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Abstract: Hydroxyapatite (HAp) and bacterial cellulose (BC) composite materials represent a
promising approach for tissue engineering due to their excellent biocompatibility and bioactivity.
This paper presents the synthesis and characterization of two types of materials based on HAp and
BC, with antibacterial properties provided by silver nanoparticles (AgNPs). The composite materials
were obtained following two routes: (1) HAp was obtained in situ directly in the BC matrix containing
different amounts of AgNPs by the coprecipitation method, and (2) HAp was first obtained separately
using the coprecipitation method, then combined with BC containing different amounts of AgNPs
by ultrasound exposure. The obtained materials were characterized by means of XRD, SEM, and
FT-IR, while their antimicrobial effect was evaluated against Gram-negative bacteria (Escherichia coli),
Gram-positive bacteria (Staphylococcus aureus), and yeast (Candida albicans). The results demonstrated
that the obtained composite materials were characterized by a homogenous porous structure and high
water absorption capacity (more than 1000% w/w). These materials also possessed low degradation
rates (<5% in simulated body fluid (SBF) at 37 ◦C) and considerable antimicrobial effect due to silver
nanoparticles (10–70 nm) embedded in the polymer matrix. These properties could be finetuned by
adjusting the content of AgNPs and the synthesis route. The samples prepared using the in situ route
had a wider porosity range and better homogeneity.
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1. Introduction

One of the most significant advances in the field of tissue engineering is the development of a
porous three-dimensional matrix [1]. In order to act as an optimal bone support, the synthetic matrix
must have a series of properties, including biocompatibility, biodegradability, appropriate porosity
(similar to the replaced tissue), antimicrobial activity, and production reproducibility [2,3]. In addition
to these requirements, it is also recommended that they have mechanical properties similar to natural
bone, such as compressive strength, fatigue resistance, and high Young’s modulus [4].
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Such characteristics allow cell penetration, vascularization, and adequate nutrient and oxygen
diffusion to cells and to the unformed extracellular matrix, which ensures cells viability. The pore size is,
in fact, a key element for material efficiency. The pores must be large enough to allow cells to enter and
move into the framework of the scaffold, while a small dimension allows the attachment of essential
cell number at the same level [5]. Depending on the type of host tissue, all the support materials used
in tissue engineering may have a macroporous structure with a particular pore size. For example,
researchers suggest a pore size of 200–400 microns is optimal for bone tissue engineering [5,6].

The inorganic phase of the composites designed for bone replacement is usually hydroxyapatite
(HAp) [7,8]. HAp is an essential element required for tissue regeneration, with the advantages of
great biocompatibility, high plasticity, and remarkable mechanical properties because its chemical and
crystalline structure is similar to natural bone apatite [2,9]. It also has an ultrafine structure and a large
surface area that is advantageous for cell–biomaterial interactions and has been widely studied in
applications for bone engineering [8,10].

For the organic phase of natural bone, replacement with bacterial cellulose (BC) has been
attempted [11]. Even though the BC structure is chemically equivalent to plant cellulose
(β-D-glucopyranose units linked by β-1,4 glycosidic bonds), it is free of by-products, such as lignin,
pectin, hemicellulose, and other constituents of lignocellulosic materials. BC is a biodegradable
polymer consisting of nanofibrillar structures, which determine a high specific surface area and a
microporous structure. The unique 3D structure of BC is the main reason for its excellent retention and
osteoinductivity, properties that make it a highly desirable substitute for collagen extracellular matrix
in hard tissue engineering applications [12]. However, insufficient mechanical strength of the polymer
restricts its direct application in vivo [13].

Many studies [14–17] have shown that BC could provide tissue regeneration and substitution,
thus being used for bioengineering of hard, cartilaginous, and soft tissues. Bacterial cellulose is widely
used as a wound dressing material, and nanomaterials obtained from BC show great antimicrobial
properties [18–21]. BC can be combined with polymeric and nonpolymeric compounds to acquire or
enhance antimicrobial, cell adhesion, and proliferation properties [13,22–25].

Scaffolds embedded with antimicrobial agents, antibiotics, or several forms of silver nanoparticles,
which are known antimicrobial agents, are attracting great interest in biomedical research. Metallic silver
and silver nanoparticles (AgNPs) have been reported to provide a wide variety of antimicrobial
activities [12,26–28].

AgNPs are more toxic compared to bulk silver but they have a strong anti-inflammatory
impact during tissue healing and can be integrated into composite materials to obtain antibacterial
properties [29–31]. The human dietary intake of silver, owing to the widespread use of silver
compounds, is estimated at 70–90 µg per day [32]. One of the main risk factors in tissue engineering
and implant development is microbial infections. Bacterial colonization and the development of
multicellular attached communities, called biofilms, are responsible for the high rate of failure in tissue
engineering [33].

The purpose of this study was to develop a composite material based on hydroxyapatite, bacterial
cellulose, and silver nanoparticles with biomedical applications. The material was obtained by the
coprecipitation technique, which is a reliable, simple, economic, fairly rapid, and precise method that
allows the synthesis of homogenous structures and favorable pore dimensions [10]. Studies have
described the synthesis of bacterial cellulose/hydroxyapatite composites for bone healing applications
using different methods [34–39]. In this work, AgNPs were integrated in the composite system in order
to induce antibacterial properties.

2. Materials and Synthesis Methods

The chemical reagents were calcium nitrate tetrahydrate (Ca(NO3)2•4H2O, >99%), ammonium
phosphate dibasic ((NH4)2HPO4, 99%), ammonium hydroxide (NH4OH, 99%), sodium hydroxide
(NaOH, 98%), silver nitrate (AgNO3, >99%), sodium citrate (C6H5O7Na, >99%), polyvinylpyrrolidone
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((C6H9NO)n), and sodium borohydride (NaBH4, >99%), purchased from Sigma-Aldrich (St. Louis,
MO, USA). The solvents were American Chemical Society (ACS, Washington, DC, USA) purity.
Bacterial cellulose membrane was produced in the laboratory by Gluconacetobacter sp. strain isolated
from traditionally fermented apple vinegar in the Microbiology Laboratory of the Chemical and
Biochemical Engineering Department, University Politehnica of Bucharest, based on a protocol
previously described [40].

In order to obtain 500 mL colloidal silver (100 ppm concentration), an aqueous silver nitrate
solution (AgNO3) was used as silver precursor, to which 30 mL sodium citrate (0.3 M) was added.
After 12 min, 30 mL of Polyvinylpyrrolidone (PVP, 0.007 M) and 5 mL NaBH4 (1 M) were added to
reduce Ag+ to Ag0 nanoparticles. Finally, 5 mL of oxygenated water (30%) was added, and stirring
was maintained for another 10 min approximately, until a light blue color (due to the size of the
nanoparticles) was obtained (Figure 1) [41].
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Figure 1. Synthesis of silver nanoparticles.

The bacterial cellulose synthesized by the Gram-negative bacteria (Gluconacetobacter sp.) was
boiled at 80 ◦C in water alkalized with sodium hydroxide (pH 14, measured by colorimetric method).
After purification, BC was washed in distilled water until it reached neutral pH. Afterward, it was
minced using a blender (Silvercrest, Neckarsulm, Germany) and weighed according to the recipe.
Previously, the amount of dry matter was determined on a quantity of BC by eliminating the humidity,
and it was found that 0.25 g of dry BC can be obtained from 10.62 g of wet BC [17].

Two synthesis methods were used to obtain the bacterial cellulose and HAp-based composites.
The first method involved obtaining in situ hydroxyapatite nanoparticles directly on cellulose fibers
and subsequently adding the AgNPs solution, followed by homogenization using an ultrasound probe
(composites further referenced as BC1, BC2, BC3, and BC4).

For the synthesis of 2 g HAp, the amount of precursors required to obtain the material with
different concentrations of AgNPs (0, 1, 2, and 5 wt %) was calculated.

The Ca2+ and PO4
3− precursors, Ca(NO3)2•4H2O, and (NH4)2HPO4 were solubilized in distilled

water, and bacterial cellulose was added in the calcium nitrate solution (see Figure 2). The mixtures
were homogenized by magnetic stirring, and the ammonium phosphate solution was added
dropwise. After homogenization, the pH was adjusted to 10.5 with an ammonium hydroxide
solution. The obtained precipitates were aged for 24 h, then washed with distilled water until pH 7 was
achieved. After washing, the appropriate amount of silver colloidal solution that had been previously
obtained was added to each composition according to the centralizing table (Table 1). The obtained
mixture was mixed for 3 min in the presence of ultrasound to ensure the best possible homogeneity
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and then poured into Petri dishes (d = 54 mm), frozen, and subsequently subjected to the freeze-drying
process (freezing at −55 ◦C for 12 h, vacuum at 0.001 mbar for 12 h, and heating under vacuum for 24 h
to 35 ◦C) in order to obtain porous composite materials [42].
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Table 1. Bacterial cellulose, HAp, and AgNP content in the final composites.

Sample Name Bacterial Cellulose Content (%) HAp Content (%) AgNP Content (%)

BC1 50 50 0
BC2 50 49 1
BC3 50 48 2
BC4 50 50 5
BC5 50 50 0
BC6 50 49 1
BC7 50 48 2
BC8 50 45 5

The second method of synthesis involved the separate synthesis of HAp by the coprecipitation
method, followed by its addition to bacterial cellulose gel in the presence of ultrasound for 3 min,
as described in Figure 3.Materials 2020, 13, 5 of 17 
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After homogenization, the required amount of silver colloidal solution was added, followed by
the steps previously described in the in situ method. The composites thus obtained by the ex situ
method were noted as BC5, BC6, BC7, and BC8, and their composition is presented in Table 1.
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3. Characterization Methods

3.1. Physicochemical Characterization

Investigation of the crystallinity of the powders was performed by means of X-ray diffraction
(XRD) technique using the PANalytrical Empyrean (Malvern, Bruno, the Netherlands) equipment in
Bragg–Brentano geometry equipped with a Cu anode (λCuKα = 1.541874 Å) X-ray tube. The spectra
were acquired in the range of 10–80◦ 2θ angles (Bragg angle) with an acquisition step of 0.02◦ and an
acquisition time of 100 s. The scanning electron microscopy (SEM) images were performed with a
FEI Inspect F50 microscope coupled with an energy-dispersive spectrometer (EDS) (FEI, Eindhoven,
the Netherlands). Both secondary electron and backscattered electron detectors were used at 30 kV
accelerating voltage. The TEM images of AgNPs were obtained using the high-resolution transmission
electron microscope TecnaiTM G2 F30 S-TWIN equipped with selected-area electron diffraction (SAED)
detector, purchased from the company FEI. This microscope operates in transmission mode at a voltage
of 300 kV with a resolution of 2 Å. Research conducted by Fourier transform infrared spectroscopy
(FT-IR) involved the analysis of a small amount of samples using the Nicolet iS50R spectrometer
(Thermo Fisher Waltham, MA, USA). The measurements were performed at room temperature utilizing
the total reflection attenuation module (ATR), and 32 scans of the samples between 4000 and 400 cm−1

were performed using a resolution of 4 cm−1. The differential thermal analysis (ATD-DSC) were
performed using a Shimadzu DTG-TA-50H equipment (Shimadsu, Sanjo, Japan) at 25–700 ◦C with a
heating rate of 10 ◦C/min.

The open porosity of the freeze-dried composite materials was calculated with Equation (1) for
each material prepared in order to observe the porosity level according to the chosen manufacturing
method, while the water absorption was calculated with Equation (2):

Open porosity (%) =
Mwe −Md
Mwe −Mw

× 100 (1)

Water absorption (%) =
Mwe −Md

Md
× 100 (2)

where Mwe is the wet sample weight, Md is the dry sample weight, and Mw is the sample weight
in water.

3.2. Degradability

To test their biodegradability, the samples were placed in a 12-well plate in which
phosphate-buffered saline (PBS) and simulated body fluid (SBF) were added, similar to the processes
involved in the human body. After immersion of the samples in fluid, their integrity was monitored
for 7 days. The degradation rate was calculated with Equation (3) for each material:

Degradation (%) =
M7day −Minitial

Minitial
× 100 (3)

where M7days is the sample weight in SBF after 7 days of immersion in SBF, and Minitial is the sample
weight after immersion in SBF. All the weight values were obtained at room temperature using a
hydrostatic analytic balance.

3.3. Antimicrobial Efficiency

The antimicrobial behavior of the freeze-dried composite materials was qualitatively assessed
by an adapted growth inhibition assay [43]. To cover a wide spectrum of clinically relevant model
microbial species, one Gram-positive (Staphylococcus aureus ATCC 23235), one Gram-negative bacteria
(Escherichia coli ATCC 25922), and one yeast (Candida albicans ATCC 10231) laboratory strain were
used. The standard work protocol for the adapted version of the disc diffusion method implies the
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preparation of microbial suspensions of 0.5 McFarland standard density (1.5 × 108 colony forming
units (CFU)/mL), prepared in sterile buffered saline solution. The obtained microbial suspensions were
afterward used to swab inoculate the entire surface of the nutrient agar Petri dishes. After inoculation,
identical size samples of the sterile coatings were aseptically placed on the inoculated agar surface,
and the plates were incubated at 37 ◦C for 24 h to allow the growth of bacteria. After incubation, the
growth inhibition zone diameter (mm) was measured. A wider inhibition zone suggests a higher
antimicrobial effect of the fibrous dressing, reflecting the ability of AgNPs contained into the composite
material to diffuse within the agar.

4. Results and Discussions

The thermal analysis corresponding to the composite samples are presented in Figure 4. The two
minor weight losses that occurred at temperatures below 200 ◦C were probably related to the
volatilization of solvents and physical water. The main mass loss was observed in the range 250–450 ◦C,
with the corresponding exothermic effect being strong and intense and indicating burning of the
organic component of the composite (bacterial cellulose). Regarding the compositional aspects, the
thermal analysis allowed an accurate assessment of the loading degree depending on the material
deposited on the surface or between the fibers of the bacterial cellulose. It was observed that certain
changes associated with endothermic processes occurred in the thermogravimetric (TG) curve with the
addition of silver nanoparticles. Hence, in the 450–600 ◦C interval, exothermic effects generated by the
combustion of BC were observed (see Figure 4a), while in the 600–700 ◦C interval, it can be assumed
that the oxidation of silver nanoparticles and dehydroxylation of HAp occurred [15].Materials 2020, 13, 7 of 17 
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We observed (Figure 4) significant differences regarding mass loss between the samples obtained
by in situ vs. ex situ method. The total weight loss in the temperature range of 30–700 ◦C was 45% for
BC1, 65% for BC4, 68% for BC5, and 70% for BC8. The composites obtained in situ had a lower weight
loss, which suggests good loading of BC with calcium phosphate phases (HAp).
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In order to demonstrate the composition, hydroxyapatite was analyzed by XRD technique.
The diffractograms are presented in Figure 5.
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Figure 5. XRD analysis corresponding to the composites samples BC3 and BC4, and hydroxyapatite
(HAp) obtained by the coprecipitation method.

Due to the fact that BC5–BC8 samples were made by direct mixing of bacterial cellulose with
hydroxyapatite (ex situ), the composition of this sample was not expected to change; therefore,
the XRD analysis was only performed for bacterial cellulose, simple hydroxyapatite, and BC3 and BC4

composites (in situ) [44,45].
It was observed that, in all the analyzed samples, the existence of bacterial cellulose and HAp

was obvious. In addition, the low-intensity peak around 2θ = 38◦, which can be assigned to the (111)
crystalline plane, indicated the presence of silver nanoparticles in the composite structure. Investigation
of the composites BC3 and BC4 revealed peaks located at 2θ values of 15, 16, and 23◦, which can be
attributed to bacterial cellulose according to ICDD 00-056-1718.

As the HAp peaks were poorly visible in XRD analysis, FT-IR analyses were used to better
highlight hydroxyapatite formation. The results are presented in Figure 6.

The vibrational frequencies characteristic of bacterial cellulose were observed at 3500–3200 cm−1

(OH stretch vibrations) and 2958 cm−1 (CH2 and CH3 stretch vibrations). The wide band observed in
the region of 3500–3200 cm−1, attributed to the hydroxyl groups within the bacterial cellulose, increased
in absorbance with higher silver content. This behavior suggested that the presence of HAp crystals
affected cellulose hydroxyl groups, probably by covering them at the surface. Furthermore, the change
observed for the band attributed to intramolecular hydrogen bonding (~3500 cm−1) confirmed a strong
interaction between the OH groups and calcium phosphate. The chemical interaction between HAp
and BC stabilized the composite so that it could maintain its mechanical integrity, an aspect required
for bone substituents [46].

The FT-IR bands observed at 1020 cm−1 and 570–600 cm−1 were attributed to the vibrational
modes of PO4

3−. Because the stretching vibration of CO3
2− also appeared (at 1418 cm−1), absorption

of CO2 from the air is suggested [47]. This is mainly a result of the affinity for carbonate of HAp
as well as the lack of heat treatment during the in situ synthesis (which favors the release of CO2).
Carbonated hydroxyapatite contributes to the biomimetism increase of the obtained composites, which
can promote the process of osteoregeneration. It was observed that the in situ method accelerated
the nucleation of HAp crystals onto BC fibers instead of crystallization as higher absorbance values
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were registered for BC5–BC8 samples, which contained highly crystalized HAp. The bands observed
at 1641 and 643 cm−1 correspond to the stretching and deformation vibrations of AgO, respectively,
thus confirming the presence of silver in the obtained materials [48]. This result supports the idea that
the composite material developed here possesses essential physicochemical properties and could be
very useful for biomedical applications, especially hard tissue engineering.
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Figure 6. FT-IR analysis corresponding to the (a) in situ and (b) ex-situ composite samples.

Through the two analyses performed, it was possible to notice the elemental composition of
materials (EDS) as well as the homogeneity of hydroxyapatite particle dispersion.

The SEM image highlighted the fibrous structure of BC (see green arrow), which were decorated
with inorganic particles (see blue arrow). In the SEM images performed on the composites in which HAp
was obtained in situ (Figure 7a–d), a better homogeneity was observed compared to the cases in which
HAp was obtained separately and subsequently mixed with BC (ex situ) (Figure 8a–d. The interaction
between HAp nanoparticles distributed in the 3D network of BC stabilized the composite so that it
could maintain its mechanical integrity, an aspect required for bone substituents. In addition, EDS
analysis confirmed the presence of the elements specific for hydroxyapatite (Ca, P, and O) as well as
the presence of silver for the samples in which it was added (Figure 7(b2–d2) and Figure 8(b2–d2)).

Transmission electron microscopy images showed the silver nanostructure (Figure 9a,b), with the
dimensions of the silver particles being in the range 3–60 nm. It could be observed that the
quasi-spherical morphology of nanosilver and some areas were darker while others were brighter; the
darker areas indicate a higher degree of crystallinity of the material.

Figure 9d shows a SAED image with information on the crystallinity of the analyzed material.
The presence of diffraction rings with higher light intensity shows a high degree of crystallinity.

The calculated open porosity for each prepared material is presented in Figure 10a, and the
calculated water absorption is presented in Figure 9b.

Figure 10a shows that the composites obtained by in situ approach had a large porosity compared
to samples obtained by ex situ. This suggests that the in situ route will provide a biodegradable
polymer with excellent water retention and, possibly, good osteoinductivity, which can be used as an
artificial substitute for hard tissue.
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indicate inorganic particles).
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Transmission electron microscopy images showed the silver nanostructure (Figure 9a,b), with 
the dimensions of the silver particles being in the range 3–60 nm. It could be observed that the 
quasi-spherical morphology of nanosilver and some areas were darker while others were brighter; 
the darker areas indicate a higher degree of crystallinity of the material. 

Figure 8. High-resolution backscattered electron (BSE) images and EDS spectra at 100×magnification
for BC5 (a,a1,a2), BC6 (b,b1,b2), BC7 (c,c1,c2), and BC8 (d,d1,d2) (where a1–d1 images represent a high
magnification of a–d image area; green arrow indicates the fibrous structure of BC and blue arrow
indicate inorganic particles).
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As can be observed, when the silver nanoparticle concentration increased, the composite porosity
decreased for susceptible types of composite, which resulted in lower absorption capacity. Even though
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high porosity, which is associated with increased absorption capacity, is an important structural
parameter for bone substituents, the registered decrease due to Ag addition is not significant in this
case as the water absorption was still greater than 1000–1500%.

Visual inspection (Figure 11) is an efficient technique for investigation of simulated in vitro
degradation of BC samples, and it has also been used in recent literature [49] in order to investigate the
degradation of cellulose-based materials. Generally, visual inspection implies macroscopic pictures of
the immersed samples while observing, in a qualitative manner, the presence of detached fragments,
the apparition of denser fragments that may provide additional mechanical integrity for cell growth,
and so on. As expected, the composite materials did not show major changes after immersion in PBS
and SBF.
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Figure 11. Macroscopic pictures of degradation of BC composites initially (a1,a2) and after seven days
of immersion in phosphate-buffered saline (PBS) and simulated body fluid (SBF) (b1,b2).

After seven days, no major visual changes were observed, and the degradation was below 5%
(see Figure 12), a sign that bacterial cellulose prevented the disintegration of the composite. A rapid
biodegradation of the implanted material is not desired because it takes time for it to integrate better
into the host tissue. Another problem is that by biodegradation, remnants/fragments of the material
can reach the level of sensitive areas, which would be fatal.

Due to the higher homogeneity and better interactions between the phosphate phase (HAp) and
BC, the composites obtained in situ had a lower degradation compared to those obtained using ex
situ methods.
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Figure 12. Degradability of composites after seven days of immersion in SBF at room temperature.

Antimicrobial Potential

The antimicrobial effect of the obtained composite materials was different among the tested
samples, being influenced by the synthesis approach, AgNP content, and microbial species. Figure 13
shows the diameters of the inhibition area of the microorganisms grown in the presence of the
tested materials.
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Figure 13. The diameter of the growth inhibition zone of the tested microorganisms grown in the
presence of the obtained BC samples containing various amounts of AgNPs. The plain AgNP control
is represented by 10 uL of AgNPs (used at maximum equivalent amount contained in BC samples),
which was added to a commercial filter paper disc of a similar size as the obtained BC samples.

Because composites BC1 and BC5 did not contain antibacterial AgNPs, they were used as control
samples for evaluation of the other samples.
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The antimicrobial characteristic of the obtained composites was clearly influenced by the
concentration of AgNPs, with samples with higher content of silver exhibiting the greatest microbial
growth inhibition, regardless of the synthesis approach. It was observed that the materials obtained by
the in situ method had a more pronounced overall antibacterial characteristic (growth inhibition zones
ranging 5–11 mm) compared to the samples obtained by the ex situ method (diameter of inhibition
zones ranging 5–9 mm).

The different antimicrobial effects of the materials obtained by in situ and ex situ routes correlated
with their physicochemical properties. Samples obtained by the in situ route showed a larger porosity,
suggesting that the bioactive compounds (i.e., AgNPs) may be absorbed more efficiently in pores.
Moreover, a higher porosity degree can be directly associated with an easier release of the bioactive
agent, therefore inducing an increase in the antimicrobial activity of the final composite. This idea is
supported by the results obtained with the control AgNPs utilized in equivalent amounts and added
to sterile commercial filter paper, which demonstrated lower inhibition zones.

The most efficient growth inhibition was observed against the yeast strain C. albicans ATCC 10231,
with the result being relevant for samples obtained by both in situ and ex situ methods. However, the
composites obtained in situ also showed increased antimicrobial activity against the Gram-positive
S. aureus strain. This result suggests that the obtained composite materials may act differently on
microbial cells, depending on the particularities of their cellular wall. Such differences were observed
before with silver nanoparticles [50–53].

5. Conclusions

In this study, we report the synthesis of hydroxyapatite–bacterial cellulose silver nanocomposites
obtained by two routes using coprecipitation, namely, in situ and ex situ assembly. These materials
contained an organic part (bacterial cellulose), an inorganic part (hydroxyapatite), and an antimicrobial
agent (AgNPs) contained in various amounts, thereby conferring new bioactive properties on the
composite materials. Physicochemical and antimicrobial studies demonstrated that the most efficient
in terms of potential biomedical applications were the samples obtained by the in situ approach.
The porosity range of the in situ materials was greater than the porosity of ex situ composites, while
the best antimicrobial activity was observed for the material coded BC4, which had a content of
5 wt % AgNPs. Due to the physicochemical structure, together with the already demonstrated great
antimicrobial properties and low biodegradability of these materials, they have potential applications as
successful candidates for biomedical applications, especially in hard tissue engineering. Their current
limitation relates to the fact that further tests performed on osteoblast differentiation and mineralization
(e.g., alkaline phosphatase and alizarin red S) are needed.
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