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INTRODUCTION

Humans have always been in the quest to augment their 
intelligence. Artificial intelligence  (AI) and machine 
learning  (ML) can distil information from massive 
datasets, but only humans can understand the context 
of the information. AI is making a rapid foray into 
the medical field. It helps in making the most of the 
knowledge acquired by humans. It learns and reacts 
to the data and thus allows humans to redirect their 
efforts from mundane tasks to more high‑priority areas.

One of the major reasons for morbidity and mortality 
in anaesthesia is human error.[1] The anaesthesiologist 
delivering anaesthesia has to tackle multiple tasks 
simultaneously, a patient with many clinical 
conditions, procedures, drugs, equipment and clinical 
uncertainty. This cognitive overload can become 
challenging for the anaesthesiologist, and AI can 
help choose the best plan for the patient and improve 
safety and outcome.[2] Anaesthesiologists are well 

placed to harness the advantages of AI in various areas 
like perioperative monitoring, anaesthesia care, drug 
delivery, post‑anaesthesia care unit, pain management 
and intensive care unit. Multiple techniques in the 
field of AI find an application in the clinical practice 
of anaesthesiology and benefit workflow patterns, 
decision‑making, event prediction and optimisation of 
operating room logistics.

METHODS

A search was done on the search engines  (Google 
Scholar, Scopus and PubMed) for articles with the 
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keywords: artificial intelligence, perioperative, 
monitoring, anaesthesia delivery and risk prediction. 
The information on monitoring technologies and the 
themes relating to applications of AI were extracted 
from the identified articles. Numerous algorithms 
used in AI studies and their applications are outside 
the scope of this review and were thus not included. 
Reviewing full‑text articles helped identify studies 
relevant to the depth of anaesthesia monitoring, 
control of anaesthesia delivery and prediction of 
events and risks. Most studies investigated how AI 
benefits anaesthesia practice by helping the clinician’s 
workflow, decision‑making and drug delivery based 
on perioperative monitoring parameters. AI is an 
expansive field, and here we aim to present the role 
of the perioperative depth of anaesthesia monitoring, 
clinical decision support systems  (CDSS) and 
closed‑loop anaesthesia delivery (CLAD).

DISCUSSION

Though the outcomes of ML and AI are similar, ML 
forms a part of AI by dint of evolution. ML uses 
various learning algorithms like supervised learning, 
unsupervised learning and reinforcement learning to 
solve problems.[3]

An example of supervised learning is the study by 
Kendale et al. The authors studied patients’ electronic 
health records  (EHRs) to identify those who had 
hypotension after propofol administration. The 70% 
training dataset was then analysed for a 30% test 
case to assess the algorithm’s accuracy in predicting 
hypotension after induction.[4]

Unsupervised learning can be described by 
identifying asthmatic patients who would benefit 
from glucocorticoid therapy.[5] Padmanabhan et  al. 
developed an anaesthesia controller to target propofol 
infusion rates based on the bispectral index  (BIS) 
and mean arterial pressure feedback. The reinforced 
learning algorithm fine‑tunes the drug rate based on 
the response. This also helps the results to be in the 
range and prevents overdosing or underdosing.[6]

AI uses various models within the three ML algorithms, 
like fuzzy logic, classical ML, neural networks, deep 
learning and Bayesian methods.

Fuzzy logic builds on rule‑based systems, where 
appropriate rule sets are determined using expert 
human inputs for the machine to follow. However, AI 

focuses more on the data and mathematical models. 
Research in fuzzy logic relevant to applications for 
drug delivery is advancing gradually.[7]

Classical ML uses data properties to formulate 
algorithms for complex data analysis with the help 
of experts who select the requisite features. In the 
study by Hu et al., the authors used a decision tree to 
calibrate the patient‑controlled analgesia (PCA) dosing 
regimen based on drug consumption, medical and 
surgical history, and patient demography.[8]

The most popular methods as of now are neural 
networks and deep learning. The pattern closely 
resembles the biological nervous system. The input 
layer is the data: electroencephalogram (EEG), entropy, 
mean arterial pressures and heart rate variability. 
A  hidden layer analyses the data, and the output 
layer yields an interpretable result, such as whether 
the patient is awake or asleep. Between each layer 
are multiple neural networks, and different outputs 
can be achieved based on the designed algorithms.[9] 
Deep learning learns from various datasets and may 
provide more significant outputs. These features could 
be utilised to automate monitoring of the depth of 
anaesthesia and control anaesthesia delivery.

Natural language processing focuses on understanding 
human language through machines. It is applied 
to retrieve information from the free text fields and 
construct structured databases. This becomes useful 
for studying all the surgical cases, adverse events and 
other perioperative processes related to the cases.[10]

Computer vision is another subfield of AI. Here, the 
machine understands the visual inputs like images 
and videos by automated acquisition, processes and 
analyses to understand the result. Perioperative uses 
of AI include automated analyses of ultrasonographic 
images, identification during regional blocks 
for anaesthesia and analgesia, and diagnostic 
interventions.[11]

AI in anaesthesia can empower anaesthesiologists with 
decision‑making and help them address clinical issues 
more efficiently. AI can be categorised into CDSS, 
pharmacological and mechanical robotic applications 
and depth of anaesthesia monitoring. CDSS plays a 
significant role in perioperative monitoring by aiding 
in optimal anaesthesia care. The patient data and 
procedure knowledge are analysed by computer‑based 
tools, which determine the dose of anaesthesia drugs 
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and fluid management. This also helps in perioperative 
care, like analgesia management, and prevents patient 
deterioration post‑anaesthesia by analyses of patient 
parameters to detect early signs.[12]

The earliest efforts to develop an automated 
anaesthesia system began in 1950. Based on 
EEG signal, Bickford described a closed‑loop feedback 
control system to monitor and maintain the depth of 
anaesthesia.[13] Researchers at McGill University in 
Montreal, Quebec and the McGill University Health 
Centre  (MUHC) took a leaf out of Bickford’s work. 
They developed a system of controllers based on 
response algorithms which attempted to maintain 
the target variable  (depth of anaesthesia) around 
a set point  [Figure  1]. This system was given the 
nomenclature of ‘McSleepy’.[14] Dumont used a 
quantifiable input, such as a BIS, rather than an EEG, 
but the overall structure remained the same.[15]

AI finds application in pharmacological robotics, 
where the system engages with the alerts and 
recommendations based on perioperative monitoring 
data and delivers patient‑specific anaesthesia.

The first-generation open loop–type pharmacological 
robots are target‑controlled infusion  (TCI) systems 
that can build pharmacokinetic models of different 
drugs. In these systems, specific plasma drug levels are 
achieved through software‑assisted delivery of doses 
and continuous infusion. TCI works on estimated 
plasma and effect-site concentrations that could vary 
from the actual concentrations, especially in patients 
exhibiting extreme anthropomorphic features.[16]

CLAD works on the principle of continuous clinical 
and bio‑signal data processing with a complex 
input–output process. The robot delivers appropriate 
pharmacological dosing of anaesthetic agents and 
helps manage fluid and  analgesia. The algorithm of 
CLAD helps in appropriate drug dosing while also 
identifying potential drug interactions.[17,18]

When faced with clinical complexity, rule‑based 
algorithms cannot match a skilled human’s ability. 
Herein, AI algorithms can learn from a large set of 
inputs and be ‘trained’ to perform the task and deliver 
desired responses. In an anaesthesia machine, the 
controller gets trained by a plethora of sample cases 
as control inputs like BIS, albeit under the supervision 
of human anaesthesiologists. The neural network 
ensures that the system delivers requisite set point 
outputs. Thus, the system is ‘trained’ or ‘grown’ in a 
‘bottom‑up’ manner instead of a ‘top‑down’ approach 
of handcrafting control rules.[19]

The only difference is that AI‑trained delivery 
systems do not depend on human rationalisation and 
introspection. The desired set of responses is learnt 
by the system automatically by imitation. It could 
achieve the decision‑making level equivalent to that 
of an anaesthesiologist, with the added advantage of 
speed and accuracy.

As early as the 1970s, CDSS was tested and 
used primarily for academic purposes as it was 
time‑consuming and had poor system integration.[20] In 
its current format, CDSS interacts with EHR and can be 
administered by computers, tablets and smartphones. 

Figure 1: Closed‑loop anaesthesia delivery – McSleepy model
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It can be knowledge‑based, where relevant data is 
retrieved and analysed to generate a suitable output. 
The non‑knowledge‑based system relies on AI 
and ML to access complete patient data to extract 
relevant clinical knowledge.[21] During perioperative 
care, this helps set ventilation parameters, use 
low‑flow anaesthesia, and monitor and manage blood 
pressure, postoperative nausea and vomiting. CDSS 
helps assess intraoperative blood loss by monitoring 
intravascular volume and other haemodynamic 
parameters. Accepted clinical guidelines could be 
converted through CDSS into dynamic and usable 
tools for managing specific patients in real‑time while 
facilitating the efficient collection of patient care 
information to monitor outcomes. This enables CDSS 
to help improve care by selecting the best patient 
treatment. It can offer automated recommendations 
on various areas like administering anaesthetic agents, 
analgesia dosage and fluid management as part of 
perioperative care and help reduce medication errors 
and adverse events.

Perioperative monitoring is a tedious task, and alarm 
fatigue experienced by the anaesthesiologist during 
anaesthesia administration can be a serious safety 
concern for the patients. Cognitive robots driven by 
AI could be integrated into alarm systems to analyse 
multiple parameters simultaneously, thus helping 
to lower false alarm rates and operator fatigue.[22] 
Monitoring the depth of anaesthesia forms the backbone 
of AI applications in anaesthesia practice.[23]

The main organ targeted by anaesthesia is the brain. 
Hence, the anaesthetic effect could be monitored via 
EEG. Different anaesthetic drugs produce various 
EEG changes; notwithstanding, any newly developed 
processed EEG monitor for monitoring the depth 
of anaesthesia would require further research and 
validation. Deep learning models in AI could assist 
in eliminating the need to perform clinical trials on 
hypnosis‑level monitors.[24]

A non‑invasive modality like EEG could be an 
effective tool for studying brain activity since the 
central nervous system is the main organ targeted by 
anaesthesia. Shalbaf et al. worked on EEG to analyse 
entropy, spectral and fractal signals, which were then 
applied to an algorithm that had the characteristics 
of all the groups. The best characteristics  (sample 
entropy, Shannon permutation entropy, beta‑index 
and detrended fluctuation) were then applied to a 
neuro‑fuzzy classification algorithm, an adaptive 

neuro‑fuzzy inference system with linguistic 
hedges  (ANFIS‑LH). ANFIS‑LH distils out the 
unimportant features in the input and suitably 
changes the output. This method was studied in 
17 patients who received sevoflurane anaesthesia, and 
it classified their EEG data based on the various states 
of depth of anaesthesia with an accuracy of 92%. This 
included a range from awake to light to general and 
deep states of anaesthesia. Similarly, 50 patients who 
were administered propofol and volatile anaesthesia 
also demonstrated an accuracy of 93% when their 
EEG signals were classified  into awake or general 
anaesthesia. This new real‑time monitoring system 
will help the anaesthesiologist assess the depth of 
anaesthesia (DoA) quickly and accurately.[25]

Mid‑latency auditory evoked potential is another 
monitoring tool which can be used to judge the depth 
of anaesthesia in patients. Zhang et al. reported  the 
accuracy of these signals as 96.8%  (awake patients), 
86%  (adequate anaesthesia) and 86.6%  (emergence 
from anaesthesia).[26]

Nagaraj et  al. studied heart  rate variability to assess 
sedation in critical care settings.[27] Ranta et al. found 
in their analysis of statistics of almost 550  patients 
who underwent general anaesthesia that 6% reported 
intraoperative awareness. However, the predictability 
of awareness for these networks increased to 66% 
when additional features like blood pressure, heart 
rate and end‑tidal carbon dioxide were investigated, 
but the specificity was 98%. These approaches 
have a high utility because the neural network can 
auto‑update itself with the attributes in the dataset 
and utilise the chief attributes which predict the 
endpoint (e.g. awareness) instead of being taught the 
features suggested by the clinicians to be the most 
prognostic.[28]

The advantages of AI are also being exploited to 
achieve control of mechanical ventilation. Various 
studies have described automated weaning from 
mechanical ventilation. Schäublin et al. studied fuzzy 
logic during routine general anaesthesia in 30 patients 
whose mechanical ventilation was controlled using 
closed‑loop feedback. The aim of accomplishing 
and maintaining end‑tidal carbon dioxide fraction 
(FETCO2) was achieved by automatically regulating 
the respiratory frequency  (f) and tidal volume  (VT). 
Regarding reliability and safety, these studies 
demonstrated comparable outcomes between fuzzy 
control and human control.[29]
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Schädler et  al. gave the first illustration of an 
automated weaning system called the Evita Weaning 
System  (EWS)  (Evita 4; Dräger Medical, Lübeck, 
Germany). The novel EWS reduced the patient’s 
respiratory workload by controlling the ventilatory 
settings in an automated manner. This is applied to the 
settings in a pressure‑controlled and pressure‑support 
mode. EWS has made it feasible to control the 
mechanical ventilator remotely, thus weaning the 
patients from the controlled mode of mechanical 
ventilation to assisted spontaneous breathing.[30]

Perioperative monitoring towards event prediction 
has also been identified in the database of about 53 
papers. Following the induction dose of propofol, 
hypnosis was compared between neural networks 
and practising anaesthesiologists, as evaluated by BIS 
measurement. There was a sensitivity of 82.35% and 
a specificity of 64.38% with the former, compared to a 
sensitivity of 20.64% and a specificity of 92.51% with 
the latter.[31]

To predict the return of consciousness after general 
anaesthesia (propofol with remifentanil), Nunes et al. 
studied 20 patients. In comparison, neural networks 
and fuzzy models showed mixed results.[32]

The artificial neural network  (ANN) has also been 
tested to predict the recovery of a neuromuscular 
block during general anaesthesia. The network was 
trained with parameters such as electromyographic 
train‑of‑four response, end‑tidal carbon dioxide 
concentration, multiple minimum alveolar 
concentration, and peripheral and central temperature. 
Santanen et al.[33] hypothesised that a neural net could 
predict the recovery time significantly better and more 
accurately than a clinician.

One of the most important consequences of spinal 
anaesthesia is hypotension, which is multifactorial. 
Lin et  al. used ANNs with available data to detect 
complex patterns. One thousand five hundred and one 
patients receiving spinal anaesthesia were studied. 
The predictive model was developed using their 
anaesthesia records; 75% of the data was used for 
training ANN and 25% for the test. This test set helped 
in validating the performance of the neural predictive 
model. Human review of this data was also done by 
involving senior anaesthesiologists. They predicted 
hypotensive events during spinal anaesthesia by 
clinical experience, with a sensitivity ranging from 
about 16% to 36.1% and a specificity ranging from 

64% to 87.0%. The ANN model fared much better, 
with a sensitivity of 75.9% and a specificity of 76%. 
Thus, using a computer‑based predictive model in 
the perioperative period would increase vigilance, 
allow for patient‑specific therapeutic intervention and 
suggest an alternative method of anaesthesia.[34]

CONCLUSIONS

Enhancement in technology, especially AI, in many 
fields, including medicine, has proven to be far superior, 
safer and less erratic than human decision‑making. 
Humanity aspires to utilise technology to improve 
decision‑making by developing tools like CDSS for 
anaesthesia monitoring and delivery without replacing 
the physician’s judgement. The strengths and flaws 
of AI‑driven healthcare technology will ensure good 
patient outcomes if understood well. Thus, careful 
consideration in adopting AI is needed in perioperative 
care, where incorrect deductions can be disastrous.
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30.	 Schädler D, Mersmann  S, Frerichs  I, Elke  G, 
Semmel-  Griebeler  T, et  al. A  knowledge-  and model-based 
system for automated weaning from mechanical ventilation: 
Technical description and first clinical application. J  Clin 
Monit Comput 2014;28:487–98.

31.	 Lin  CS, Li  YC, Mok  MS, Wu  CC, Chiu  HW, Lin  YH. Neural 
network modeling to predict the hypnotic effect of propofol 
bolus induction. Proc AMIA Symp 2002:450–3.

32.	 Nunes CS, Mendonca TF, Amorim P, Ferreira DA, Antunes L. 
Comparison of neural networks, fuzzy and stochastic 
prediction models for return of consciousness after general 
anesthesia. Proceedings of the 44th  IEEE Conference on 
Decision and Control 2005: 4827–32.

33.	 Santanen  OA, Svartling  N, Haasio  J, Paloheimo  MP. Neural 
nets and prediction of the recovery rate from neuromuscular 
block. Eur J Anaesthesiol 2003;20:87–92.

34.	 Lin  CS, Chiu  JS, Hsieh  MH, Mok  MS, Li  YC, Chiu  HW. 
Predicting hypotensive episodes during spinal anesthesia with 
the application of artificial neural networks. Comput Methods 
Programs Biomed 2008;92:193–7.

Page no. 100


