3.02

WC 0.21 3.87 10.14 11.96 11.26 3.64 0.72 0.06 0.02 0.27 0.19 0.04

WL 8.76 16.4 7.87 3.89 3.49 3.28 7.26 7.01 6.02 2.66 0.84 0.73

CL 0 0.04 14.26 50.66 50.67 37.88 4.83 0.04 0 0.28 0.06 0.01

WCL 0.01 0.57 9.07 13.24 12.9 4.72 0.57 0.02 0 0.07 0.03 0

S = suboptimal, W = water, C = climate, L = land, WC = water & climate, WL = water & land, CL = climate & land, WCL = water & climate & land.

https://doi.org/10.1371/journal.pone.0235697.t003
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undulating landscapes of shallow relief and relatively high water table in the dambo “valleys”

between higher ground [80, 81]. This structure is discernable in Fig 3. If seasonal patterns of

expanding and contracting habitat exist and are tractable, then larval source management,

either through habitat modification and manipulation or larviciding (See: [82]), may benefit

from targeting the more circumscribed albeit suitable dry season patches where mosquito pop-

ulations are isolated and concentrated over smaller areas than during the wet season.

As for the lengthy corridor of suitability following alongside the lake during the dry season,

this may be one of the dominant hubs for malaria mosquitoes to persist in the absence of sea-

sonal rains, maintaining population sizes that can expand outward to much of Malawi during

the rainy season. These patches and corridors are consistent with the findings of Kazembe

et al. [83] and Mathanga et al. [34], who report that areas concentrated along the Lake Malawi

lakeshore and central plains experience the highest risk of malaria infection. In this regard,

environmental modifications including site-clearing and filling, drainage, or the development

of ecological barriers [84] may be viable strategies that assist in disrupting long corridors and

patches. Irrigated systems increase the overall suitable area for malaria vector mosquitoes [85];

however, relatively unconsidered is the potential for irrigated agriculture systems to create cor-

ridors between suitable habitats that otherwise would have remained isolated.

The absence of rainfall during the dry season limits breeding opportunity for An. gambiae
s.s. However, previous research in Malawi’s Lower Shire valley has demonstrated that mos-

quito abundance in irrigated sites was not significantly affected by the dry season [86]. Irriga-

tion provides consistent water sources for mosquito breeding irrespective of seasonal rainfall.

This is relevant given continued expansion of irrigated agriculture across Malawi driven by

food insecurity concerns (see: [87]). Changes to the geography of irrigated sites will influence

malaria vector distributions. To capture these sites, the ‘Post-flooding or irrigated cropland’

class in the GlobCover 2009 product was demarcated as suitable. However, approximately 80%

of Malawians are small-holder farmers [88] who cultivate relatively small parcels of land. Infor-

mally irrigated lands do not have formal planning, design, or engineered works [89] and are

recorded by Malawi’s Department of Irrigation; recorded sites are as small as 0.3-hectares [89].

Given the 300-m spatial resolution of GlobCover, it is reasonable to assume that not all irri-

gated cropland is captured by the GlobCover product. Future work should seek to include

geospatial data of irrigated sites across geographical areas of interest. These data may better

characterize suitable areas for mosquito species not captured by existing LULC datasets.

Anopheles fundamental niche in Malawi

Modeled results provide fine-resolution explicit information on the drivers of An. gambiae s.s.

suitability across Malawi where each pixel represents a 30x30-meter area (the finest spatial res-

olution of all data inputs). Arguably, the largest source of uncertainty for this particular model

stems from the spatial and temporal resolutions of data used for model construction (e.g.,

CHIRPS and MODIS LST). One limitation in measuring temperatures with remote sensing

during the rainy season is the abundance of cloud cover that prevents frequent temporal mea-

surements; however, these results are still an improvement over existing global models that are

spatially and temporally discontinuous. At coarse spatial resolutions, it is assumed that condi-

tions within each pixel are homogeneous. Although it is possible that suitable patches of An.

gambiae s.s. habitat may be finer than the input spatial and temporal resolutions (e.g. Land

Cover at 300-m), there are fragments of landscape containing aggregations of larval habitats at

this scale (See Fig 1 in [27]; Fig 6B in [90]). Finer spatial and temporal resolution products will

be needed moving forward to adequately capture local scale climate and biophysical condi-

tions. Such products will enable advancements in modeling not only suitable habitat, but
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vector movement, identifying corridors, and locating smaller landscape depressions that are

susceptible to pooling. Further, the ability to reliably detect the presence of human and animal

populations will improve future models given the importance of blood-feeding to mosquito

persistence. Despite current limitations, the flexibility of the heuristic presented here allows for

easy integration as new and improved products are ingested into the Google Earth Engine data

repository.

An important consideration of this study is that results elucidate geographical spaces

wherein environmental conditions permit the species to exist. As such, models are constructed

irrespective of species presence data. To include species presence data in our model is a move-

ment from modeling fundamental, to realized niche, implicitly introducing the influence of

confounding variables such as predation and competitive exclusion. A limitation of this

model, and any remote sensing-based model, is that the outputs generated are susceptible to

inaccuracy contained within each of the input products, potentially compounding as more var-

iables are added [91]. An example native to the CHIRPS data product was demonstrated in a

study conducted in Mozambique by Toté et al. [92], which showed that modeled rainfall from

CHIRPS outperformed both the FEWS NET and TARCAT rainfall estimation models; how-

ever, CHIRPS tended to overestimate the frequency of rainfall events. A recent study by Duan

et al. [93] evaluated the MOD112A2 LST data product with in situ measurements, finding that

inaccurate estimates can be attributed in part to landcover misclassifications. Uncertainty

issues inherent in each input variable affects the validity of the model presented here; however,

this heuristic is unique in that it was designed to accept new ‘best available’ data products as

they emerge. In addition, modeled outputs are a direct reflection of parameter thresholds

whose values are taken from the literature. We assume the accuracy of our product in so far as

the parameter thresholds used to construct the model are correct. It is prudent to note that

while our models demonstrate fundamental niche of species, species realized niche may differ

[14].

Comparability with Malaria Atlas Project

Our approach and outputs are complementary to Malaria Atlas Project (MAP) products,

though are distinct in several ways. Vector occurrence data from MAP ([5, 13, 24] are SDMs

constructed from species occurrence, background data (e.g., previous study records on sib-

ling species [13]), and environmental data to predict species distributions. Our work is not

an SDM, rather a model that elucidates the biophysical drivers of a species fundamental

niche accounting for the full range of values for environmental covariates the species has

been shown to survive within. This is an important distinction in approaches between our

model and MAP’s data. In traditional SDMs species presence and background and/or

absence data are integral to model construction; environmental covariate values for those

sites where presence, background, or absence data are recorded will influence model results.

The inclusion of background presence/absence data in SDMs are a means at limiting envi-

ronmental bias (stemming in part from sample selection bias), however these data may still

not fully reflect the complete fundamental niche a species may survive within. It is prudent to

note that fundamental niche is not synonymous with species presence. Realized species dis-

tributions are the result of a complex interplay of environmental and anthropogenic factors

that influence the survival of species [16]. The results of this study indicate where environ-

mental characteristics would allow An. gambiae s.s. to exist; it should not be taken as a perfect

representation of An. gambiae s.s. distribution or presence. However, it is assumed that

where more environmental variables converge on suitability, there is a higher likelihood of

species presence.
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An added marked difference in our heuristic compared to MAP data products is the user’s

ability to adjust parameter thresholds based on unique knowledge of target species and study

area. Variable thresholds that may be modified are temperature ranges, minimum NDVI, pre-

cipitation ranges, LULC, temporal ranges, and flow accumulation area delineation. Start and

end year, or range of months (for seasonal inquiries), provides an opportunity for examining

fine-resolution, spatio-temporal information on the drivers of suitability over time within the

user-defined geography. While data from MAP provide critical information on which envi-

ronmental parameters are significant predictors of species presence, the functionality of our

model allows users to investigate not only the geography of suitable areas, but what variables,

or combinations of variables encourage or restrict the likelihood of the species inhabitation

across both space and time. Finally, there is a stark difference in resolution of outputs: 30-m

and 5-km for our model and MAP data, respectively.

Despite the aforementioned marked differences between our model and predicted MAP

distributions, we compared our modeled rainy season Q4 outputs for An. gambiae s.s. in

Malawi to data from the MAP’s current data product for An. gambiae Giles, 1902 in Africa

[13] by calculating percent relative probability of vector occurrence within the area delineated

by each suitability category (Water, Climate, Land, Water & Climate, Water & Land, Land &

Climate, Water & Climate & Land). Modeled Q4 outputs reflect areas most likely to be inun-

dated and it was assumed here that predicted vector distributions from MAP and Q4 areas are

conceptually analogous. Results showed little variation in the minimum, maximum, and mean

relative probability values of vector occurrence with each suitability category area (min range:

0.02–0.04; max range: 0.85–0.95; mean range: 0.28–0.40) (Fig 5). Mean values are highest in

areas classified as suboptimal in our model (0.40).

The spatial resolution of environmental predictor variables used in model construction

here, as with MAP, can impact the resolution or scale of the conclusions drawn. The spatial

resolution of data layers used to model species distribution for MAP data is 5-km. While pre-

cipitation data used in our model are ~5.5-km resolution, the remainder of input data spatial

resolutions are much finer. As a result, significantly more microscale variation is elucidated in

our model. An added consideration is temporal resolution of input data layers. Data layers

used in model construction for MAP data are annual data and may only reflect the relative

probability of occurrence for the modeled species at one point in the year. Depending on the

timing and frequency of input species presence/background data, results may be biased to

reflect environmental conditions associated only with collection times. The Q4 data from our

model used in this analysis is representative of rainy season months (December–March) in

Malawi. Further, it is important to note the difference in analysis scale of our model and the

MAP data. MAP data for Malawi used in this analysis were subset from Wiebe et al.’s [13]

2017 predicted geographical distributions for An. gambiae, constructed at the African conti-

nental scale. Malawi, like much of sub-Saharan Africa, experiences strong seasonal variations

in climate that differ from other ecological zones across Africa and affect the spatio-temporal

distribution of mosquito abundance.

Conclusions

Modeling environmental suitability based on the physiological requirements of species facili-

tates research and vector control strategies in areas where species data may be limited or

absent. Defining geographical distributions of malaria-vector species is an integral part of

malaria control programs, yet so too is understanding what factors contribute to higher or

lower relative probabilities of occurrence. Malaria control programs in Africa predominately

aim to reduce human-vector contact through the use of long-lasting insecticidal nets and
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Fig 5. Relative probability for Anopheles gambiae from Malaria Atlas Project (MAP)—Vector Occurrence (Current) data

[13] by suitability category.

https://doi.org/10.1371/journal.pone.0235697.g005
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indoor residual spraying [24, 94]. Yet, Sinka et al. [25] highlight that these technologies are

often implemented without considering species distributions, composition, or behavior. Eluci-

dating the environmental drivers of suitability for malaria vectors provides an opportunity for

a more comprehensive approach to malaria control that includes not only modeled species dis-

tributions, but also the underlying drivers of suitability for a more effective approach to envi-

ronmental management.
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doi.org/10.1186/1756-3305-3-72 PMID: 20712879

PLOS ONE Mapping malaria vector suitability in Malawi with Google Earth Engine

PLOS ONE | https://doi.org/10.1371/journal.pone.0235697 August 4, 2020 17 / 21

https://www.cdc.gov/malaria/malaria_worldwide/impact.html
https://www.who.int/en/news-room/fact-sheets/detail/malaria
https://doi.org/10.1196/annals.1425.037
https://doi.org/10.1196/annals.1425.037
http://www.ncbi.nlm.nih.gov/pubmed/18579874
http://www.ajtmh.org/content/64/1_suppl/85.full.pdf
https://doi.org/10.1371/journal.pmed.1000209
http://www.ncbi.nlm.nih.gov/pubmed/20161718
https://doi.org/10.1186/1756-3305-3-72
https://doi.org/10.1186/1756-3305-3-72
http://www.ncbi.nlm.nih.gov/pubmed/20712879
https://doi.org/10.1371/journal.pone.0235697


12. McCann RS, Messina JP, MacFarlane DW, et al. Modeling larval malaria vector habitat locations using

landscape features and cumulative precipitation measures. Int J Health Geogr 2014; 13: 17. https://doi.

org/10.1186/1476-072X-13-17 PMID: 24903736

13. Wiebe A, Longbottom J, Gleave K, et al. Geographical distributions of African malaria vector sibling spe-

cies and evidence for insecticide resistance. Malar J 2017; 16: 85. https://doi.org/10.1186/s12936-017-

1734-y PMID: 28219387

14. Soberón J, Arroyo-Peña B. Are fundamental niches larger than the realized? Testing a 50-year-old pre-

diction by Hutchinson. PLoS One 2017; 12: e0175138. https://doi.org/10.1371/journal.pone.0175138

PMID: 28403170

15. Hutchinson GE. Cold spring harbor symposium on quantitative biology. Concluding remarks 1957; 22:

415–427.

16. Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecol Modell 2000; 135:

147–186.

17. Rushton SP, Ormerod SJ, Kerby G. New paradigms for modelling species distributions? J Appl Ecol

2004; 41: 193–200.

18. Elith J, Phillips SJ, Hastie T, et al. A statistical explanation of MaxEnt for ecologists. Divers Distrib 2011;

17: 43–57.

19. MAP. Introducing MAP, https://map.ox.ac.uk/introducing-map/ (2019, accessed 19 September 2019).

20. Gething PW, Casey DC, Weiss DJ, et al. Mapping Plasmodium falciparum mortality in Africa between

1990 and 2015. N Engl J Med 2016; 375: 2435–2445. https://doi.org/10.1056/NEJMoa1606701 PMID:

27723434

21. Hay SI, Abajobir AA, Abate KH, et al. Global, regional, and national disability-adjusted life-years

(DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territo-

ries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;

390: 1260–1344. https://doi.org/10.1016/S0140-6736(17)32130-X PMID: 28919118

22. Walker PGT, Griffin JT, Ferguson NM, et al. Estimating the most efficient allocation of interventions to

achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling

study. Lancet Glob Heal 2016; 4: e474–e484.

23. WHO. World Malaria Report 2018. Geneva, 2018.

24. Sinka ME, Bangs MJ, Manguin S, et al. The dominant Anopheles vectors of human malaria in Africa,

Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasit Vectors
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