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Abstract: Obesity-induced adipose inflammation has been demonstrated to be a key cause of insulin
resistance. Peptides derived from bovine α-lactalbumin have been shown to inhibit the activities of
dipeptidyl peptidase IV (DPP-IV) and angiotensin converting enzyme (ACE), scavenge 2,2′-azinobis
[3-ethylbenzothiazoline-6-sulfonate] (ABTS+) radical and stimulate glucagon-like peptide-2 secretion.
In the present study, the effects of bovine α-lactalbumin hydrolysates (α-LAH) on adipose insulin
resistance and inflammation induced by high-fat diet (HFD) were investigated. The insulin resistance
model was established by feeding C57BL/6J mice with HFD (60% kcal from fat) for eight weeks. Then,
the mice were fed with HFD and bovine α-LAH of different doses (100 mg/kg b.w., 200 mg/kg b.w.
and 400 mg/kg b.w.) for another 12 weeks to evaluate its protective effects against HFD-induced
insulin resistance. The oral glucose tolerance test (OGTT) and intraperitoneal insulin tolerance test
(ipITT) were conducted after intervention with α-LAH for 10 weeks and 11 weeks, respectively.
Results showed that bovine α-LAH significantly reduced body weight, blood glucose, serum
insulin, and HOMA-IR (homeostatic model assessment of insulin resistance) levels, lowered the
area-under-the-curve (AUC) during OGTT and ipITT, and downregulated inflammation-related gene
[tumor necrosis factor (TNF)-α, interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1]
expression in adipose tissues of HFD-fed C57BL/6J mice. Furthermore, bovine α-LAH also
suppressed insulin receptor substrate 1 (IRS-1) serine phosphorylation (Ser307, Ser612), enhanced
protein kinase B (known as Akt) phosphorylation, and inhibited the activation of inhibitor of kappaB
kinase (IKK) and mitogen activated protein kinase (MAPK) signaling pathways in adipose tissues of
HFD-fed C57BL/6J mice. These results suggested that bovine α-LAH could ameliorate adipose insulin
resistance and inflammation through IKK and MAPK signaling pathways in HFD-fed C57BL/6J mice.

Keywords: insulin resistance; inflammation; bovine α-lactalbumin hydrolysates; high-fat diet;
adipose tissue

1. Introduction

Obesity characterized by an excessive fat accumulation may lead to a number of metabolic
disorders, such as insulin resistance, type 2 diabetes, dyslipidemia, and hypertension. Among all of
these, insulin resistance is a key etiological cause [1–4].

The mechanisms by which obesity cause insulin resistance are complicated and still not
completely understood, but a lot of evidence supports the view that obesity-induced inflammation
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may be primarily responsible for insulin resistance [5]. In obesity, the insulin resistant state is
always accompanied by the increase of inflammatory cytokines including tumor necrosis factor
(TNF)-α, interferon (IFN-γ), interleukin (IL)-1β, interleukin (IL)-6, and monocyte chemoattractant
protein (MCP)-1. Correspondingly, the suppression of inflammatory cytokines attenuates insulin
resistance [6,7]. Furthermore, the mice lacking TNF-α, IL-1β or MCP-1 exhibited improved
insulin sensitivity although fed with a high-fat diet (HFD) [8–10]. These findings suggest that the
obesity-induced insulin resistance can be ameliorated through the reduction of inflammation.

Although, in obesity, the peripheral tissues including adipose tissue, liver, and skeletal are sites of
inflammation, adipose tissue plays a key role in the obesity-induced inflammation through secreting
pro-inflammatory cytokines [11,12]. Accumulating data demonstrate that adipose inflammation and
insulin resistance are associated with inhibitor of kappaB kinase (IKK) and mitogen activated protein
kinase (MAPK) signaling pathways [13,14]. They could stimulate the production of pro-inflammatory
cytokines and enhance the phosphorylation of insulin receptor substrate 1 (IRS-1) on serine residues,
thus causing insulin resistance [15,16]. Hence, the IKK and MAPK signaling pathways may be the
underlying mechanisms related to insulin resistance and inflammation.

Bovine α-lactalbumin is the second major whey protein in bovine milk, which plays an important
role in the properties and physiological function of whey proteins [17–19]. It has been shown to be
capable of attenuating inflammation. It suppressed IL-6 release induced by ischemia/reperfusion in
rats [20], and lowered TNF-α and IL-1β levels in the colon tissues of azoxymethane and dextran sodium
sulfate treated mice [21]. Bovine α-lactalbumin possesses the ability of regulating glucose homeostasis.
In Wistar rats, α-lactalbumin-rich whey concentrate supplementation reversed glucose intolerance
and insulin resistance in the muscle and liver induced by a high-sucrose diet [22]. In Gottingen
minipigs, bovine α-lactalbumin reduced serum haptoglobin and C-reactive protein level, resulting
in the amelioration of Western diet-induced glucose intolerance [23]. Furthermore, peptides derived
from bovine α-lactalbumin inhibited dipeptidyl peptidase 4 (DPP-4) activity, suppressed angiotensin
converting enzyme (ACE) activity, scavenged 2,2′-azinobis [3-ethylbenzothiazoline-6-sulfonate]
(ABTS+) radical and stimulated glucagon-like peptide-2 secretion [24–28]. However, there are few
studies about the efficacy and underlying mechanisms of bovine α-lactalbumin hydrolysates against
insulin resistance.

Thus, the present study was performed to investigate the effects of bovine α-lactalbumin
hydrolysates (α-LAH) on HFD induced insulin resistance and inflammation in C57BL/6J mice.
To determine the underlying mechanisms of bovine α-LAH, the effects of bovine α-LAH on
IRS-1/PI3K/Akt, IKK and MAPK signaling pathways were also investigated.

2. Materials and Methods

2.1. Materials

Bovine α-lactalbumin was provided by Davisco Foods International Inc. (Eden Prairie, MN, USA).
Alcalase was purchased from Novozymes Biologicals Inc. (Bagsvaerd, Denmark). Insulin was purchased
from Sigma-Aldrich (St. Louis, MO, USA). The mouse insulin enzyme-linked immunosorbent assay
(ELISA) kit was obtained from Mercodia (Uppsala, Sweden). The primary antibody against β-actin
(No. ab8227) was purchased from Abcam (Cambridge, UK). The primary antibodies against p-IRS-1
(Ser307) (No. 2381), p-IRS-1 (612) (No. 2386), IRS-1 (No. 3407), p-Akt (Ser473) (No. 4060), Akt (No.
4691), p-IKKα/β (No. 2597), IKKα (No. 2682), IKKβ (No. 2370), p-p38 (Thr180/Tyr182) (No. 4511), p38
(No. 8690), phospho-extracellular signal regulated kinases (p-ERK) (Thr202/Tyr204) (No. 4370), ERK
(No. 4696), phospho-c-Jun N-terminal kinases (p-JNK) (Thr183/Tyr185) (No. 4668), JNK (No. 9252),
and horseradish peroxidase-conjugated anti-rabbit secondary antibody (No. 7074) were obtained from
Cell Signaling Technology (Beverly, MA, USA). All other chemicals used in the study were at least of
analytical grade.
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2.2. Preparation of Bovine α-Lactalbumin Hydrolysates (α-LAH)

Bovine α-lactalbumin was dissolved in distilled water at a concentration of 5.0% (w/v).
The solutions were preincubated at 85 ◦C for 15 min, and then hydrolyzed with alcalase at an
enzyme/substrate mass radio of 1/20 at optimal conditions (pH 8.5, 55 ◦C) for 4 h. After heating at
85 ◦C for 20 min to inactivate the protease, the hydrolysates were centrifuged at 4000× g for 20 min at
4 ◦C. The supernatants were freeze-dried and stored at −20 ◦C for further investigation.

2.3. Animals and Diets

The C57BL/6J mice (5 weeks old, male) purchased from Beijing Vital River Laboratory Animal
Technology Co., Ltd. (Beijing, China) were housed three per cage at controlled temperature (22 ± 1 ◦C)
and humidity (40% ± 10%) with a 12-h light-dark cycle. All mice had free access to food and water.
After fed a normal chow diet for acclimation for 1 week, one group of the mice (n = 10) were fed
with normal control diets (13.40% of calories from fat, 60.85% of calories from carbohydrates, 25.75%
of calories from protein) (Beijing KeAo Feed Co. Ltd., Beijing, China) and the others were fed with
high-fat diets (60.08% of calories from fat, 20.04% of calories from carbohydrates, 20.05% of calories
from protein) for 8 weeks. Then, the mice fed normal control diets were maintained for 12 weeks (ND)
and the mice fed high-fat diets were randomly divided into 4 groups of ten mice each and maintained
for 12 weeks: (1) HFD mice fed high-fat diets only; (2) HFD + α-LAH100 mice fed high-fat diets with
α-LAH supplementation of low dose (100 mg/kg b.w., once a day); (3) HFD + α-LAH200 mice fed
high-fat diets with α-LAH supplementation of medium dose (200 mg/kg b.w., once a day); and (4) HFD
+ α-LAH400 mice fed high-fat diets with α-LAH supplementation of high dose (400 mg/kg b.w., once
a day). The mice in ND and HFD group were administered with sterile physiological saline and the
mice in other groups were administered with bovine α-LAH dissolved in sterile physiological saline
by orally gavage once a day. The body weight of the mice was recorded once a week, and the food
intake was measured every three days. At the end of the experiment, all mice were euthanized after
12 h of fasting. Blood samples were collected, left at 4 ◦C for overnight, centrifuged at 1000× g at
4 ◦C for 20 min, the separated serum was collected and stored at −80 ◦C until biochemical analysis.
Epididymal adipose tissues were promptly dissected out, rinsed off with saline, and stored at −80 ◦C
until further analysis. All animal experiments were approved by the Animal Ethics Committee at
China Agricultural University (the ethical review serial number is KY160049).

2.4. Fasting Blood Glucose, Fasting Serum Insulin and HOMA-IR (Homeostatic Model Assessment of
Insulin Resistance)

After an overnight fast, the blood samples were collected from the tail to measure blood glucose
with a glucose meter (Roche Diagnostics, Mannheim, Germany). The serum insulin concentration
was determined using a mouse insulin enzyme-linked immunosorbent assay (ELISA) kit according to
the manufacturer’s instruction. HOMA-IR (homeostatic model assessment of insulin resistance) was
calculated according to the following formula as previously described [29]:

HOMA-IR = [fasting glucose (mM) × fasting insulin (mU/L)]/22.5.

2.5. Oral Glucose Tolerance Test (OGTT)

Oral glucose test was conducted after intervention with α-LAH for 10 weeks according to the methods
previously described [30]. After an overnight fast, mice were administered glucose (2 g/kg b.w., oral).
Blood samples were collected from the tail before (0 min) and 30, 60, 90 and 120 min after glucose
administration to measure blood glucose with a glucose meter (Roche Diagnostics, Mannheim, Germany).
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2.6. Intraperitoneal Insulin Tolerance Test (ipITT)

Intraperitoneal insulin tolerance test was conducted after intervention with α-LAH for 11 weeks
using the methods previously described [31]. After a 6-h fast, mice were administered insulin
(0.75 U/kg b.w., intraperitoneal injection). Blood samples were collected from the tail before (0 min)
and 30, 60, 90 and 120 min after insulin injection to measure blood glucose with a glucose meter
(Roche Diagnostics, Mannheim, Germany).

2.7. Reverse Transcription Quantitative Real-Time PCR (RT-qPCR)

The total RNA was isolated from the epididymal adipose tissues with Trizol reagent (Tiangen Biotech,
Beijing, China), and conversed to cDNA by using EasyScript Plus cDNA Synthesis Kit (ABM, Richmond,
BC, Canada). The reverse transcription quantitative real-time PCR (RT-qPCR) was performed with a Techne
Quantica real-time PCR detection system (Techne, Stone, Staffordshire, UK). The thermal profile for the
real-time PCR was 95 ◦C for 180 s, followed by 40 cycles of 95 ◦C for 5s, 60 ◦C for 30 s, and 72 ◦C for 30 s.
In addition, the primers for TNF-α, IL-6 and MCP-1 were synthesized by Invitrogen (Carlsbad, CA, USA)
shown in Table 1. All results were normalized with respect to the expression of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) and were presented as the fold change of each sample group relative to the
ND group.

Table 1. Primers used for RT-qPCR.

Gene Primer Sequence (5′-3′)

TNF-α
Forward prime CATCTTCTCAAAATTCGAGTGACAA
Reverse prime TGGGAGTAGACAAGGTACAACCC

IL-6
Forward prime ATGGATGCTACCAAACTGGAT
Reverse prime TGAAGGACTCTCTGGCTTTGTCT

MCP-1
Forward prime GCCCCACTCACCTGCTGCTACT
Reverse prime CCTGCTGCTGGTGATCCTCTTGT

GAPDH
Forward prime TGGCAAAGTGGAGATTGTTGC
Reverse prime AAGATGGTGATGGGCTTCCCG

TNF-α, tumor necrosis factor alpha; IL-6, interleukin 6; MCP-1, monocyte chemoattractant protein 1; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase.

2.8. Western Blot Analysis

Epididymal adipose tissues were homogenized in RIPA buffer (Beyotime, Haimen, Jiangsu, China)
containing 1% protease inhibitor (Sigma-Aldrich, St. Louis, MO, USA) and 1% phosphatase inhibitor
(Sigma-Aldrich, St. Louis, MO, USA) to extract protein. Samples were centrifuged at 12,000× g at 4 ◦C
for 15 min to collect the supernatant. Protein concentration was determined using the bicinchoninic
acid protein assay kit (Tiangen Biotech, Beijing, China). The proteins were separated by 10% sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto polyvinylidene
fluoride (PVDF) membranes (Millipore, Bedford, MA, USA) with a wet transfer apparatus (Bio-Rad,
Hercules, CA, USA). After blocking the PVDF membranes with 5% fat-free milk in Tris-buffered saline
(TBS) containing 0.1% Tween 20 (TBS-T) for 2 h at room temperature, the membranes were incubated
with primary antibodies overnight at 4 ◦C. Next, the PVDF membranes were washed three times and
incubated with a horseradish peroxidase conjugated secondary antibody for 1 h at room temperature.
The enhanced chemiluminescence reagent (Millipore, Bedford, MA, USA) and autoradiographic film
were used to detect the protein bands. The immunoblotted band intensity was quantified by ImageJ
software (version, National Institutes of Health, Bethesda, MD, USA).
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2.9. Statistical Analysis

All data were expressed as means ± standard deviations (SD) values. Differences between groups
were evaluated using one-way ANOVA followed by Duncan’s multiple-comparison test (SPSS version
20.0, IBM Inc., Chicago, IL, USA). p < 0.05 was considered as statistically significant.

3. Results

3.1. Bovine α-Lactalbumin Hydrolysates (α-LAH) Prevented Body Weight Gain in HFD-Fed C57BL/6J Mice

Compared to the mice in the ND group, high-fat diet feeding induced a marked increase in body
weight from week 7 (Figure 1A). Bovine α-LAH supplementation at 100 mg/kg b.w., 200 mg/kg b.w.
and 400 mg/kg b.w. significantly reversed this change, as shown by significantly lower body weight
from week 16 than mice in the HFD group (Figure 1A). Meanwhile, there was no significant difference
in food intake among all the experimental groups (p > 0.05, Figure 1B).
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Figure 1. Effect of bovine α-lactalbumin hydrolysates (α-LAH) supplementation on body weight and
food intake in mice fed with high-fat diet. (A) Changes in body weight through the experimental
period; (B) Daily food intake. All data were presented as means ± standard deviations (SD)
(n = 10). Significance was determined by one-way analysis of variance (ANOVA) with the Duncan’s
multiple-comparison test, and mean values without common letters indicate differences at p < 0.05.

3.2. Bovine α-Lactalbumin Hydrolysates (α-LAH) Ameliorated Hyperglycemia and Hyperinsulinemia in HFD
Fed C57BL/6J Mice

The fasting glucose levels of the mice in the HFD group were significantly higher than that in the
ND group (Figure 2A). However, the supplementation of bovine α-LAH at different doses markedly
reduced the fasting glucose levels induced by HFD (Figure 2A). Similarly, HFD caused a significant
increase of fasting insulin levels, and the supplementation of bovine α-LAH strongly suppressed the
hyperinsulinemia (Figure 2B). In addition, bovine α-LAH supplementation suppressed the increase
of HOMA-IR induced by HFD (Figure 2C). Because hyperglycemia and hyperinsulinemia are the
main indicators of insulin resistance, and HOMA-IR is a direct index to measure the level of insulin
resistance, these data suggested that bovine α-LAH might have protective effects on HFD induced
insulin resistance.
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Figure 2. Effect of bovine α-lactalbumin hydrolysates (α-LAH) supplementation on hyperglycemia
and hyperinsulinemia in mice fed with high-fat diet. (A) Fasting blood glucose level; (B) fasting serum
insulin level; (C) Homeostatic model assessment of insulin resistance (HOMA-IR) index. All data were
presented as means ± standard deviations (SD) (n = 10). Significance was determined by one-way
analysis of variance (ANOVA) with the Duncan’s multiple-comparison test, and mean values without
common letters indicate differences at p < 0.05.

3.3. Bovine α-Lactalbumin Hydrolysates (α-LAH) Improved Glucose and Insulin Tolerance in HFD-Fed
C57BL/6J Mice

The effects of bovine α-LAH supplementation on HFD induced glucose and insulin intolerance
were investigated. After glucose administration, the blood glucose of HFD group sustained at high
levels and the area-under-the-curve (AUC) during oral glucose tolerance test (OGTT) was significantly
higher compared to the ND group (Figure 3A,B). The supplementation of bovine α-LAH exerted
protective effect on the HFD induced glucose intolerance in a dose-dependent manner, as shown by
the advanced glucose disposal and lower AUC compared to the HFD group (Figure 3A,B). Meanwhile,
HFD feeding impaired insulin tolerance in mice, which was demonstrated by the attenuated action of
insulin to lower glucose and the increase of AUC compared to the ND group (Figure 3C,D). When the
HFD-fed mice were supplemented with bovine α-LAH, the AUC during intraperitoneal insulin
tolerance test (ipITT) was markedly lower than that in the HFD group, suggesting that bovine α-LAH
supplementation improved the insulin tolerance in HFD-fed mice (Figure 3C,D).
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Figure 3. Effect of bovine α-lactalbumin hydrolysates (α-LAH) supplementation on glucose tolerance
and insulin tolerance in mice fed with high-fat diet. (A) The results of oral glucose tolerance test
(OGTT). After an overnight fast, mice were administered glucose (2 g/kg b.w., oral). Blood samples
were collected from the tail before (0 min) and 30, 60, 90 and 120 min after glucose administration to
measure blood glucose; (B) area under the curve (AUC) for the blood glucose levels during oral glucose
tolerance test (OGTT); (C) the results of intraperitoneal insulin tolerance test (ipITT). After a 6-h fast,
mice were administered insulin (0.75 U/kg b.w., intraperitoneal injection). Blood samples were collected
from the tail before (0 min) and 30, 60, 90 and 120 min after insulin injection to measure blood glucose;
(D) area under the curve (AUC) for the blood glucose levels during intraperitoneal insulin tolerance
test (ipITT). All data were presented as means ± standard deviations (SD) (n = 10). Significance was
determined by one-way analysis of variance (ANOVA) with the Duncan’s multiple-comparison test,
and mean values without common letters indicate differences at p < 0.05.

3.4. Bovine α-Lactalbumin Hydrolysates (α-LAH) Suppressed IRS-1 (Ser307, Ser612) Phosphorylation and
Enhanced Akt (Ser473) Phosphorylation in Epididymal Adipose Tissues of HFD Fed C57BL/6J Mice

The effects of bovine α-LAH on expression of insulin signaling markers in epididymal adipose
tissues of mice fed with HFD were examined. As shown in Figure 4A,B, after fed with HFD for 20 weeks,
the serine phosphorylation of IRS-1 (Ser307, Ser612) was significantly increased, but the serine
phosphorylation of Akt (Ser473) was strongly decreased. When the HFD-fed mice were supplemented
with bovine α-LAH, these changes were reversed in a dose-dependent manner. These results suggested
that bovine α-LAH could suppress the phosphorylation of IRS-1 (Ser307, Ser612) and enhance the
phosphorylation of Akt (Ser473) in adipose tissue, which means that bovine α-LAH could improve
adipose insulin resistance induced by HFD.



Nutrients 2018, 10, 242 8 of 16
Nutrients 2018, 10, x 8 of 15 

 

 

Figure 4. Effect of bovine α-lactalbumin hydrolysates (α-LAH) supplementation on expression of 
insulin signaling markers in epididymal adipose tissues of mice fed with high-fat diet. (A) a 
representative image of western blot analysis for phospho-insulin receptor substrate 1 (p-IRS-1) and 
p-Akt in epididymal adipose tissues; (B) fold change in relative densitometric levels of p-IRS-1/IRS 
and p-Akt/Akt relative to the ND group. All data were presented as means ± standard deviations (SD) 
(n = 6). Significance was determined by one-way analysis of variance (ANOVA) with the Duncan’s 
multiple-comparison test, and mean values without common letters indicate differences at p < 0.05. 

3.5. Bovine α-Lactalbumin Hydrolysates (α-LAH) Downregulated Inflammation-Related Gene Expression in 
Epididymal Adipose Tissues of HFD-Fed C57BL/6J Mice 

Whether bovine α-LAH influenced the expression of inflammation-related genes including 
TNF-α, IL-6 and MCP-1 in epididymal adipose tissues of high-fat diet-fed C57BL/6J mice were 
evaluated. The mRNA expression levels of TNF-α, IL-6 and MCP-1 in epididymal adipose tissues of 
mice fed with HFD were significantly increased as compared to that of the ND group (Figure 5). 
Nevertheless, bovine α-LAH strongly downregulated the TNF-α, IL-6 and MCP-1 mRNA expression 
in epididymal adipose tissues of mice fed with HFD (Figure 5). These findings indicated that bovine 
α-LAH could ameliorate inflammation in adipose tissues induced by HFD. 

Figure 4. Effect of bovine α-lactalbumin hydrolysates (α-LAH) supplementation on expression
of insulin signaling markers in epididymal adipose tissues of mice fed with high-fat diet.
(A) a representative image of western blot analysis for phospho-insulin receptor substrate 1 (p-IRS-1)
and p-Akt in epididymal adipose tissues; (B) fold change in relative densitometric levels of p-IRS-1/IRS
and p-Akt/Akt relative to the ND group. All data were presented as means ± standard deviations (SD)
(n = 6). Significance was determined by one-way analysis of variance (ANOVA) with the Duncan’s
multiple-comparison test, and mean values without common letters indicate differences at p < 0.05.

3.5. Bovine α-Lactalbumin Hydrolysates (α-LAH) Downregulated Inflammation-Related Gene Expression in
Epididymal Adipose Tissues of HFD-Fed C57BL/6J Mice

Whether bovine α-LAH influenced the expression of inflammation-related genes including TNF-α,
IL-6 and MCP-1 in epididymal adipose tissues of high-fat diet-fed C57BL/6J mice were evaluated.
The mRNA expression levels of TNF-α, IL-6 and MCP-1 in epididymal adipose tissues of mice fed
with HFD were significantly increased as compared to that of the ND group (Figure 5). Nevertheless,
bovine α-LAH strongly downregulated the TNF-α, IL-6 and MCP-1 mRNA expression in epididymal
adipose tissues of mice fed with HFD (Figure 5). These findings indicated that bovine α-LAH could
ameliorate inflammation in adipose tissues induced by HFD.
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3.6. Bovine α-Lactalbumin Hydrolysates (α-LAH) Inhibited the Activation of IKK Signaling Pathway in
Epididymal Adipose Tissues of HFD Fed C57BL/6J Mice

The impacts of bovine α-LAH on the activation of IKK signaling pathway were determined.
As shown in Figure 6A,B, HFD induced the increase of IKKα/β phosphorylation in epididymal
adipose tissues. However, bovine α-LAH supplementation significantly reversed these changes.
These results suggested that the supplementation of bovine α-LAH blocked the IKK signaling pathway
activation in adipose tissues induced by HFD.
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3.7. Bovine α-Lactalbumin Hydrolysates (α-LAH) Inhibited the Activation of MAPK Signaling Pathway in
Epididymal Adipose Tissues of HFD-Fed C57BL/6J Mice

To elucidate potential protective mechanisms of bovine α-LAH against the high-fat diet induced
insulin resistance and inflammation, the impacts of bovine α-LAH on the activation of MAPK signaling
pathway in epididymal adipose tissues were determined. As shown in Figure 7, the HFD led to p38,
ERK and JNK phosphorylation in epididymal adipose tissues. However, the supplementation of
bovine α-LAH markedly decreased the levels of p-p38, p-ERK and p-JNK, thus blocking the MAPK
signaling pathway (Figure 7A,B).
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Figure 7. Effect of bovine α-lactalbumin hydrolysates (α-LAH) supplementation on the activation
of mitogen activated protein kinase (MAPK) signaling pathway in epididymal adipose tissues
of mice fed with high-fat diet. (A) A representative image of western blot analysis for p-p38,
phospho-extracellular signal regulated kinases (p-ERK) and phospho-Jun N-terminal kinases (p-JNK) in
epididymal adipose tissues; (B) fold change in relative densitometric levels of p-p38/ p38, p-ERK/ERK
and p-JNK/JNK relative to the ND group. All data were presented as means ± standard deviations
(SD) (n = 6). Significance was determined by one-way analysis of variance (ANOVA) with the Duncan’s
multiple-comparison test, and mean values without common letters indicate differences at p < 0.05.

4. Discussion

When mice were fed with HFD for a period of time, it will develop obesity, hyperglycemia,
hyperinsulinemia, and glucose intolerance, resulting in a state of insulin resistance [11]. In the
present study, an insulin resistance model of C57BL/6J mice were established by feeding with HFD
(60% kcal from fat) for eight weeks. Next, the mice were fed with HFD and bovine α-LAH for another
12 weeks to evaluate the protective effects of bovine α-LAH against HFD-induced insulin resistance.
Our results showed that bovine α-LAH supplementation improved systemic and adipose insulin
resistance, downregulated TNF-α, IL-6, and MCP-1 mRNA expression and suppressed IKKα/β and
MAPK signaling pathways in adipose tissues of obese C57BL/6J mice induced by HFD.

Bovine protein and protein hydrolysates have been demonstrated to regulate glucose homeostasis
induced by HFD. A hydrolysate prepared by bovine casein attenuated nod-like receptor protein
3 (NLRP3) activity and improved insulin signaling, resulting in reduced hyperglycemia and
inflammation in mice fed with HFD [32]. Oral administration of bovine α-lactalbumin effectively
improved glucose tolerance, enhanced high molecular weight form of adiponectin, and suppressed
prostaglandin E2 levels in plasma in Goto–Kakizaki rats with type 2 diabetes [33]. Similarly, in our
present study, bovine α-LAH significantly reversed the increase of body weight, fasting blood glucose,
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fasting serum insulin, HOMA-IR, OGTT AUC and ipITT AUC induced by HFD. These data suggested
that bovine α-LAH administration ameliorated HFD induced systemic insulin resistance in mice.
However, there was no significant difference in food intake among all the bovine α-LAH supplemented
groups and HFD group, indicating that bovine α-LAH may lead to change in energy expenditure
in mice fed with HFD. In previous studies, brown adipose tissue activity, physical activity, and gut
microbiome are demonstrated to be related to energy metabolism in vivo, which will further induce
change in body weight [34–36]. Thus, we speculate that bovine α-LAH might reverse HFD induced
body weight gain through increasing brown adipose tissue activity, enhancing physical activity,
or modulating gut microbiome, which awaits further investigation.

In the initiation and development of insulin resistance, adipose tissue has been considered to
play an important role [37]. In the state of adipose insulin resistance, normal levels of insulin are
unable to stimulate adipose glucose and lipid uptake and suppress triglyceride hydrolysis, due to
inability of insulin to stimulate the down-stream IRS/PI3K/Akt pathway [38–40]. The insulin receptor
(IR) activated by insulin leads to phosphorylation of insulin receptor substrate (IRS) on multiple
tyrosine (Tyr) residues, followed by activation of PI3K and Akt. Activated Akt is capable of initiating
glucose uptake, glycogen synthesis, lipid synthesis and protein synthesis in adipose tissue, muscle
and liver [41–43]. However, phosphorylation of IRS-1 on serine (Ser) residues significantly reduces
the function of IRS-1. The phosphorylation of IRS-1 on Ser307, which could uncouple IRS-1 from IR,
negatively regulate tyrosine phosphorylation [13]. Moreover, phosphorylation of Ser612, which is
located close to the tyrosine residues needed for PI3K binding, interferes IRS-1 stimulated PI3K
activation [44]. In a previous study, corosolic acid improved insulin signaling in adipose tissues of
HFD mice, evidenced by reduced IRS-1 serine phosphorylation (Ser307), increased IRS-1 tyrosine
phosphorylation and Akt phosphorylation, leading to the improvement of glucose disposal [45].
Consistent with that, in the current study, bovine α-LAH reduced serine phosphorylation of IRS-1
(Ser307, Ser612) and enhanced serine phosphorylation of Akt (Ser473) in adipose tissue of HFD mice
(Figure 4), indicating that bovine α-LAH improved HFD induced adipose tissue insulin resistance
through IRS/PI3K/Akt pathway.

Inflammation may be an important contributor to HFD induced insulin resistance. In obesity,
the hypertrophied adipocytes produce proinflammatory cytokines including MCP-1, TNF-α and
IL-6 [46]. These cytokines cause recruitment of macrophages into adipose tissue, which will in
turn enhance adipose tissue inflammation. These mechanisms cause a state of low-grade chronic
inflammation, which has been proposed to be an important link between obesity and insulin
resistance [47]. In a previous study, CCR2 inhibitor propagermanium significantly reduced the
blood glucose, serum insulin, and HOMA-IR in HFD fed mice. Along with that, the increase of
pro-inflammatory M1 macrophage markers (CD11c and MCP-1) expression in adipose tissue was
also reversed [48]. Similarly, in the present study, bovine α-LAH not only exhibits protective effects
against HFD induced insulin resistance, but also significantly downregulated inflammation-related
gene (MCP-1, TNF-α and IL-6) expression in epididymal adipose tissues (Figure 5). These data
suggested that the capacity of bovine α-LAH to improve insulin resistance may be related to their
anti-inflammatory activities.

Inflammation and insulin resistance cross-talk through IKK and MAPK signaling pathways.
A previous study demonstrates that insulin resistance in obese rodents could be ameliorated by
inhibiting IKKβ activity or deleting IKKβ gene [14]. The mechanism by which IKKβ causes insulin
resistance is that it could directly enhance IRS-1 phosphorylation on Ser307, a key inhibitory site
of IRS/PI3K/Akt pathway [49]. Apart from IKKβ, MAPK signaling pathways are associated with
insulin resistance and inflammation. The MAPK subfamily members, including ERK, JNK and
p38 MAPK, could stimulate the production of pro-inflammatory cytokines, which will in turn
contribute to the further activation of MAPK signaling pathways [42]. Among all of the MAPK
subfamily members, JNK could promote the phosphorylation of IRS-1 on Ser307, whereas ERK could
promote the phosphorylation of IRS-1 on Ser612 [13]. The serine phosphorylation decreases tyrosine
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phosphorylation of IRS-1, followed by negative modulation of the PI3K and Akt phosphorylation [41].
Given that bovine α-LAH reversed the increase of IRS-1 phosphorylation (Ser307 and Ser612) and
inflammation-related gene (TNF-α, MCP-1 and IL-6) expression in epididymal adipose tissues induced
by HFD (Figures 4 and 5), we speculated that bovine α-LAH might ameliorate insulin resistance
and inflammation through inhibiting IKK and MAPK signaling pathways. As expected, bovine
α-LAH significantly suppressed phosphorylation of IKKα/β, JNK, ERK and p38 (Figures 6 and 7),
which provide compelling evidence that bovine α-LAH effectively interferes with the IKK and MAPK
signaling pathways in adipose tissues, thereby contributing to its protective effects against insulin
resistance and inflammation. However, the precise mechanism by which bovine α-LAH inhibits the
IKK and MAPK signaling pathways, remains unknown and needs to be investigated in future studies.

5. Conclusions

In summary, our present study demonstrated that bovine α-LAH possesses protective effects
against HFD induced adipose insulin resistance and inflammation in C57BL/6J mice. Bovine α-LAH
also suppresses IRS-1 phosphorylation, enhances Akt phosphorylation, and inhibits the activation of
IKK and MAPK signaling pathways in the adipose tissues of HFD-fed C57BL/6J mice, which may
contribute to its protective effects against insulin resistance and inflammation. These findings suggest
that bovine α-LAH may have the potential to be developed into functional foods against insulin
resistance and inflammation associated with obesity.

Acknowledgments: This work was supported by the National Natural Science Foundation of China (Grant
No. 31371753) and the Beijing Dairy Industry Innovation Team (BAIC06-2018).

Author Contributions: Jing Gao and Xueying Mao designed the research; Jing Gao and Jiajia Song performed the
experiments and statistical analyses; Jing Gao and Xueying Mao wrote the paper; and Xueying Mao and Min Du
reviewed and edited the manuscript. All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hannibal, T.D.; Schmidt-Christensen, A.; Nilsson, J.; Pettersson, N.F.; Hansen, L.; Holmberg, D. Deficiency in
plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin
resistance in mice. Diabetologia 2017, 60, 2033–2041. [CrossRef] [PubMed]

2. Klop, B.; Elte, J.W.F.; Cabezas, M.C. Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients
2013, 5, 1218–1240. [CrossRef] [PubMed]

3. Jung, U.J.; Choi, M.S. Obesity and its metabolic complications: The role of adipokines and the relationship
between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J.
Mol. Sci. 2014, 15, 6184–6223. [CrossRef] [PubMed]

4. Gallagher, E.J.; Leroith, D.; Karnieli, E. Insulin resistance in obesity as the underlying cause for the metabolic
syndrome. Mt. Sinai J. Med. 2010, 77, 511–523. [CrossRef] [PubMed]

5. Osborn, O.; Olefsky, J.M. The cellular and signaling networks linking the immune system and metabolism in
disease. Nat. Med. 2012, 18, 363–374. [CrossRef] [PubMed]

6. Bashir, S.; Sharma, Y.; Elahi, A.; Khan, F. Amelioration of obesity-associated inflammation and insulin
resistance in c57bl/6 mice via macrophage polarization by fish oil supplementation. J. Nutr. Biochem. 2016,
33, 82–90. [CrossRef] [PubMed]

7. Zhao, W.J.; Li, A.Y.; Feng, X.; Hou, T.; Liu, K.; Liu, B.L.; Zhang, N. Metformin and resveratrol ameliorate
muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue.
Cell Signal. 2016, 28, 1401–1411. [CrossRef] [PubMed]

8. Uysal, K.T.; Wiesbrock, S.M.; Mario, M.W.; Hotamisligil, G.S. Protection from obesity-induced insulin
resistance in mice lacking TNF-alpha function. Nature 1997, 389, 610–614. [PubMed]

9. Matsuki, T.; Horai, R.; Sudo, K.; Iwakura, Y. IL-1 Plays an important role in lipid metabolism by regulating
insulin levels under physiological conditions. J. Exp. Med. 2003, 198, 877–888. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00125-017-4341-0
http://www.ncbi.nlm.nih.gov/pubmed/28660492
http://dx.doi.org/10.3390/nu5041218
http://www.ncbi.nlm.nih.gov/pubmed/23584084
http://dx.doi.org/10.3390/ijms15046184
http://www.ncbi.nlm.nih.gov/pubmed/24733068
http://dx.doi.org/10.1002/msj.20212
http://www.ncbi.nlm.nih.gov/pubmed/20960553
http://dx.doi.org/10.1038/nm.2627
http://www.ncbi.nlm.nih.gov/pubmed/22395709
http://dx.doi.org/10.1016/j.jnutbio.2016.02.011
http://www.ncbi.nlm.nih.gov/pubmed/27260471
http://dx.doi.org/10.1016/j.cellsig.2016.06.018
http://www.ncbi.nlm.nih.gov/pubmed/27343375
http://www.ncbi.nlm.nih.gov/pubmed/9335502
http://dx.doi.org/10.1084/jem.20030299
http://www.ncbi.nlm.nih.gov/pubmed/12975454


Nutrients 2018, 10, 242 14 of 16

10. Weisberg, S.P.; Hunter, D.; Huber, R.; Lemieux, J.; Slaymaker, S.; Vaddi, K.; Charo, I.; Leibel, R.L. CCR2
modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 2006, 116, 115–124.
[CrossRef] [PubMed]

11. Zhou, J.; Xu, G.; Ma, S.; Li, F.; Yuan, M.; Xu, H.B.; Huang, K.X. Catalpol ameliorates high-fat diet-induced
insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways.
Biochem. Biophys. Res. Commun. 2015, 467, 853–858. [CrossRef] [PubMed]

12. Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease.
Nat. Rev. Immunol. 2011, 11, 85–97. [CrossRef] [PubMed]

13. Gual, P.; Le, M.; Tanti, J.F. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation.
Biochimie 2005, 87, 99–109. [CrossRef] [PubMed]

14. Kim, J.K.; Kim, Y.J.; Fillmore, J.J.; Chen, Y.; Moore, I. Prevention of fat-induced insulin resistance by salicylate.
J. Clin. Invest. 2001, 108, 437–446. [CrossRef] [PubMed]

15. Arkan, M.C.; Hevener, A.L.; Greten, F.R.; Maeda, S.; Li, Z.W.; Long, J.M.; Wynshaw-Boris, A.; Poli, G.;
Olefsky, J.; Karin, M. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 2005, 11,
191–198. [CrossRef] [PubMed]

16. Han, M.S.; Jung, D.Y.; Morel, C.; Lakhani, S.A.; Kim, J.K.; Flavell, R.A.; Davis, R.J. JNK Expression by
Macrophages Promotes Obesity-Induced Insulin Resistance and Inflammation. Science 2013, 339, 218–222.
[CrossRef] [PubMed]

17. Lam, R.S.H.; Nickerson, M.T. The effect of pH and temperature pre-treatments on the structure, surface
characteristics and emulsifying properties of alpha-lactalbumin. Food Chem. 2015, 173, 163–170. [CrossRef]
[PubMed]

18. Mohammadi, F.; Moeeni, M. Analysis of binding interaction of genistein and kaempferol with bovine
α-lactalbumin. J. Funct. Foods 2015, 12, 458–467. [CrossRef]

19. Jiang, Z.M.; Yuan, X.Y.; Yao, K.; Li, X.Y.; Zhang, X.L.; Mu, Z.S.; Jiang, L.Z.; Hou, J.C. Laccase-aided
modification: Effects on structure, gel properties and antioxidant activities of α-lactalbumin. Lwt—Food
Sci. Technol. 2017, 80, 355–363. [CrossRef]

20. Yamaguchi, M.; Uchida, M. α-lactalbumin suppresses interleukin-6 release after intestinal
ischemia/reperfusion via nitric oxide in rats. Inflammopharmacology 2007, 15, 43–47. [CrossRef]
[PubMed]

21. Yamaguchi, M.; Takai, S.; Hosono, A.; Seki, T. Bovine milk-derived α-lactalbumin inhibits colon inflammation
and carcinogenesis in azoxymethane and dextran sodium sulfate-treated mice. Biosci. Biotechnol. Biochem.
2014, 78, 672–679. [CrossRef] [PubMed]

22. Blouet, C.; Mariotti, F.; Azzout-Marniche, D.; Mathe, V.; Mikogami, T.; Tome, D.; Huneau, J.F. Dietary cysteine
alleviates sucrose-induced oxidative stress and insulin resistance. Free Radic. Biol. Med. 2007, 42, 1089–1097.
[CrossRef] [PubMed]

23. Blat, S.; Vincent, S.; Lefeuvre, L.; Lemoine-Morel, S.; Malbert, C.H.; Pichon, L.; Mikogami, T.;
Gratas-Delamarche, A. Dietary α-lactalbumin supplementation alleviates normocaloric western diet-induced
glucose intolerance in Gottingen minipigs. Obesity 2015, 23, 415–421. [CrossRef] [PubMed]

24. Lacroix, I.M.E.; Li-Chan, E.C.Y. Peptide array on cellulose support-a screening tool to identify peptides with
dipeptidyl-deptidase IV inhibitory activity within the sequence of α-lactalbumin. Int. J. Mol. Sci. 2014, 15,
20846–20858. [CrossRef] [PubMed]

25. Nongonierma, A.B.; Le Maux, S.; Hamayon, J.; FitzGerald, R.J. Strategies for the release of dipeptidyl
peptidase IV (DPP-IV) inhibitory peptides in an enzymatic hydrolyzate of α-lactalbumin. Food Funct. 2016,
7, 3437–3443. [CrossRef] [PubMed]

26. Fernandez-Fernandez, A.M.; Lopez-Pedemonte, T.; Medrano-Fernandez, A. Evaluation of antioxidant,
antiglycant and ACE-inhibitory activity in enzymatic hydrolysates of α-lactalbumin. Food Nutr. Sci. 2017, 8,
84–98. [CrossRef]

27. Sadat, L.; Cakir-Kiefer, C.; N’Negue, M.A.; Gaillard, J.L.; Girardet, J.M.; Miclo, L. Isolation and identification
of antioxidative peptides from bovine α-lactalbumin. Int. Dairy J. 2011, 21, 214–221. [CrossRef]

28. Izumi, H.; Ishizuka, S.; Inafune, A.; Hira, T.; Ozawa, K.; Shimizu, T.; Takase, M.; Hara, H. α-lactalbumin
hydrolysate stimulates glucagon-Like peptide-2 secretion and small intestinal growth in suckling rats. J. Nutr.
2009, 139, 1322–1327. [CrossRef] [PubMed]

http://dx.doi.org/10.1172/JCI24335
http://www.ncbi.nlm.nih.gov/pubmed/16341265
http://dx.doi.org/10.1016/j.bbrc.2015.10.054
http://www.ncbi.nlm.nih.gov/pubmed/26474703
http://dx.doi.org/10.1038/nri2921
http://www.ncbi.nlm.nih.gov/pubmed/21252989
http://dx.doi.org/10.1016/j.biochi.2004.10.019
http://www.ncbi.nlm.nih.gov/pubmed/15733744
http://dx.doi.org/10.1172/JCI11559
http://www.ncbi.nlm.nih.gov/pubmed/11489937
http://dx.doi.org/10.1038/nm1185
http://www.ncbi.nlm.nih.gov/pubmed/15685170
http://dx.doi.org/10.1126/science.1227568
http://www.ncbi.nlm.nih.gov/pubmed/23223452
http://dx.doi.org/10.1016/j.foodchem.2014.09.078
http://www.ncbi.nlm.nih.gov/pubmed/25466008
http://dx.doi.org/10.1016/j.jff.2014.12.012
http://dx.doi.org/10.1016/j.lwt.2017.02.043
http://dx.doi.org/10.1007/s10787-006-1558-9
http://www.ncbi.nlm.nih.gov/pubmed/17323195
http://dx.doi.org/10.1080/09168451.2014.890034
http://www.ncbi.nlm.nih.gov/pubmed/25036966
http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.006
http://www.ncbi.nlm.nih.gov/pubmed/17349935
http://dx.doi.org/10.1002/oby.20990
http://www.ncbi.nlm.nih.gov/pubmed/25594308
http://dx.doi.org/10.3390/ijms151120846
http://www.ncbi.nlm.nih.gov/pubmed/25402645
http://dx.doi.org/10.1039/C6FO00239K
http://www.ncbi.nlm.nih.gov/pubmed/27410260
http://dx.doi.org/10.4236/fns.2017.81006
http://dx.doi.org/10.1016/j.idairyj.2010.11.011
http://dx.doi.org/10.3945/jn.109.106401
http://www.ncbi.nlm.nih.gov/pubmed/19494023


Nutrients 2018, 10, 242 15 of 16

29. Sun, J.; Tang, Y.H.; Yu, X.; Xu, Y.Y.; Liu, P.Y.; Xiao, L.; Liu, L.G.; Deng, Q.C.; Yao, P. Flaxseed lignans
alleviate high fat diet-induced hepatic steatosis and insulin resistance in mice: Potential involvement of
AMP-activated protein kinase. J. Funct. Foods 2016, 24, 482–491. [CrossRef]

30. Gu, J.F.; Zheng, Z.Y.; Yuan, J.R.; Zhao, B.J.; Wang, C.F.; Zhang, L.; Xu, Q.Y.; Yin, G.W.; Feng, L.; Jia, X.B.
Comparison on hypoglycemic and antioxidant activities of the fresh and dried Portulaca oleracea L. in
insulin-resistant HepG2 cells and streptozotocin-induced C57BL/6J diabetic mice. J. Ethnopharmacol. 2015,
161, 214–223. [CrossRef] [PubMed]

31. Jo, S.H.; Kim, M.Y.; Park, J.M.; Kim, T.H.; Ahn, Y.H. Txnip contributes to impaired glucose tolerance by
upregulating the expression of genes involved in hepatic gluconeogenesis in mice. Diabetologia 2013, 56,
2723–2732. [CrossRef] [PubMed]

32. Healy, N.P.; Kirwan, A.M.; McArdle, M.A.; Holohan, K.; Nongonierma, A.B.; Keane, D.; Kelly, S.; Celkova, L.;
Lyons, C.L.; McGillicuddy, F.C.; et al. A casein hydrolysate protects mice against high fat diet induced
hyperglycemia by attenuating NLRP3 inflammasome-mediated inflammation and improving insulin
signaling. Mol. Nutr. Food Res. 2016, 60, 2421–2432. [CrossRef] [PubMed]

33. Yamaguchi, M.; Takai, S. Chronic administration of bovine milk-derived α-lactalbumin improves glucose
tolerance via enhancement of adiponectin in Goto-Kakizaki rats with type 2 diabetes. Biol. Pharm. Bull. 2014,
37, 404–408. [CrossRef] [PubMed]

34. Bartelt, A.; John, C.; Schaltenberg, N.; Berbee, J.; Worthmann, A.; Cherradi, M.L.; Schlein, C.; Piepenburg, J.;
Boon, M.R.; Rinninger, F.; et al. Thermogenic adipocytes promote HDL turnover and reverse cholesterol
transport. Nat. Commun. 2017, 8, 15010. [CrossRef] [PubMed]

35. Lindegaard, B.; Matthews, V.B.; Brandt, C.; Hojman, P.; Allen, T.L.; Estevez, E.; Watt, M.J.; Bruce, C.R.;
Mortensen, O.H.; Syberg, S.; et al. Interleukin-18 activates skeletal muscle AMPK and reduces weight gain
and insulin resistance in mice. Diabetes 2013, 62, 3064–3074. [CrossRef] [PubMed]

36. Worthmann, A.; John, C.; Ruhlemann, M.C.; Baguhl, M.; Heinsen, F.A.; Schaltenberg, N.; Heine, M.;
Schlein, C.; Evangelakos, I.; Mineo, C.; et al. Cold-induced conversion of cholesterol to bile acids in
mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat. Med. 2017, 23, 839–849.
[CrossRef] [PubMed]

37. Wang, F.; Han, L.; Qin, R.R.; Zhang, Y.Y.; Wang, D.; Wang, Z.H.; Tang, M.X.; Zhang, Y.; Zhong, M.; Zhang, W.
Overexpressing STAMP2 attenuates adipose tissue angiogenesis and insulin resistance in diabetic ApoE−/−

/LDLR−/− mouse via a PPAR gamma/CD36 pathway. J. Cell. Mol. Med. 2017, 21, 3298–3308. [CrossRef]
[PubMed]

38. Gastaldelli, A.; Gaggini, M.; Defronzo, R.A. Role of adipose tissue insulin resistance in the natural history of
T2DM: Results from the San Antonio metabolism study. Diabetes 2017, 66, 815–822. [CrossRef] [PubMed]

39. Samuel, V.T.; Shulman, G.I. The pathogenesis of insulin resistance: Integrating signaling pathways and
substrate flux. J. Clin. Invest. 2016, 126, 12–22. [CrossRef] [PubMed]

40. Leng, J.; Chen, M.H.; Zhou, Z.H.; Lu, Y.W.; Wen, X.D.; Yang, J.E. Triterpenoids-enriched extract from the
aerial parts of Salvia miltiorrhiza regulates macrophage polarization and ameliorates insulin resistance in
high-fat fed mice. Phytother. Res. 2017, 31, 100–107. [CrossRef] [PubMed]

41. Olivares-Reyes, J.A.; Arellano-Plancarte, A.; Castillo-Hernandez, J.R. Angiotensin II and the development of
insulin resistance: Implications for diabetes. Mol. Cell. Endocrinol. 2009, 302, 128–139. [CrossRef] [PubMed]

42. Capurso, C.; Capurso, A. From excess adiposity to insulin resistance: The role of free fatty acids.
Vasc. Pharmacol. 2012, 57, 91–97. [CrossRef] [PubMed]

43. Sesti, G. Pathophysiology of insulin resistance. Best Pract. Res. 2006, 20, 665–679. [CrossRef] [PubMed]
44. Boura-Halfon, S.; Zick, Y. Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am. J.

Physiol. Endocrinol. Metab. 2009, 296, E581–E591. [CrossRef] [PubMed]
45. Yang, J.; Leng, J.; Li, J.J.; Tang, J.F.; Li, Y.; Liu, B.L.; Wen, X.D. Corosolic acid inhibits adipose tissue

inflammation and ameliorates insulin resistance via AMPK activation in high-fat fed mice. Phytomedcine
2016, 23, 181–190. [CrossRef] [PubMed]

46. Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Invest. 2006, 116, 1793–1801.
[CrossRef] [PubMed]

47. Xu, H.Y.; Barnes, G.T.; Yang, Q.; Tan, Q.; Yang, D.S.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.;
et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance.
J. Clin. Invest. 2003, 112, 1821–1830. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jff.2016.04.032
http://dx.doi.org/10.1016/j.jep.2014.12.002
http://www.ncbi.nlm.nih.gov/pubmed/25523372
http://dx.doi.org/10.1007/s00125-013-3050-6
http://www.ncbi.nlm.nih.gov/pubmed/24037087
http://dx.doi.org/10.1002/mnfr.201501054
http://www.ncbi.nlm.nih.gov/pubmed/27390025
http://dx.doi.org/10.1248/bpb.b13-00762
http://www.ncbi.nlm.nih.gov/pubmed/24583859
http://dx.doi.org/10.1038/ncomms15010
http://www.ncbi.nlm.nih.gov/pubmed/28422089
http://dx.doi.org/10.2337/db12-1095
http://www.ncbi.nlm.nih.gov/pubmed/23670974
http://dx.doi.org/10.1038/nm.4357
http://www.ncbi.nlm.nih.gov/pubmed/28604703
http://dx.doi.org/10.1111/jcmm.13233
http://www.ncbi.nlm.nih.gov/pubmed/28631352
http://dx.doi.org/10.2337/db16-1167
http://www.ncbi.nlm.nih.gov/pubmed/28052966
http://dx.doi.org/10.1172/JCI77812
http://www.ncbi.nlm.nih.gov/pubmed/26727229
http://dx.doi.org/10.1002/ptr.5736
http://www.ncbi.nlm.nih.gov/pubmed/27714922
http://dx.doi.org/10.1016/j.mce.2008.12.011
http://www.ncbi.nlm.nih.gov/pubmed/19150387
http://dx.doi.org/10.1016/j.vph.2012.05.003
http://www.ncbi.nlm.nih.gov/pubmed/22609131
http://dx.doi.org/10.1016/j.beem.2006.09.007
http://www.ncbi.nlm.nih.gov/pubmed/17161338
http://dx.doi.org/10.1152/ajpendo.90437.2008
http://www.ncbi.nlm.nih.gov/pubmed/18728222
http://dx.doi.org/10.1016/j.phymed.2015.12.018
http://www.ncbi.nlm.nih.gov/pubmed/26926180
http://dx.doi.org/10.1172/JCI29069
http://www.ncbi.nlm.nih.gov/pubmed/16823477
http://dx.doi.org/10.1172/JCI200319451
http://www.ncbi.nlm.nih.gov/pubmed/14679177


Nutrients 2018, 10, 242 16 of 16

48. Mulder, P.; van den Hoek, A.M.; Kleemann, R. The CCR2 inhibitor propagermanium attenuates diet-induced
insulin resistance, adipose tissue inflammation and non- alcoholic steatohepatitis. PLoS ONE 2017, 12,
e0169740. [CrossRef] [PubMed]

49. Schmitz-Peiffer, C.; Whitehead, J. IRS-1 regulation in health and disease. IUNMB Life 2003, 55, 367–374.
[CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0169740
http://www.ncbi.nlm.nih.gov/pubmed/28076416
http://dx.doi.org/10.1080/1521654031000138569
http://www.ncbi.nlm.nih.gov/pubmed/14584587
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Preparation of Bovine -Lactalbumin Hydrolysates (-LAH) 
	Animals and Diets 
	Fasting Blood Glucose, Fasting Serum Insulin and HOMA-IR (Homeostatic Model Assessment of Insulin Resistance) 
	Oral Glucose Tolerance Test (OGTT) 
	Intraperitoneal Insulin Tolerance Test (ipITT) 
	Reverse Transcription Quantitative Real-Time PCR (RT-qPCR) 
	Western Blot Analysis 
	Statistical Analysis 

	Results 
	Bovine -Lactalbumin Hydrolysates (-LAH) Prevented Body Weight Gain in HFD-Fed C57BL/6J Mice 
	Bovine -Lactalbumin Hydrolysates (-LAH) Ameliorated Hyperglycemia and Hyperinsulinemia in HFD Fed C57BL/6J Mice 
	Bovine -Lactalbumin Hydrolysates (-LAH) Improved Glucose and Insulin Tolerance in HFD-Fed C57BL/6J Mice 
	Bovine -Lactalbumin Hydrolysates (-LAH) Suppressed IRS-1 (Ser307, Ser612) Phosphorylation and Enhanced Akt (Ser473) Phosphorylation in Epididymal Adipose Tissues of HFD Fed C57BL/6J Mice 
	Bovine -Lactalbumin Hydrolysates (-LAH) Downregulated Inflammation-Related Gene Expression in Epididymal Adipose Tissues of HFD-Fed C57BL/6J Mice 
	Bovine -Lactalbumin Hydrolysates (-LAH) Inhibited the Activation of IKK Signaling Pathway in Epididymal Adipose Tissues of HFD Fed C57BL/6J Mice 
	Bovine -Lactalbumin Hydrolysates (-LAH) Inhibited the Activation of MAPK Signaling Pathway in Epididymal Adipose Tissues of HFD-Fed C57BL/6J Mice 

	Discussion 
	Conclusions 
	References

