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Background. The aim of this study was to assess the effects of low concentrations of H2O2 on angiogenesis of human umbilical vein
endothelial cells (HUVECs) in vitro and explore the underlyingmechanisms.Methods. HUVECswere cultured and stimulatedwith
different concentrations of H2O2. Flow cytometric analysis was used to select an optimal concentration of H2O2 for the following
experiments. Cell proliferation, migration, and tubule formation were evaluated by Cell Counting Kit-8 (CCK-8) assays, scratch
wound assays, and Matrigel tubule formation assays, respectively. For gain and loss of function studies, constitutively active MEK5
(CA-MEK5) and ERK5 shRNA lentiviruses were used to activate or knock down extracellular signal-regulated kinase 5 (ERK5).
Results. We found that low concentrations of H2O2 promoted HUVECs proliferation, migration, and tubule formation. ERK5 in
HUVECs was significantly activated by H2O2. Enhanced ERK5 activity significantly amplified the proangiogenic effects of H2O2;
in contrast, ERK5 knock-down abrogated the effects of H2O2. Conclusions. Our results confirmed that low concentrations of H2O2
promoted HUVECs angiogenesis in vitro, and ERK5 is an essential mediator of this process. Therefore, ERK5 may be a potential
therapeutic target for promoting angiogenesis and improving graft survival.

1. Introduction

Tissue transplantation is commonly used in plastic and
reconstructive surgery. Timely and effective revascularization
is important in ensuring graft survival, and angiogenesis plays
an essential role in this process. Angiogenesis, the formation
of new blood vessels from existing vasculature, involvesmany
cellular components and signaling pathways, including reac-
tive oxygen species (ROS), which play an important role in
this process [1].

ROS, including hydrogen peroxide (H2O2), superoxide
radicals (O2−), and hydroxyl radicals (OH−), are impor-
tant signaling molecules that regulate multiple biological

responses, including angiogenesis [2]. ROS, H2O2 in partic-
ular, have biphasic effects on angiogenesis; ROS at physiolog-
ical levels mediate endothelial cell proliferation, migration,
tubular formation, and enhanced angiogenesis, but ROS at
pathological levels result in detrimental effects, including
cell apoptosis, death, and impaired angiogenesis [3–5]. Low
concentrations of ROS induce angiogenesis, but the signaling
cascades linked to this outcome are unclear.

Among various ROS downstream signaling molecules,
mitogen-activated protein kinases (MAPKs) have a crucial
role [6]. The MAPK signaling pathway is highly conserved
and involved in many different cellular functions, such as
cell survival, proliferation, migration, and differentiation. To
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date, four different MAPK family members have been iden-
tified: p38, c-Jun-amino-terminal kinase (JUN), extracellular
signal-regulated kinase 1/2 (ERK1/2), and ERK5 [7]. Among
them, ERK5, which is also known as big MAP kinase 1
(BMK1), is the most recently identified family member [8].
ERK5 can be activated to a large extent by H2O2, suggesting
that, compared with otherMAPK family members, ERK5 is a
redox-sensitive kinase [9]. Targeted deletion of ERK5 inmice
revealed its crucial functions in angiogenesis [10].

Since bothH2O2 and ERK5 play important roles in angio-
genesis and ERK5 is redox-sensitive, we hypothesized that
low-concentrationH2O2 promotes endothelial cell angiogen-
esis through the ERK5 pathway. To verify this hypothesis,
we investigated the role of ERK5 in H2O2-induced human
umbilical vein endothelial cell (HUVECs) proliferation,
migration, and tubule formation.

In this study, we found that ERK5 activation by H2O2
was critical for its proangiogenic function; downregulation
of p-ERK5 by shERK5 inhibited H2O2 proangiogenic activity
in vitro, whereas upregulation of p-ERK5 by CA-MEK5
facilitated H2O2 proangiogenic action. The concentration of
H2O2 (50 𝜇mol/L) used in our study was in the range of that
reached under pathophysiological conditions in vivo (from
0.2 nmol/L in red blood cells to 200𝜇mol/L in wound fluid)
[11, 12]; therefore, the findings of the present study may be
applicable to clinical settings.

2. Methods

2.1. Cell Culture. HUVECs were acquired fromChina Infras-
tructure of Cell Line Resources (Beijing, China). Cells were
grown in Dulbecco’s modified Eagle’s medium (DMEM,
HyClone, USA) containing 10% fetal bovine serum (FBS,
HyClone, USA) and 1% penicillin-streptomycin (Gibco,
USA). The cell cultures were incubated at 37∘C in a humid-
ified atmosphere with 5% CO2. Cells were used for experi-
ments at 80–90% confluency after 2-3 days of culture. In some
cases, 5U/ml catalase (Sigma, USA) was added 5min before
H2O2 was administered.

2.2. Gain and Loss of Function Studies. For gain of function
studies, a constitutively active MEK5 (CA-MEK5) lentivirus
was used to activate ERK5. A nonspecific green fluorescent
protein (GFP) lentivirus with the same multiplicity of infec-
tion (MOI, 20)was used as a negative control. For loss of func-
tion studies, ERK5 shRNA (shERK5) lentivirus was used to
reduce ERK5 expression in endothelial cells. A nonsilencing
shRNA lentivirus with the same MOI was used as a negative
control (control siRNA). Cells were seeded in 6-well plates,
cultured overnight, and then incubated with lentivirus for
48 h for infection. All the plasmids and lentiviruses used were
constructed by the Shanghai Obio Technology Company
(Shanghai, China).

2.3. Detection of Apoptosis. After a 30min incubation with
different concentrations of H2O2, cells were labeled with
phycoerythrin- (PE-) conjugated annexin V and 7-amino-
actinomycin (7-AAD) (BD Pharmingen, USA) following the

kit instructions. Approximately 5,000 cells were counted from
each sample using flow cytometry (BD Biosciences, USA),
and early apoptotic cells were defined as annexinVpositive/7-
AAD negative.

2.4. Western Blot Analysis. Cells were lysed in RIPA buffer
(50mmol/L Tris-HCl, 150mmol/L NaCl, 1% NP-40, 0.5%
sodium deoxycholate, and 0.1% SDS) containing a pro-
tease inhibitor cocktail (Roche, USA). The protein con-
centration was measured using a BCA kit, and 30𝜇g of
protein per sample was used for polyacrylamide gel elec-
trophoresis and then transferred to nitrocellulose mem-
branes. The membranes were blocked with fat-free milk
or 5% BSA for 1 h at room temperature and then incu-
bated with various antibodies: ERK5 (#3372, Cell Signaling
Technology, 1 : 1000), phosphorylated-ERK5 (#07-507, Milli-
pore, 1 : 1000), MEF2C (#5030T, Cell Signaling Technology,
1 : 1000), phosphorylated-MEF2C (sc-377535, Santa Cruz,
1 : 200), ERK1/2 (#9102, Cell Signaling Technology, 1 : 1000),
p-ERK1/2 (#9101, Cell Signaling Technology, 1 : 1000), and 𝛽-
actin (ab8226, Abcam, 1 : 1000) overnight at 4∘C. After the
membranes were washed with TBST, they were incubated
with HRP-linked secondary antibodies: goat anti-rabbit IgG
(#7074, Cell Signaling Technology, 1 : 2000) or goat anti-
mouse IgG (ab6728, Abcam, 1 : 2000) for 1 h at room temper-
ature. The density of the protein bands was determined by
ImageJ software. Densitometric values of the ERK5, MEF2C,
and ERK1/2 bands were normalized to that of 𝛽-actin. Phos-
phorylated protein levels were normalized to the respective
total protein levels.

2.5. Detection of Cell Proliferation. Cell proliferation was
assessed using a Cell Counting Kit-8 (CCK-8, Dojindo,
Japan) assay. Following the manufacturer’s instructions,
HUVECs were seeded in 96-well plates at a density of 1 ×
103 cells per well. After the cells were cultured in a standard
environment for 24 h, they were analyzed using CCK-8
assays. Following treatment with PBS, H2O2 (50 𝜇mol/L),
or catalase (5U/ml) and H2O2 (50 𝜇mol/L) for 30min, the
culture media were changed to normal medium. Then, 10 𝜇l
CCK-8 was added, and cells were further cultured for 2.5 h.
The optical density (OD) at 450 nm was measured using a
microplate reader (Beijing XinfengMechanical and Electrical
Technology Co., China).

2.6. Cell Migration Assay. Cell migration was assessed using
scratch wound assays. HUVECs were seeded in 6-well plates
at a density of 1 × 106 cells per well (confluence) and cultured
overnight. Following treatment with PBS, H2O2 (50 𝜇mol/L),
or catalase (5U/ml) and H2O2 (50 𝜇mol/L) for 30min, a
scratch wasmade by a sterile 200𝜇l pipette tip in the center of
eachwell andwashed twicewith PBS.ThewoundedHUVECs
monolayers were then incubatedwithmedium containing 2%
FBS for 12 h or 24 h. Photographs were taken at 0 h and 12 h
or 24 h at fixed locations along the scratch with an Olympus
microscope, and the closure of the wound area was quantified
using ImageJ software.
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2.7. Tubule Formation Assay. In vitro tubule formation of
HUVECs was assayed on Matrigel (Corning, USA). Briefly,
Matrigel (400 𝜇l per well) was coated on 6-well plates and
incubated at 37∘C for 30min to form a solid gel. Cells were
pretreated with PBS, H2O2 (50 𝜇mol/L), or catalase (5U/ml)
and H2O2 (50 𝜇mol/L) for 30min and then trypsinized,
collected, and seeded ontoMatrigel-coated wells (1 × 104 cells
per well) in complete medium (DMEM containing 10% FBS
and 1% penicillin-streptomycin) and cultured for 4 to 8 h.
Tubule formationwas observedwith anOlympusmicroscope
and analyzed by measuring branch length and counting
tubule number with ImageJ software.

2.8. Enzyme Linked Immunosorbent Assay (ELISA). Cells
were seeded in 60mm tissue culture dishes at a density of 1 ×
106 cells per well and cultured overnight in normal medium.
Following treatment with PBS or 50 𝜇mol/LH2O2 for 30min,
the mediumwas changed to fresh normal medium. After 12 h
or 24 h culture, the cell supernatant was collected, and the
concentration of human vascular endothelial growth factor
(VEGF) protein was determined by a human VEGF ELISA
kit (R&D Systems, USA) according to the manufacturer’s
instructions.

2.9. Statistical Analysis. All data are presented as the mean ±
standard deviation (SD). Comparison amongmultiple groups
was performed by one-way analysis of variance (ANOVA)
followed by the SNK post hoc test. The results were con-
sidered statistically significant when the 𝑝 value was less
than 0.05 (𝑝 < 0.05). Each experiment included triplicate
measurements for each condition tested, and the experiment
was repeated at least three times.

3. Results

3.1. Effects of Different Concentrations of H2O2 on HUVEC
Viability. To determine the optimal concentration of H2O2,
we assessed the effects of five different concentrations. The
results showed that 0–50 𝜇mol/L H2O2 did not induce sig-
nificant apoptosis of HUVECs. However, 100 𝜇mol/L H2O2
increased the apoptotic rate of the cells, and 200𝜇mol/L
H2O2 induced significant cell apoptosis (Figure 1). Based on
these results and proangiogenic preexperiment results that
proangiogenic effect was more significant with 50 umol/L
H2O2 (versus control group) than with 25 umol/L H2O2, we
used 50 𝜇mol/L H2O2 in the following experiments.

3.2. Low Levels of H2O2 Promote HUVEC Proliferation,
Migration, and Tubule Formation. Stimulation of endothelial
cell proliferation is essential for angiogenesis. As shown in
Figure 2(a), treatment with 50 𝜇mol/L H2O2 significantly
increased HUVECs proliferation, and this effect was com-
pletely abrogated by catalase, an enzyme that eliminates
H2O2. Additionally, cell migration is an important step in
angiogenesis. Scratch wound assays were performed; the area
recovered represents endothelial cell migration (Figure 2(b)).
Control cells recovered (67 ± 2.5)% after 24 h. Cells treated
with 50 𝜇mol/L H2O2 increased migration to 100%. The

cells treated with 50𝜇mol/L H2O2 and catalase (5U/ml) did
not differ from the control cells [(70 ± 1.9)%, Figure 2(c)].
Furthermore, tubule formation is one of the hallmarks of
angiogenesis, along with cell proliferation and migration. To
assess the effect of low-concentration H2O2 on endothelial
cell angiogenesis, we performed a Matrigel tubule formation
assay (Figure 2(d)). After the cells were plated on Matrigel,
control cells formed few capillary-like tubes, while cells
treatedwith 50𝜇mol/LH2O2 formedmore capillary-like tube
structures (branch length: 2.9-fold increase; tubule number:
1.5-fold increase). As observed previously, cells treated with
50 𝜇mol/L H2O2 and 5U/ml catalase did not differ from
those of the control. Overall, low-concentration H2O2 pro-
moted HUVECs angiogenesis; however, catalase eliminated
all H2O2 proangiogenic effects.

3.3. Low Concentrations of H2O2 Induce ERK5 Activation
in HUVECs. We examined whether ERK5 was activated by
low-concentration H2O2 in HUVECs. Endogenous ERK5
activity was measured by assessing phosphorylation of ERK5
and its substrate, MEF2C. H2O2 treatment of the cells
resulted in activation of ERK5without changes in total ERK5.
Pretreatment of the cells with 5U/ml catalase inhibited ERK5
activation by H2O2. ERK1/2 and p-ERK1/2 protein levels
did not change significantly among the experimental groups
(Figure 3).

3.4. ERK5 Mediates Low-Concentration H2O2-Induced
HUVEC Angiogenesis In Vitro. To determine whether ERK5
was essential for H2O2-induced angiogenesis, we generated
HUVECs populations with CA-MEK5 expression or Erk5
knock-down and their respective control populations.
Lentiviral transfection efficiency was greater than 90%, as
assessed by GFP expression (Figure 4(a)), and therefore, cell
sorting or selection was not necessary. As shown in Figures
4(b)–4(f), transfection with CA-MEK5 strongly activated
ERK5, and the ERK5 knock-down efficiency by a specific
shRNA was 80%. No significant change of ERK1/2 and p-
ERK1/2 protein levels was seen in all cell populations (Figures
4(g)–4(h)). The resulting cells were tested in the following in
vitro angiogenesis assays.

In HUVECs transfected with CA-MEK5, cell prolifera-
tion (Figure 5(a)), migration (Figures 5(b) and 5(c)), and
tubule formation (Figures 5(d), 5(e), and 5(f)) by H2O2
were significantly amplified. In contrast, ERK5 knock-down
abrogated the proangiogenic effects of low concentrations of
H2O2. Furthermore, VEGF secretion stimulated byH2O2 was
also significantly amplified in HUVECs transfected with CA-
MEK5, while VEGF level decreased in HUVECs transfected
with ERK5 shRNA (Figure 5(g)), These results suggest that
low concentrations of H2O2 induced HUVEC angiogenesis
through the ERK5 signaling pathway.

4. Discussion

Angiogenesis is a complex, multifaceted process that requires
the coordinated proliferation, migration, and ultimate differ-
entiation of endothelial cells as well as other cells to form a
lumen-containing vessel capable of allowing blood flow.This
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Figure 1: Effects of different concentrations of H2O2 on HUVEC viability. (a–e) Scatter plots of flow cytometric results with annexin
V (horizontal axis) and 7-AAD (vertical axis). Cells were labeled with annexin V and 7-AAD after a 30min incubation with different
concentrations of H2O2. The conditions were as follows: (a) 0 𝜇mol/L H2O2 (control), (b) 25𝜇mol/L H2O2, (c) 50𝜇mol/L H2O2, (d)
100 𝜇mol/L H2O2, and (e) 200 𝜇mol/L H2O2. Early apoptotic cells were defined as annexin V positive/7-AAD negative. (f) Quantitative
analysis of cell apoptosis with different concentrations of H2O2 (mean ± SD of six separate experiments, ∗𝑝 < 0.05 versus control, and
one-way ANOVA followed by SNK post hoc test).
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Figure 2: Low concentrations of H2O2 promote HUVEC proliferation, migration, and tubule formation. (a) Cell proliferation assessed by
CCK-8 assays. HUVECs were treated with PBS, H2O2 (50𝜇mol/L), or catalase (5U/ml) andH2O2 (50 𝜇mol/L) for 30min.Then, 10 𝜇l CCK-8
was added. The OD at 450 nm was measured 2.5 h later (mean ± SD of six separate experiments, ∗𝑝 < 0.05 versus control, and one-way
ANOVA followed by SNK post hoc test). (b, c) Cell migration assessed by scratch wound assays. HUVECs were seeded at confluence and
cultured overnight. Following treatment with PBS, H2O2 (50𝜇mol/L), or catalase (5U/ml) and H2O2 (50 𝜇mol/L) for 30min, a scratch was
made.The wounded HUVECsmonolayers were then incubated with medium containing 2% FBS for 24 h. Photographs were taken at 0 h and
24 h at fixed locations along the scratch, and the closure of the wound area was quantified (mean ± SD of six separate experiments, ∗𝑝 < 0.05
versus control, and one-way ANOVA followed by SNK post hoc test). (d, e, f) In vitro tubule formation. Tubule formation was assayed on
Matrigel. Cells were pretreated with PBS, H2O2 (50 𝜇mol/L), or catalase (5U/ml) and H2O2 (50 𝜇mol/L) for 30min and then seeded onto
Matrigel-coated wells in normal medium and cultured for 4 to 8 h. Tubule formation was analyzed by measuring branch length and counting
tubule number (mean ± SD of six separate experiments, ∗𝑝 < 0.05 versus control, and one-way ANOVA followed by SNK post hoc test).

study is the first to reveal that ERK5 is specifically required for
low-concentration H2O2-induced angiogenesis in HUVECs.
H2O2 (50 𝜇mol/L) promoted HUVEC proliferation, migra-
tion, and tubule formation (Figure 2); furthermore, gain/loss
of function studies revealed that ERK5 mediated these pro-
cesses (Figure 5). A series of studies of transgenic ERK5 mice

showed that ERK5 plays a critical role in endothelial cell
function. ERK5-null mice died of cardiovascular defects and
impaired angiogenesis on embryonic day 10.5 [13–15]. Addi-
tionally, the conditional ERK5 knock-out adult mouse died
within 2-3 weeks due to endothelial failure [16]. Furthermore,
ERK5 was shown to be essential in protecting endothelial
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Figure 3: Low-concentration H2O2 induced ERK5 activation in HUVECs. (a) ERK5, p-ERK5, MEF2C, p-MEF2C, ERK1/2, and p-ERK1/2
protein levels were measured by western blotting. Following treatment with PBS, H2O2 (50𝜇mol/L), or catalase (5U/ml) and H2O2
(50 𝜇mol/L) for 30min, cells were lysed, and the lysates were resolved by 10% or 6% SDS-PAGE. (b, c, d, e, f, g) Densitometric quantification
of ERK5, p-ERK5,MEF2C, p-MEF2C, ERK1/2, and p-ERK1/2 expression (mean ± SD of three separate experiments, ∗𝑝 < 0.05 versus control,
and one-way ANOVA followed by SNK post hoc test).
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Figure 4: Continued.
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Figure 4: Construction of high or low p-ERK5 HUVEC populations. (a) Images of lentivirus-transfected HUVECs. (b) ERK5, p-ERK5,
MEF2C, p-MEF2C, ERK1/2, and p-ERK1/2 protein levels were determined by western blotting. Different cell populations were lysed, and the
lysates were resolved by 10% or 6% SDS-PAGE. (c, d, e, f, g, h) Densitometric quantification of ERK5, p-ERK5, MEF2C, p-MEF2C, ERK1/2,
and p-ERK1/2 expression (mean ± SD of three separate experiments, ∗𝑝 < 0.05, and one-way ANOVA followed by SNK post hoc test).

cells from apoptosis induced by serumdeprivation and tumor
necrosis factor [17]. The present study further supports the
key role of ERK5 in endothelial cell function.

ROS, especially H2O2, have been reported to have bipha-
sic effects on angiogenesis—at physiological levels, they
promote angiogenesis, but excess levels impair angiogenesis.
The tolerance of cells to H2O2 depends on the cell type and
cellular context [18–20]. As shown by our results, 50𝜇mol/L
H2O2 was not toxic to HUVECs and did not cause significant
apoptosis. However, 200𝜇mol/L H2O2 induced significant
cell apoptosis (Figure 1). High levels of H2O2 may trigger
other signaling pathways that lead to cell apoptosis or death,
and ERK5 activation could not overcome these oxidative
insults.

Previous studies have shown that a wide variety of
mitogens, including stress stimuli such as H2O2, can activate
the ERK5 signaling pathway, as well as the other MAP
kinases.Thepresent findings thatH2O2 stimulated significant
activation of ERK5 (Figure 3) are consistent with a previous
report showing thatH2O2 activated ERK5 in vascular smooth

muscle cells [21]. In addition, H2O2-induced activation of
ERK5 in cultured fibroblasts was also observed [22]. There-
fore, activation of ERK5 by H2O2 may be common in many
cell types. The intracellular signaling mechanisms that lead
to ERK5 activation have been investigated. A specific ERK5
upstream kinase, MEK5, and c-Src tyrosine kinase have
both been shown to mediate ERK5 activation in response
to oxidative stress. However, whether low concentrations
of H2O2 activate ERK5 through the same pathway requires
further investigation.

The expression of ERK5 in different tissues appears to
be ubiquitous. Among several tissue-specific ERK5-knock-
out mouse models, the endothelial ERK5-knock-out mouse
showed an abnormal phenotype, indicating that ERK5 is
critical for endothelial cell physiology [23]. ERK5 gain and
loss of function experiments showed that ERK5 is required
for low-concentration H2O2-induced angiogenesis.

shRNA-mediated knock-down of ERK5 or overexpres-
sion of CA-MEK5 significantly affected H2O2-mediated
HUVECs proliferation. These findings are consistent with
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Figure 5: Activated ERK5 is essential for low-concentration H2O2-induced HUVEC angiogenesis. (a) Cell proliferation assessed by CCK-8
assays. Cells were treated with PBS or H2O2 (50𝜇mol/L) for 30min. Then, 10 𝜇l CCK-8 was added. The OD value at 450 nm was measured
2.5 h later (mean ± SD of six separate experiments, ∗𝑝 < 0.05, and one-way ANOVA followed by SNK post hoc test). (b, c) Cell migration
assessed by scratchwound assays. Cells were seeded at confluence and cultured overnight. Following treatment with PBS orH2O2 (50 𝜇mol/L)
for 30min, a scratch was made. The wounded cell monolayers were then incubated with medium containing 2% FBS for 12 h. Photographs
were taken at 0 h and 12 h at fixed locations along the scratch, and closure of the woundwas quantified (mean± SD of six separate experiments,
∗𝑝 < 0.05, and one-wayANOVA followed by SNKpost hoc test). (d, e, f) In vitro tubule formation. Tubule formationwas assayed onMatrigel.
Cells were pretreated with PBS or H2O2 (50𝜇mol/L) for 30min and then seeded onto Matrigel-coated wells in normal medium and cultured
for 4 to 8 h. Tubule formation was analyzed bymeasuring branch length and counting tubule number (mean ± SD of six separate experiments,
∗𝑝 < 0.05, and one-way ANOVA followed by SNK post hoc test). (g) VEGF secretion assessed by ELISA. Cells were treated with PBS or H2O2
(50 𝜇mol/L) for 30min; then the medium was changed to fresh normal medium. After 12 h or 24 h culture, the cell supernatant was collected,
and the concentration of VEGFwas determined by a humanVEGFELISA kit (mean± SD of six separate experiments, ∗𝑝 < 0.05, and one-way
ANOVA followed by SNK post hoc test).

previous studies showing that ERK5 plays an important role
in regulating cell cycle entry [24, 25].The role of ERK5 in reg-
ulating cell proliferation remains unclear. Although previous
studies have shown that proliferation of hematopoietic cells
mediated by granulocyte-macrophage colony-stimulating
factor (GM-CSF) [26], proliferation of vascular smooth
muscle cells mediated by platelet-derived growth factor
(PDGF) [27], and proliferation of neural stem/progenitor
cells mediated by epidermal growth factor (EGF) [28] are
all ERK5-dependent, many other studies using cells from

Erk5−/− andMek5−/−mice have shown that ERK5 andMEK5
are not required for cell cycle progression [16, 29]. Notably,
Roberts et al. [30] found that ERK5 is dispensable for cellular
proliferation in primary human microvascular endothelial
cells seeded on a gelatin matrix. These contrasting results
indicate that the effect of ERK5 on cell proliferation may
depend on the stimuli, the cell type, and even the cellular
context [31].

The finding that ERK5 activation also promoted endothe-
lial cell migration suggests that ERK5 may be particularly
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important in the initiation of angiogenesis. Our results are
consistent with those of previous reports [32–34]. In contrast,
Spiering et al. [35] found that enhanced ERK5 signaling
strongly inhibits endothelial cell migration and results in
substantial morphological changes due to decreased focal
contact turnover. Another recent report implicated ERK5
in Kruppel-like transcription factor (KLF2)/p21-activated
kinase 1- (PAK1-) mediated inhibition of cell migration [36].
The explanation for these different findings is not clear.
Various sources of cells and culture conditions may in part
be responsible for this discrepancy.

Activation of ERK5 has previously been shown to regulate
myoblast differentiation [37] by controlling the promyogenic
actions of insulin-like growth factor 2 (IGF-2) [38]. Together
with our results showing that ERK5 also mediates HUVECs
tubule formation, these findings indicate that ERK5 regulates
the differentiation of multiple cell types.

VEGF is a potent proangiogenic factor and activates
ERK5 in both human and mouse endothelial cells [16].
However, whether ERK5 affects VEGF expression is unclear.
A recent study indicated that the ERK5 pathway alters
circulating VEGF level [39]. Our findings that 50 𝜇mol/L
H2O2 stimulation significantly elevated VEGF secretion in
cells transfected with CA-MEK5 and VEGF level decreased
in ERK5 knock-down cells (Figure 5(g)) add further support
to this statement and our conclusion.

Based on the results of the present study and several
published studies, we hypothesize that ERK5may be essential
in the initial sprouting stages until the final differentiation
stages of angiogenesis.

Low concentrations ofH2O2 stimulate angiogenesis, indi-
cating that pharmacologically regulating cellular ROS (H2O2
in particular) levels rationally may be an angiogenic strategy.

Furthermore, elucidating the in-depth mechanisms
underlying H2O2-induced angiogenesis would help develop
novel treatment strategies for promoting revascularization
of grafts and improving their survival. The finding that
ERK5 activity regulates low-concentration H2O2-induced
angiogenesis suggests that ERK5 is a potential target for
therapies that modulate graft survival. Many drugs have
been developed to promote angiogenesis and improve graft
survival after tissue transplantation. However, most of these
drugs target growth factors (e.g., VEGF; fibroblast growth
factor, FGF), endothelial-specific receptor tyrosine kinases,
and other extracellular molecules [40]. Drugs that target
intracellular signaling pathways, which are important for
endothelial cell growth, migration, and differentiation, are
very rare. The major reason may be that these pathways are
critical in both endothelial cells and other types of cells.
Notably, specific knock-down or knock-out of ERK5 in
mice in several different cell types, such as cardiomyocytes,
neurons, andmammary epithelial cells, all resulted in normal
phenotypes without any obvious adverse effects. The lifespan
of the aforementioned genetically modified mice was the
same as that of their control littermates [23]. Therefore,
endothelial cells may be the primary cell type affected by the
loss of ERK5. Based on the above findings, pharmacological
activators targeting the ERK5 pathway in vivo would
predominantly affect endothelial cells, especially during

angiogenesis, with little effect on other types of cells [41].
Additionally, it will be important in the future to identify the
ERK5 substrates that mediate the proangiogenic effects of
low concentrations of H2O2 in endothelial cells.

5. Conclusions

Here, we demonstrated a novel mechanism of H2O2-induced
angiogenesis in HUVECs. We showed that low concentra-
tions of H2O2 activated ERK5 in the HUVECs. Enhanced
activity of ERK5 amplified the proangiogenic effects of H2O2.
In contrast, reduced activity of ERK5 abolished the effects of
H2O2. However, further experiments are needed to clarify
the mechanisms involved. Nevertheless, we believe that the
present study provides helpful insights into the role of
ERK5 in angiogenesis and thus provides a theoretical basis
for developing new treatment strategies to promote revascu-
larization of grafts and improve their survival.
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