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Background and aims: Lipid nanoparticles (LNs) are widely applied in drug delivery

systems because they can incorporate and stabilize lipophilic and hydrophilic molecules. LNs

are generally considered quite safe and convenient for in vivo applications. However, we

previously observed that certain types of LNs could cause a loss of Kupffer cells, a kind of

resident macrophage in the liver. As a result, we investigated the details of this phenomenon.

Methods: MTT assay, Annexin-V-FITC/PI double staining, JC-1 staining, flow cytometry,

Western blot and transmission electron microscopy were used in cell-based experiments.

Additionally, serum biochemical analyses, H&E staining and immunofluorescence staining

were performed to detect the acute and chronic changes of tissue structure and the number of

Kupffer cells in mouse liver tissue samples.

Results: Application of LN depolarized and swelled the mitochondria of Raw264.7 cells,

and disrupted the balance of Bax/Bcl-2. This led to cleavage and activation of caspase-3 and

PARP, and then induced apoptosis of Raw264.7 cells. In addition, either acute or chronic

applications of LN were sufficient to disrupt the structure of the hepatic portal vein and

reduce the number of Kupffer cells in mice.

Conclusions: LNs could induce apoptosis of macrophages through a mitochondrial-depen-

dent pathway.
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Introduction
Lipid-based drug delivery systems, sometimes referred to as lipidic carriers, are

widely used today because they have the ability to incorporate lipophilic and

hydrophilic molecules and stabilize them in vitro and in vivo.1,2 In addition, it

has been repeatedly shown that the encapsulation of bio-active molecules inside

these carrier systems can enhance the bioavailability, efficacy, and safety of poorly

soluble drugs.3–5 Thus, this technology has grown to be more and more widely

utilized in the production and use of cosmetics, foods/nutritional preparations,

nutraceuticals, and pharmaceuticals. The efficacy and toxicity of these lipidic

carriers have been largely related to their physiochemical properties, which in

turn is determined by their composition and formulation.6 To date, many different

types of lipidic carriers have been introduced, including liposomes, nano-lipo-

somes, archaeosomes, lipid nanoparticles (LNs), and tocosomes. Among them,

LNs have become useful for drug delivery as a result of their consistent composi-

tion and ease of use.7 LNs are prepared largely with emulsification processes from
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an oil phase (eg, dietary oils), aqueous phase (water or

aqueous solutions), and interfacial phase (where tiny

amounts of surfactant or other amphiphilic molecules are

located). Thus, the physical and chemical properties of

LNs are quite variable, depending on their compositions.8

Researchers are trying to overcome the current limitations

for administration and widen the possible applications of

LNs, and recent advances have led to improvements in the

delivery of siRNA9 and mRNA,10 the dermal delivery of

retinoic acids,11 pulmonary application,12 and treatment of

chronic wounds by LNs.13

We recently reported another possible application of

LNs: enhancing the tumorigenicity of diethylnitrosamine

and engendering liver cancer in mice,14 which could

potentially result in a useful animal model of hepatic

carcinoma. However, during these experiments, we

noticed that a certain level of apoptosis was occurring in

Kupffer cells in the murine liver samples treated only with

the LN vehicle via the TUNEL staining.

Kupffer cells are a type of tissue-resident macrophage

usually located in liver sinusoids.15 They perform a critical

role in the innate immune response of the mononuclear

phagocytic system in the liver.16 On one hand, pathogens

entering the liver from the portal or arterial circulation

could be phagocytized and inactivated. On the other

hand, pro-inflammatory particles and materials from the

gastrointestinal tract could also be phagocytized by the

Kupffer cells. This makes Kupffer cells particularly impor-

tant for the development of acute and chronic liver injuries

through various etiologies.17 As a result, malfunction of

the Kupffer cells is associated with many disease states,

including drug-induced liver injury,18 toxin-induced

fibrosis,19 and chronic hepatitis resulted from either alco-

holic or nonalcoholic fatty liver disease.20

Currently, apoptotic effects of solid LNs on macro-

phages and Kupffer cells have not been elucidated.

Therefore, in this study, we investigated whether solid

LNs affect Kupffer cells, and what mechanisms induce

apoptosis of macrophages, using the macrophage cell

model raw264.7 in vitro and the liver samples of mice in

vivo.

Materials and methods
Reagents
Tween-80 (Amresco, #0442, USA) and Tween-20

(Amresco, #0777) were purchased. Lecithin from egg

yolk was provided by Sinopharm Chemical Reagent

(#6901933, Shanghai, China). Sesame oil was obtained

from Blessing Mill (Wuhan, China). DMEM (#10569-

044) and FBS (#12484-010) were purchased from Gibco

(Thermo Fisher Scientific, Waltham, MA, USA). MTT

(#M2128), dimethyl sulfoxide (DMSO, #D5879) of analy-

tical reagent grade and Glycerol ReagentPlus (GC grade,

#G7757) were obtained from Sigma–Aldrich (St Louis,

MO, USA).

Preparation and characterization of LNs
A high-pressure microfluidics technique was used for the

formulation of LNs. Briefly, the lipid phase, consisting of

7.52 mL of sesame oil and 0.240 g of lecithin from egg

yolk, was dissolved in 30 mL ethanol and heated to 60°C.

After removal of the solvent by rotary evaporation, 32 mL

of preheated water (containing 0.9 mL of glycerol and 0.4

mL Tween-80) was added gradually to the hot and molten

lipid sample and was magnetically stirred gently for 10

mins. A coarse oil-in-water emulsion was formed by high-

speed shearing via a Fluko FA25 homogenizer (Fluko

Equipment Shanghai Co., Ltd., Shanghai, China) at

10,000 rpm for 2 mins. The coarse emulsion was further

homogenized for six cycles at 1,000 bars, using M-

100PCE, a high-pressure microfluidics device

(Microfluidics Corporation, Westwood, MA, USA). The

hot dispersion was cooled down to 4°C and sterilized by

passing it through a 0.45 μm cellulose acetate filter.

Finally, the resulting material was stored in brown glass

vessels at 4°C.

Measurement of particle size and zeta

potential of LNs
Particle size and zeta potential were measured by a

Zetasizer Nano ZS90 (Malvern Instruments, Malvern,

UK). Particle size (as hydrodynamic diameter, in nm)

and the polydispersity index were determined by diluting

10 μL of the LNs with 4 mL of ultrapure water. To

determine the zeta potential, the LNs were diluted with

ultrapure water until the conductivity of the dilute suspen-

sion was in the range of 40–50 μS/cm. All measurements

are presented as summaries of triplicates.

Field emission-scanning electron

microscopy (FE-SEM)
The morphology of the LNs was observed by an FE-SEM

(SU8010, HITACHI, Japan), for which a 100 μL aliquot of

the LN preparation was diluted with deionized water to a
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volume of 2 mL and sonicated for 1 min. SEM samples

were prepared by placing one drop of the diluted LNs onto

a carbon-coated copper grid (400 mesh; Beijing Xinxing

Braim Technology Co., Ltd, Beijing, People’s Republic of

China) and allowing adsorption for 10 mins. Excessive

liquid was then blotted with a filter paper. After drying

naturally for 1 hr, the dried specimen was observed with

SEM at an acceleration voltage of 35 kV.

Cell culture and MTT assay
Mouse monocyte-macrophages (Raw264.7, #GDC0143),

human liver cancer cells (HepG2, #GDC141) and normal

human liver cells (L02, #GDC079) were purchased from

the China Center for Type Culture Collection (Wuhan,

China) and were maintained as described by the vendor’s

instructions. The cytotoxicity of the LNs in Raw264.7

cells was assessed by the MTT assay. Briefly, cells (1 ×

105 cells/mL) were seeded into 96-well plates in DMEM

medium supplemented with 10% FBS, and then treated

with growth medium containing either 250 μg/mL LNs for

the indicated periods of time or indicated concentrations of

LNs for 5 hrs. After that, 20 μL of MTT solution (5 mg/

mL) was added to each well and the plate was incubated at

37°C for 4 hrs. Subsequently, DMSO was added and the

absorbance was measured at 570 nm using a microplate

reader (Infinite 200 PRO; Tecan Group Ltd., Maennedorf,

Switzerland).

Detection of apoptosis
Cultured Raw264.7 cells were seeded at a density of 1 ×

106 cells per well in a six-well plate. After treatment for

the indicated periods of time or concentrations, the cells

were washed with PBS twice and then aspirated with 1 mL

PBS. Then, they were suspended in 400 µL of binding

buffer and 5 µL Annexin-V-FITC for 15 mins at 4°C.

Finally, 10 µL propidium was added for 5 mins at 4°C,

and detected by flow cytometry (Guava easyCyte System;

Merck, Darmstadt, Germany) or observed by fluorescence

microscope (Nikon Inc., Tokyo, Japan). The Annexin-V-

FITC/PI apoptosis detection kit for flow cytometry was

purchased from BestBio (#BB-4101-50T, Shanghai,

China).

Evaluation of mitochondrial membrane

depolarization
The depolarization of mitochondrial membranes was

detected with a mitochondrial membrane potential assay

kit with JC-1 according to the manufacturer’s protocol

(#40606ES60; Yeasen,Shanghai, China). JC-1 is a poten-

tiometric dye that exhibits a membrane potential-depen-

dent loss as JC-1 aggregates (polarized mitochondria)

transition to JC-1 monomers (depolarized mitochondria).

The loss of membrane potential is indicated by a shift of

the fluorescence emissions from red to green. The levels of

the cells’ fluorescence intensity were analyzed by flow

cytometry (Guava easyCyte System; Merck) using an

excitation wavelength of 488 nm and emission wave-

lengths of 530 and 585 nm for green and red fluorescence,

respectively.

Transmission electron microscopy (TEM)

observations on Raw264.7 cells
The Raw264.7 cells exposed to LNs under various condi-

tions were harvested and fixed in 1% osmic acid, and were

subsequently dehydrated in a series of graded alcohol

solutions. Then, 60 nm sections were cut and stained

with uranyl acetate and lead citrate and mounted on a

carbon-coated copper grid (400 mesh; Beijing Xinxing

Braim Technology Co.). After that, cells were observed

via TEM using a Hitachi HT7700 unit (Hitachi Corp.,

China).

Western blotting
After incubation with a 250 µg/mL concentration of the

LNs for 0, 1, 2, 3, 4, or 5 hrs, cells were lysed with a

protein lysis buffer (#P0013; Beyotime, Nanjing, China).

The total protein concentration was measured by the

Lowry method. Equal amounts of protein were fractio-

nated using 12.5% SDS gels and transferred to polyviny-

lidene difluoride membranes (#IPVH00010; Millipore

Corporation, Billerica, MA, USA). After being blocked

with 5% non-fat dry milk, the membranes were incubated

with an anti-caspase3 antibody (1:1,000, Cell Signaling

Technology, #9662S), anti-PARP antibody (1:1,000, Cell

Signaling Technology, #9542S), anti-Bax antibody

(1:1,000, Cell Signaling Technology, #5023S), anti-Bcl-2

antibody (1:1,000, Cell Signaling Technology, #3498S), or

anti-actin antibody (1:1,000, Cell Signaling Technology,

#4970S) at 4°C overnight. After removing the primary

antibodies, the membranes were washed three times for 5

mins with TBST (Tris-buffered saline, 0.1% v/v Tween-

20) solution and followed by exposure to secondary anti-

bodies (1:2,000, goat anti-rabbit or goat anti-mouse,

Abbkine, USA, #A21010, #A21020) for 1 hr at room
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temperature. Finally, after washing, protein bands on the

membranes were visualized by a developer and fixing

solution. The protein bands were quantified using the

ImageJ software and were analyzed and plotted with

Instat software (GraphPad Prism 7, La Jolla, CA, USA)

Animal care
The care and use of animals and experimental protocols

for this study were carried out according to the Guide for

Animal Experimentation, South-Central University for

Nationalities and the Committee of Research Facilities

for Laboratory Animal Sciences, South-Central

University for Nationalities, China. The protocols were

approved by the Committee on the Ethics of Animal

Experiments of the South-Central University for

Nationalities, China (permit number: 2018-SCUEC-AEC-

011). All efforts were made to minimize suffering includ-

ing anesthesia by CO2 before sacrifice.

In vivo experiments with LNs
Fifty-four male Kunming mice (8 weeks old, 20–22 g)

were acclimatized for 7 days under specific-pathogen-

free conditions before experimentation. The animals were

kept on a basal diet in a temperature-controlled animal

room (22–25°C) with a 12 hrs light–dark cycle for at

least 1 week before any experiments were performed. In

the acute experiments, the animals were randomly sepa-

rated into three groups of 10 mice each: control group, a

low-dose group, and a high-dose group. The low-dose

group and high-dose group LN-groups received 10 mg/

kg and 30 mg/kg LN orally (as a volume of 5 μL/10 g for

both groups), respectively, every 12 hrs for 3 days. The

control group mice received normal saline (5 μL/10 g). In

the chronic experiments, the control group (n=12) and the

LNs-treated group (n=12) both received normal saline and

10 mg/kg LN orally, once every week for 20 weeks. One

hour before sacrifice, six mice from each group in the LN-

treated group were treated by gastric application of ink for

subsequent analysis of ink phagocytosis. Upon sacrifice,

their livers were immediately collected and fixed for his-

tology and protein analysis.

Histopathological analysis of liver tissues
Fresh liver tissue samples were fixed in 10% neutral for-

malin, embedded in paraffin, cut into 2 μm slices, and

stained with hematoxylin and eosin (H&E) or hematoxylin

alone by standard techniques. Histopathologic examination

of the liver sections was conducted using a Nikon 50i light

microscope (Nikon Inc.).

Immunofluorescence analysis of liver

tissues
The samples were deparaffinized, hydrated and blocked

with 3% hydrogen peroxide for 15 mins. Specimens were

then subjected to antigen retrieval by immersing them in

0.01 M boiling citrate buffer and heating in a microwave

oven for 1 min. After blocking with 5% BSA (Cat:

36106ES25; Yeasen) for 40 mins, the sections were incu-

bated overnight at 4°C with primary antibodies against

lysozyme (1:1,000, ab108508; Abcam, Cambridge, UK).

After incubation with fluorescein-conjugated IgG second-

ary antibodies (1:200, CWBio, CW0161S, Beijing, China)

at 37°C for 40 mins. DAPI (Cat: 17985-50; Electron

Microscopy Sciences, Hatfield, PA, USA) was used as a

nuclear counterstain in the tissue sections, which were

mounted using coverslips.

Statistical analysis
Results are shown as means ± SEM. The statistical ana-

lyses were performed by one-way ANOVA followed by

Tukey’s test as indicated in the text using Instat software

(GraphPad Prism 7). A P value <0.05 was considered

statistically significant.

Results
Characterization of LNs
The characteristics (including the size, zeta potential and

morphology) of LNs are shown in Figure 1. The particle

size of the LNs was approximately 212.8 nm, and their

zeta potential was around −28.7 mV (Figures 1B and C).

The FE-SEM studies clearly indicated that the LNs were

spherical in shape and had a smooth surface (Figure 1D).

Apoptosis of raw264.7 cells was observed

after application of LNs
To evaluate the effect of LNs on the viability of the

Raw264.7 cells, they were incubated either with different

concentrations (Figure 2B) of LNs or for different time

intervals (Figure 2A). After incubation, cell viability was

evaluated using a MTT assay. Compared to the control

group, viability rates of cells treated with 250 μg/mL LNs

for 0, 1, 2, 3, 4 and 5 hrs were 100.0±10.8%, 90.0±11.8%,

59.0±8.5%, 12.0±4.0%, 0.6±0.4% and 7.0±13.9%, respec-

tively (Figure 2C). As shown in Figure 2D, the viability
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rates of cells treated with 0, 100, 250 and 500 μg/mL LNs

for 5 hrs were 100.0±8.9%, 85.9±18.4%, 18.1±4.6% and

5.7±0.2%.

Moreover, we also evaluated the apoptotic effect of

LNs in the Raw264.7 cells using Annexin-V-FITC/PI dou-

ble staining and detected the results using fluorescent
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Figure 1 Fabrication and characterization of lipid nanoparticle (LNs). (A) General procedure of fabricating LNs. (B) Particle sizes of our laboratory-made LNs. (C)

Apparent zeta potential of our laboratory-made LNs. (D) Scanning electron microscope images of the nanoparticles. Scale bar, 200 nm.
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Figure 2 Treatment of lipid nanoparticles (LNs) reduced the viability of Raw264.7 macrophages in a dose- and time-dependent manner. (A) Representative figures of

Raw264.7 cells after treatment with 250 μg/mL LNs for various periods. Scale bar, 50 μm. (B) MTT assay revealed the ET50 of LNs was 2.12 hrs. Each point represents an

average of duplicates from three individual experiments. (C) Representative figures of Raw264.7 cells after treatment with various concentrations of LNs for 5 hrs. Scale bar,

50 μm. (D) MTT assay revealed the EC50 of LNs was 136 μg/mL. Each point represents an average of duplicates from three individual experiments.

Dovepress Liang et al

International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

DovePress
3287

http://www.dovepress.com
http://www.dovepress.com


microscope and flow cytometry. As shown in Figures 3A

and C, Raw264.7 cells were exposed to 250 μg/mL LNs.

The percentage of surviving cells decreased significantly

in a time-dependent manner, and the percentage of late-

stage apoptosis cells increased significantly after 2 hrs.

The ratio of early to late apoptosis was maximal after 5

hrs. We also measured apoptosis occurring in the

Raw264.7 cells under various concentrations of LNs, ran-

ging from 100 to 500 μg/mL. As shown in Figures 3B and

D, apoptotic and necrotic cells increased in the LN sam-

ples in a dose-dependent manner. The ratio of apoptotic-

to-viable cells was very high after exposure to a concen-

tration of 500 μg/mL.

The mitochondria of raw264.7 were

disrupted by LN treatment
The mitochondria in Raw264.7 cells were studied by elec-

tron microscopy. LN treatment can destroy mitochondrial

structure, and the degree of damage increases in a dose-

and time-dependent manner as shown in Figure 4A. LNs

induced depolarization of the mitochondrial membrane

potential as well. The effect of LNs on the mitochondrial

membrane permeability of Raw264.7 cells was evaluated

using JC-1 fluorescent dye. As shown in Figure 4B, fol-

lowing treatment of the LNs, the intensity of the green

fluorescence increased, while the intensity of the red fluor-

escence decreased. After the cells were treated with 250

μg/mL of LN, the green fluorescence was increased by

28.10% and 28.50% at 4 and 5 hrs, respectively, compared

to a 5.92% increase in the untreated control group.

LNs induced apoptosis via disruption of

the balance between bax and bcl-2
Western blot analysis was employed to determine the

effect of the LNs on the expression of proteins involved

in the apoptotic pathway. Figure 5A and B depicts the

changes that occurred after treatment with the LNs, with

the expression level of Bax having been up-regulated,

while at the same time Bcl-2, caspase-3 and PARP were

down-regulated. Moreover, after exposure to the LNs at a

concentration of 250 μg/mL for a period of 3 hrs, the

cleaved caspase-3 and PARP bands were observed and
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Figure 3 Lipid nanoparticle (LN) induced apoptosis of Raw264.7 cells in vitro. Apoptotic cells were stained with Annexin-V-FITC and PI and observed by fluorescence
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noted to have been impacted afterwards. These data indi-

cated that the apoptotic effect of LNs on macrophages was

exerted by disrupting the balance between Bax and Bcl-2.

Effects of LN treatment on kupffer cells in

mice
To further evaluate the effect of LNs in vivo, acute and

chronic experiments were conducted in mice. After oral

application of LNs to the mice as indicated (Figures 6A

and A), H&E staining was used to detect histological

changes in the liver after both short-term (Figure 6) and

long-term (Figure 7) exposure. As shown in Figure 6B,

the structure of the tissues near the portal veins in the

low-dose (10 mg/kg) and high-dose (30 mg/kg) groups

was more disordered than that in the control group.

Similar phenomena were also observed after chronic

exposure to the LNs (Figure 7B). The Kupffer cells in

the liver were measured by immunofluorescence staining

and the results showed that either type of exposure

would decrease lysozyme-positive cells, suggesting that

both acute and chronic application of LNs could cause

loss of Kupffer cells. The same trend was also noted in

the results of the ink phagocytosis experiments (Figures

7B and D).

Discussion
LNs have drawn attention from researchers since they

were first developed, as a result of their unique physical,

chemical and biological properties. Today, there is ele-

vated public awareness of these agents, accompanying

their increasing usage. In the present study, we observed

the apoptotic effects of one kind of LNs on Kupffer cells,

and concluded that these effects were exerted via a mito-

chondrial pathway. However, several points need to be

clarified:

First, the spherical shape and size of our LN followed a

narrow normal distribution pattern that was similar to that

observed in our previous investigations on LNs.14,21,22 The

negative zeta potential of the LNs could be a result of the

forming materials that we used, and could also play an

important role during their internalization into cells (or at

least the attachment of LNs at the outer membrane of the

cells), since the exterior side of the cell membrane usually

had a positively charged layer of ion (mostly aqueous Na+
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ions). Considering the role of macrophages in phagocyto-

sis, this negative zeta potential could actually facilitate

uptake of LNs into the Kupffer cells.

Secondly, based on our current research, this toxic

effect of LNs was restricted to Kupffer cells, and was

not observed in other types of cells in the liver, especially

hepatocytes (Figure S1 and Table S1). Hence, no differ-

ence was observed on the values and the ratio of aspartate

transaminase and alanine transaminase in our mouse stu-

dies, which presumably indicated that the LNs could affect

the Kupffer cells, but not cause acute damage to the

hepatic parenchyma during the application period. This

may be explained partly as a result of the difference in

endocytosis of various cell types. Macrophages possess the

ability to engulf particles and engage in phagocytosis as a

primary function. In contrast, hepatocytes are capable of

performing some endocytosis. But this activity is not

comparable to that of macrophages with respect to its

rate or scale of particle sizes during material internaliza-

tion. Thus, taking into consideration the uptake facilitation

provided by the negative zeta potential of the LNs, it

would not be astonishing if these LNs manifested higher

levels of toxicity on macrophages than on the ordinary

hepatocytes. It is also interesting, that after the application

of much higher concentrations of LNs, both the HepG2

and L02 cell cultures also displayed cell losses (Figure

S1), suggesting potential toxicity of high doses of LNs on

the hepatocytes. Nevertheless, long-term applications of

LNs could still affect the normal physiological functions

of liver as a result of persistent apoptosis and loss of the

Kupffer cells. Moreover, we observed toxicity from our

LNs on Raw264.7 cells, a cell model for macrophages.

LNs could also induce apoptosis in other types of tissue-

specific macrophages, including alveolar macrophages in

pulmonary tissues, microglia in brain and spinal cord,

sinus histiocytes in lymph nodes, and intestinal macro-

phages in the GI tract. Although these different types of

macrophages show variable functions and activation pat-

terns, malfunction or loss of these key cells of the immune

system could cause severe abnormalities.23 Moreover, the

EC50 (136 μg/mL) may reflect an upper limit of safe

application of LNs in vitro, whereas the 30 mg/kg dose

could be treated as an upper limit for safe acute application

of LNs in vivo.

In addition, the detailed functions of Kupffer cells in

the liver are being viewed as more and more important. On
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one hand, Kupffer cells are located in the hepatic sinu-

soids, a location that allows them to phagocytize patho-

gens entering the liver from either the arterial circulation

or the GI tract via the portal circulation. On the other hand,

Kupffer cells are highly involved in the clearance of

apoptotic cells from the hepatic parenchyma.24 Prior

investigations have suggested that many hepatic diseases

are associated with impaired activity of the Kupffer cells,

including drug-induced liver injury, toxin-induced fibrosis

and chronic inflammations during hepatitis. Thus, these

cells play critical roles in the progression of liver injury

and repair. Based on our current findings, the toxic effect

of LNs could provide a simple way to functionally ablate

Kupffer cells in normal liver, and thus the LNs could serve

as a tool to further our understanding of the possible

functions of Kupffer cells and how they are involved in

normal physiology. Using experimental animal models,

LNs could be easily introduced at any point in the pro-

gression of liver pathology and thus be used to clarify the

possible regulatory roles of Kupffer cells during a variety

of stages of disease progression. Furthermore, investiga-

tions could be conducted on the toxicity of LNs with

different sizes or compositions of the particles in order to

search for potential-specific tools for ablating macro-

phages of various origins and/or in different polarization

states.

Additionally, major components of LNs were separately

applied to the Raw264.7 cells in order to determine which of

these components would cause the toxic effects. However, in

the range of concentrations comparable to those used in our

experiments (94 μg/mL for sesame oil, 3 μg/mL for egg

lecithin, and 5 μg/mL for Tween-80, according to a maximum

concentration of 500 μg/mL of LNs and the percentage of raw

materials added during fabrication), none of the major consti-

tuents showed any toxicity (Figure S2). Even with much

higher concentrations (1 mg/mL), no influence was observed

during 24-h-application of either egg lecithin or sesame oil.

However, the findings were less clear after treatment with

Tween-80, because it could cause cell loss at a concentration

of 30 μg/mL. This is a level that is only six times higher than

themaximum concentration used in our experiments. Together

with the fact that a maximum concentration of 0.05% of

Tween-80 did not induce irritation in animals,16 we hypothe-

sized that Tween-80 can exert certain degree of cytotoxicity on

isolated macrophages in relatively high concentrations, but in

lower concentrations, it is generally safe. However, as a result

of the deliverability of LNs in vitro and phagocytic activity of

the macrophages, more Tween-80 would enter into the cytosol

of the cells and hence affect the integrity of mitochondria

membranes, which could lead to apoptosis via a mitochon-

drial-dependent pathway. It would, therefore, be interesting to

determine a detailed mechanism for this toxicity and also

search for a good substitute for Tween-80 that could be used

for the fabrication of LNs.

Conclusions
In summary, we observed apoptotic effects of LNs on

Kupffer cells in the liver and Raw264.7 cells in vitro.

These effects occurred in a dose- and time-dependent

manner via a mitochondrial-dependent apoptotic path-

way. This ability to ablate Kupffer cells in mice makes

these LNs a potential tool for elucidating the functions

and kinetics of Kupffer cells in the physiologic and

pathologic processes that can occur in the liver.

Meanwhile, further studies are needed to determine

whether LNs can induce apoptosis in other tissue-spe-

cific types of macrophages such as alveolar macro-

phages, microglia, sinus histiocytes, and intestinal

macrophages.
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Research highlights
● Lipid nanoparticles alone could induce apoptosis on

Raw264.7 cells in a dose- and time-dependent manner.
● Acute or chronic application of lipid nanoparticles

could lead to loss of murine hepatic Kupffer cells.
● This apoptotic effect works via a mitochondrial-depen-

dent Bax/Bcl-2 pathway.
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Figure S1 LNs did not cause obvious damage on hepatocytes. (A) Apoptotic detection of L02 cells treated with various concentrations of LNs. (B) MTTanalysis of L02 and

HepG-2 cells treated with LNs.
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Table S1 No obvious change was detected in serum biochemistry study among groups after short-term application of LNs

ALT (U/L) AST (U/L) ALP (U/L) TBIL (mg/dL) TG (mg/dL) TCHO (mg/dL)

Control 34.00±4.78 104.33±9.71 197.67±26.03 0.28±0.06 232.17±40.98 116.50±8.40

10 mg/kg 39.17±5.37 104.33±9.71 217.67±15.66 0.28±0.05 194.67±14.67 131.33±5.30

30 mg/kg 33.00±1.37 115.50±14.97 201.17±25.87 0.28±0.03 242.17±40.21 115.00±6.00

Abbreviation: ALT, alanine transaminase; AST, aspartate transaminase; ALP, alkaline phosphatase; TBIL, total bilirubin; TG, triglyceride; TCHO, total cholesterol; ALT, AST,

ALP and TBIL partly reflected the liver function while TG and TCHO revealed lipid metabolism.
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