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Genetic propensity for obesity, 
socioeconomic position, 
and trajectories of body mass index 
in older adults
Kristiane Tommerup1*, Olesya Ajnakina1,2 & Andrew Steptoe1

Identifying how socioeconomic positioning and genetic factors interact in the development of obesity 
is imperative for population-level obesity prevention strategies. The current study investigated 
whether social positioning, either independently or through interaction with a polygenic score for 
Body Mass Index (BMI-PGS), influences BMI trajectories across older adulthood. Data were analysed 
from 7,183 individuals from the English Longitudinal Study of Aging (ELSA). Interactions between 
the BMI-PGS and; lower educational attainment, self-perceived social status (SSS), and income, 
on BMI trajectories over 12 years across older adulthood were investigated through linear mixed 
effects models. Lower educational attainment, SSS and income were each associated with a higher 
baseline BMI for women, but not for men. There were interaction effects between BMI-PGS and social 
positioning such that men aged > 65 with a lower educational attainment (β = 0.62; 95%CI 0.00 – 1.24, 
p < 0.05), men aged ≤ 65 of a lower income (β = − 0.72, 95%CI − 1.21 - − 0.23, p < 0.01) and women 
aged ≤ 65 of lower SSS (β = − 1.41; 95%CI − 2.46 – 0.36, p < 0.01) showed stronger associations between 
the BMI-PGS and baseline BMI. There were few associations between markers of socioeconomic 
position and rate of change in BMI over the follow-up period. In sum, lower socioeconomic positioning 
showed adverse associations with women’s BMI in older adulthood. Moreover, the expression of the 
BMI-PGS, or extent to which it translates to a higher BMI, was subtly influenced by socioeconomic 
standing in both women and in men.

The prevalence of obesity, defined in adulthood by a body mass index (BMI) ≥ 301, is associated with numerous 
adverse health implications in older age. These include an increased risk for diabetes2, cardiovascular diseases3, 
hypertension and even mortality4. This relationship is anticipated to further increase as the general population 
continues to age, with associated costs of obesity being estimated to reach £49.9 billion per year by 20505.

The distribution of obesity is unequal across socioeconomic positions (SEP)6, with rates being higher among 
those with lower education7, income8 or subjective social class9. Obesity rates demonstrate a strong gradient in the 
UK as result of a greater exposure to the obesogenic environment and more limited opportunities for adequate 
nutrition and physical activity across the lifespan10. While education, self-perceived social standing (SSS) and 
income are correlated, they reflect different aspects of SES at older ages11. Education is typically completed in 
early life and shapes occupational trajectories; while income is an indicator of economic resources that influ-
ences opportunities for mobility, food choice, and access to exercise facilities relevant to adiposity in later life12. 
Moreover, there is evidence to suggest that women’s BMI in adulthood appears to be more adversely affected by 
lower socioeconomic settings than in men6. However, it is less well understood how BMI may be differentially 
influenced by specific markers of SEP between the sexes, potentially highlighting more specific and fruitful targets 
for obesity prevention efforts in older adulthood.

Nonetheless, obesity has a strong genetic basis, with an estimated heritability ranging from ~ 40 to 70%13. 
To uncover the molecular mechanisms underlying BMI, genome-wide association studies (GWAS) have been 
successful in identifying hundreds of significant loci associated with BMI, which together are shown to have 
a substantial additive influence on BMI14. These GWAS have led to the development of the polygenic score 
approach, which represents an aggregate measure of polygenic risk for BMI by exploiting all loci associated with 
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a higher BMI15. Polygenic approaches also offer novel means to uncover the potentially modifying effect of the 
social environment on the expression of genetic risk towards a higher BMI. A more favourable socioeconomic 
environment may attenuate the expression of genetic risk for BMI, while a less favourable environment may 
enhance the expression of genetic risk. Hence, the same genetic risk may result in higher BMI for populations 
living in lower socioeconomic conditions; a so called gene-environment interaction (GxE)16. A recent study 
from Barcellos et al. found a significant gene-by-education interaction within the large UK Biobank Sample17. 
Moreover, Frank et al. demonstrated the presence of GxE in relation to income, highlighting the potential for 
SEP measures outside of educational attainment to attenuate genetic risk towards BMI18. However, the support 
for GxE in relation to obesity remains inconsistent19–21. Moreover, GxE studies of BMI have primarily focused 
on educational attainment, and therefore alternative aspects of socioeconomic positioning remain unexplored.

The current study used a large population-representative cohort of older adults to investigate whether a higher 
genetic load of multiple risk alleles for BMI (a BMI-PGS score) was associated with BMI at baseline (~ 64 years of 
age) and rate of change in BMI over a 12-year follow-up period in older adults. We tested interactions between 
the BMI-PGS score and educational attainment, income, and SSS in relation to BMI at baseline and change in 
BMI over the follow-up period. We were also interested in how such interactions may operate differently in 
mid-to late adulthood (50–65 years of age) and late adulthood (≥ 65) as BMI trajectories increase in mid-to-late 
adulthood and then begin to decrease in late adulthood22. Hence the dichotomisation utilised in the current 
study was derived in line with demonstrated upwards trends of BMI trajectories in mid-to late adulthood (< 65) 
and downwards trends across older adulthood (≥ 65)22.

We hypothesised that adults with a larger genetic susceptibility (BMI-PGS) would be at greater risk for 
accelerated increases in BMI over the 12-year period. Secondly, we hypothesised that the BMI-PGS would be 
more strongly associated with BMI at baseline and steeper BMI trajectories for individuals of a lower educational 
attainment, income or SSS; a GxE interaction.

Method
Sample.  Data were drawn from the English Longitudinal Study of Aging (ELSA), a nationally representa-
tive survey of English adults aged 50 years or older23. Measures of socioeconomic position and covariates were 
taken from wave 2 (2004–2005) for the core sample (82%), or waves 4 (2008–2009) and 6 (2012–2013) for the 
respective refreshment samples (18%). Baseline measures of BMI were taken from wave 2 (2004–2005) for par-
ticipants who provided blood samples for genotyping at wave 2 (77%), or wave 4 for those who provided blood 
samples at wave 4 (23%). Follow-up BMI measures were obtained from waves 6 (2012–2013) and 8 (2016–2017). 
Ethical approval for each ELSA wave was granted by the National Research Ethics Service (London Multicentre 
Research Ethics Committee). All participants gave informed consent, and all experiments were performed in 
accordance with relevant guidelines and regulations.

Study variables.  Body mass index (BMI).  BMI was calculated using standard formulae (weight in kilo-
grams/height in square meters)22. Here, height and weight were measured during the nurse visit. Weight was 
measured using Tanita electronic scales to measure body weight without shoes and in light clothing. Height was 
determined by Stadiometer using the Frankfort plane on a ground level. At Wave 8, BMI was calculated using 
height measurements obtained from Wave 6, as no height measurements were obtained in 2016–2017.

Measures of socioeconomic position.  Educational attainment.  Educational Attainment was measured 
through self-reported highest educational qualification. Respondents were asked to self-report their highest ed-
ucational qualification or attainment using computer-assisted interviewing, from a list response option includ-
ing: degree level qualifications, teaching qualifications, nursing qualifications, A-levels or higher school certifi-
cate, O-level qualifications, GCSE level graded, NVQ qualifications, apprenticeship level, other qualifications, or 
none. Responses were derived into three categories: (1) Higher Qualification (undergraduate or postgraduate 
degree level), (2) Secondary Qualification (A/O or GSCE level or equivalent), (3) Primary Qualification (Below 
A/O/GSCE or no qualification).

Subjective social status (SSS).  SSS was measured through the MacArthur Scale of Subjective Social Status24. 
This measure presents a drawing of a ladder with 10 rungs to respondents, representing where people stand in 
society, the higher up representing those with the most money, education, and jobs. Respondents were asked to 
place a single “X” on this ladder to rank their social standing, producing a score from 1 to 10, with 10 being the 
highest SSS. These raw scores were derived into tertiles: (1) Top Tertile, (2) Middle Tertile, (3) Lowest Tertile of 
SSS.

Income.  Income was measured through self-reported household equivalised income, adjusted for variation in 
household size. Income was calculated from detailed assessments of a full range of earned and unearned sources 
of income. Earned sources of income included employment income, self-employment income, state pension 
income, and other benefit income; while unearned sources on income included income from assets, investments 
and financial transfers25. The income variable was divided into tertile to represent the groups of individuals with 
(1) High, (2) Intermediate and (3) Low Tertiles of Income.

Covariates.  Demographic covariates included marital status (not currently married vs currently married) 
derived from a single item asking participants to disclose their current legal marital status as; single, married, 
remarried, legally separated, divorced, or widowed. Behavioural covariates included smoking status (not-cur-
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rent smoker vs current smoker) derived from one item asking participant whether they smoke cigarettes at all 
nowadays (yes vs no). Secondly, physical activity level (sedentary or low activity at least once a week, moder-
ate activity at least once a week, vigorous activity at least once a week) was also included in the models, and 
derived through three separate items reporting on the frequency of either vigorous, moderate, or mildly ener-
getic sports and activities; more than once a week, once a week, one to three times a month, or hardly ever 
or never26. These responses were categorised according to their highest level of activity reported at least once 
a week. Health related covariates included the presence of a longstanding illness (illness reported vs. no ill-
ness reported) reported through a single item; Do you have any long-standing illness, disability, or infirmity? 
(yes/no) and depressive symptomatology (current depressive symptoms vs no current depressive symptoms). 
Depressive symptoms were measured with an 8-item version of the Centre for Epidemiologic Studies Depression 
Scale27, which has comparable psychometric properties to the full 20-item scale; a score ≥ 4 was used to define 
participants with severe depressive symptoms28. Lastly, genetic ancestry measured with principal components 
(see below), was included as a covariate (four principal components) to account for any ancestry differences in 
genetic structures that could bias our results29.

Genetic data.  The genome-wide genotyping was performed at University College London Genomics in 
2013–2014 using the Illumina HumanOmni2.5 BeadChips (HumanOmni2.5-4v1, HumanOmni2.5-8v1.3), 
which measures ~ 2.5 million markers that capture the genomic variation down to 2.5% minor allele frequency 
(MAF). Samples were removed based on call rate (< 0.99), suspected non-European ancestry as identified though 
principal components analysis and self-identification, heterozygosity, and relatedness. Specifically, to investigate 
population structure, principal components analysis (PCA)29 in PLINK 1.930 was conducted21. An inspection of 
PCA highlighted the presence of ancestral admixture in the 65 individuals. We removed these outliers and re-
calculated PCs using the updated samples; here, top 10 principal components were retained to account for any 
ancestry differences in genetic structures that could bias results31,32.

Duplicated samples and cryptic relatedness between each pair of participants was evaluated using pairwise 
genome-wide estimates of three coefficients corresponding to the probabilities of sharing 0, 1 or 2 alleles between 
two individuals that are identical by descent33. We used the method of moments for estimating the identical by 
descent (IBD) probabilities34 implemented in PLINK30 1.9. IBD were estimated using autosomal SNPs where 
IBD = 1 highlights presence of duplicates or monozygotic twins, IBD = 0.5 shows that first-degree relatives are 
present in the sample, IBD = 0.25 and IBD = 0.125 highlights presence of second-degree and third-degree relatives, 
respectively35. We identified individuals with an IBD value of > 0.2 and excluded one of each pair at random36. 
Single Nucleotide polymorphisms (SNPs) were excluded if they were non-autosomal, the minor allele frequency 
was < 0.01%, if more than 2% of genotype data were missing and if the Hardy–Weinberg Equilibrium P < 10−4.

Polygenic score (PGS).  To calculate PGS for BMI (BMI-PGS), we used summary statistics reported by the 
Genetic Investigation of Anthropometric Traits (GIANT) consortium (2018)14. BMI-PGS were calculated as a 
weighted sum of the allele dosages, summing over the markers abiding by the p-value threshold (PT) (i.e., 0.001, 
0.01, 0.05, 0.1, 0.3, and 1) weighted according to the strength of effect estimate were summed in a continuous 
score using PRSice. Using information on sample size (n), total number of independent markers in genotyp-
ing panel (m) and lower and upper Pvalues to select markers into polygenic score we estimated the predictive 
accuracy (R2) PT = 0.001 (m = 255,091), PT = 0.01 (m = 114,862), PT = 0.05 (m = 62,583), PT = 0.1 (m = 194,940), 
PT = 0.3 (m = 412,954), and PT = 1 (m = 798,737) we estimated a predictive power of each PGS using Avenge 
me package implemented in R37,38.. Consequently, we estimated predictive accuracy for each PGS at PT = 0.001 
(R2 = 0.001, P = 0.004), PT = 0.01 (R2 = 0.001, P = 0.035), PT = 0.1 (R2 = 0.03, P = 3.83 × 10–6), PT = 0.05 (R2 = 0.002, 
P = 1.31 × 10–5), PT = 0.03 (R2 = 0.001, P = 0.003) and PT = 0.1 (R2 = 0.001, P = 0.014) had sufficient, as indicated by 
significant P values, predictive accuracy to be employed in the analyses. As previously a large comparative study 
showed that a PGS at p value thresholds PT = 1 was the ultimate PGS to use in longitudinal studies39,40

, we utilised 
PGS that was based on PT = 1 assuming all genetic markers contribute to trait development.

Statistical analyses.  To assess the interplay between BMI-PGS with socioeconomic position on BMI val-
ues at baseline and across the 12-year follow up period, we employed linear mixed effect models (LMMs) with 
maximum likelihood estimation41. LMMs with maximum likelihood estimation maximise the use of longitu-
dinal data, adjust for the correlation between repeated measures, weight estimates for missing data between 
waves, and increase statistical power and precision41. Using Akaike Information Criterion and Bayesian Infor-
mation Criterion, a quadratic model allowing for random intercepts and slopes was deemed most appropriate 
for our analyses. To test whether variation in BMI across SEP influenced the model results, heteroscedascity 
assumptions was examined, and where heteroscedascity was present, models used robust standard errors, using 
the vce(robust) command in STATA, relaxing the assumption that standard errors carry identical and equal 
distributions42. Interactions between BMI-PGS and all three measures of socioeconomic position were inves-
tigated using multiplicative models. Each analysis was stratified by gender and age group (i.e., < 65 years old 
vs > 65 years old). We used a significance level of 0.05 (two-tailed) for all analyses. All analyses were conducted 
in STATA release 16 (STATA Corp LP, USA)43.

Sensitivity analyses.  In the sensitivity analyses we repeated all analyses as described above but with missing 
values imputed for both socioeconomic position (educational attainment, SSS, and income) and all covariate 
measures using MissForest in RStudio version44 3.6.2.6.
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Results
Sample characteristics.  The total sample consisted of 7183 ELSA participants for whom the quality-con-
trolled genome-wide genotyping and BMI during the follow-up were available; of these 46% (N = 3304) were 
men and 54% (N = 3879) were women. The baseline mean age for men was 64.40 (standard deviation (SD) = 9.15) 
and for women was 64.35 (SD = 9.56). A larger proportion of men (74.88%) than women (56.17%) reported a 
longstanding illness (x2 = 6.11, P = 0.011); whereas a larger proportion of women (34.37%) than men (21.35%) 
showed elevated depressive symptoms (x2 = 148.59, P < 0.001). Men and women differed further in terms of 
marital status, level of physical activity, income, and educational attainment all reported at baseline (Table 1).

Educational attainment and BMI‑PGS in relation to BMI trajectories.  As compared to the group 
with a higher qualification, having a primary qualification was associated with higher BMI at baseline for women 
aged ≤ 65  years old (β = 1.25; 95%CI 0.64  –1.85) (Table  2), and  women aged > 65  years old (β = 1.04; 95%CI 
0.35 – 1.72) and men aged > 65 years old (β = 0.52; 95%CI 0.02 – 1.07) (Table 2). While having a secondary 
qualification was only associated with a higher BMI at baseline for women aged ≤ 65 years old (β = 1.02; 95%CI 
0.45–1.60). Regarding interaction effects, a 1-SD increase in BMI-PGS was associated with a higher baseline 
BMI of 0.62 points in men aged > 65 of a secondary education as compared to  those of a higher education 
(β = 0.62; 95% CI 0.00–1.24) (Fig. 1). For rate of change in BMI, in men aged ≤ 65 years, a secondary (β = 0.06; 
95%CI 0.02 – 0.10) and primary qualification (β = 0.06; 95%CI 0.01 – 0.11) was associated with a steeper increase 
in BMI across the 12-year follow up than that found in the higher qualification group.

Subjective social status (SSS) and BMI‑PGS in relation to BMI trajectories.  As compared to the 
highest SSS tertile, being in the middle tertile of SSS (β = 0.75; 95%CI 0.20–1.29) and bottom tertile of SSS 
(β = 1.16; 95%CI 0.08 – 2.24) was associated with a higher BMI at baseline for women aged ≤ 65 years old. In 
contrast, for men aged ≤ 65 years old, being in the bottom tertile of SSS was associated with a lower BMI at 

Table 1.   Baseline sample characteristics of ELSA participants. a Combination of BMI measures collected at 
either wave 2 (for participants where blood was collected for genotyping at wave 2 (77%) and wave 4 (for 
participants where blood was collected at wave 4 (23%)).

Sample characteristics

Men (n = 3304) Women (n = 3878) Test statistics

N(%)/mean (SD) N(%)/mean (SD) t/x2 Df P value

Age (years) 64.40 (9.15) 64.35 (9.56) − 0.31 7180 0.75

Source of baseline BMI

 Wave 2 2461 (74.48) 2937 (75.73) 1.35 1 0.25

 Wave 4 753 (22.79) 841 (21.68)

Current smoker 512 (15.57) 653 (16.89) 2.26 1 0.13

Not married 780 (23.61) 1466 (37.79) 167.06 1  < 0.001

Income

 High 1244 (38.71) 1207 (32.15) 49.81 2  < 0.001

 Moderate 997 (31.02) 1130 (30.10)

 Low 973 (30.27) 1417 (37.75)

Highest educational attainment

 Higher qualification 1117 (35.80) 861 (25.04) 90.02 2  < 0.001

 Secondary qualification 812 (26.03) 1040 (30.24)

 Primary qualification 1191 (38.17) 1538 (44.72)

Subjective social status

 Top Tertile 637 (20.33) 585 (15.90) 24.35 2  < 0.001

 Middle Tertile 2215 (70.68) 2780 (75.54)

 Lower Tertile 282 (9.00) 315 (8.56)

Longstanding Illness present 1758 (74.88) 2177 (56.17) 6.11 1 0.01

Poor self-reported health 1772 (23.37) 1938 (24.18) 0.64 1 0.43

Physical activity

 Sedentary 532 (16.13) 803 (20.75) 35.63 2  < 0.001

 Moderate activity 1578 (47.85) 1878 (48.53)

 Vigorous activity 1188 (36.02) 1189 (30.72)

Elevated depressive symptoms 704 (21.35) 1332 (34.37) 148.59 1  < 0.001

Body mass index

Baselinea 27.89 (4.27) 27.97 (5.41) − 0.74 6990 0.45

 Wave 6 28.11 (4.49) 28.15 (5.60) − 0.23 4331 0.82

 Wave 8 27.88 (4.44) 27.76 (5.61) 0.65 3212 0.51
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baseline (β = − 1.68; 95%CI − 2.55 to − 0.82) (Fig. 2). In both men and women aged > 65 years old, there was no 
association between SSS and baseline BMI (Table 3). There was an interaction effect between BMI-PGS and SSS 
on baseline BMI for women aged ≤ 65 years old, such that a 1-SD increase in BMI-PGS was associated with lower 
baseline BMI of 1.41 points for women in the bottom tertile of SSS (β = − 1.41; 95%CI − 2.46 to − 0.36) (Table 3). 
There were two interaction effects found for change in BMI over time. A higher BMI-PGS was associated with 
a reduction in BMI across time for men (aged ≤ 65) in the bottom tertile of SSS as compared to the highest SSS 
tertile (β = − 0.09; 95%CI − 0.17 to − 0.01) (Table 3). While for women aged > 65 years old, the BMI-PGS was 
associated with reductions in BMI for those in the bottom tertile of SSS (β = − 0.16; 95%CI − 0.32 − 0.01).

Income and BMI‑PGS in relation to BMI trajectories.  Compared with the highest income tertile, 
women who were aged > 65 years old in the intermediate (β = 0.81, 95%CI 0.09–1.53) and lowest income tertiles 
groups (β = 0.86, 95%CI 0.18 - − 1.53) had higher baseline BMI values (Table 4). While for men aged > 65 years 
old, the intermediate income tertile showed lower baseline BMI values (β = − 0.67, 95%CI − 1.21 - − 0.13). There 
was an interaction effect between BMI-PGS and income for BMI at baseline for men aged ≤ 65, such that a 1-SD 
increase in BMI-PGS was associated with a lower baseline BMI value of 0.72 points for men in the lowest tertile 
of income but not in the highest (β = − 0.72, 95%CI − 1.21 to − 0.23) (Table 4). There were no significant direct 
effects or interaction effects of income on the rate of change in BMI over the 12-year follow up for either men 
or women.

Sensitivity analyses.  After mutiple imputation for missing data, we observed that as compared to a higher 
qualification, men with a primary level education had a higher BMI at baseline in both the > 65 age group 
(β = 0.51; 95%CI 0.08–1.11) and ≤ 65 age group (β = 0.49; 95%CI 0.00–0.98) (Supplementary Table    3). For 
SSS, the interaction between BMI-PGS and the bottom tertile of SSS on rate of change in BMI in men aged > 65 
uncovered in the main analyses was attenuated towards null. Moreover, women aged ≤ 65 and in the lowest 
tertile of SSS, no longer showed higher BMI at baseline (Supplementary Table 4). For income, women aged ≤ 65 

Table 2.   Adjusted longitudinal mixed models exploring the main effect of polygenic score for BMI (BMI-
PGS) and educational attainment, and interactions between these two variables in relation to BMI trajectories 
during the 12-year follow-up period. The adjusted models were adjusted for 4 principal components to 
account for any ancestry differences in genetic structures that could bias the results, as well as; marital status, 
physical activity level, presence of longstanding limiting illness, self-reported health, depressive symptoms, 
and smoking status. CI, confidence intervals; PGS, polygenic score; BMI, body mass index. a The within-
person variance is the overall residual variance in cognition that is not explained by the model. The initial 
status variance component is the variance of individuals’ intercepts about the intercept of the average person. 
The rate of change variance component is the variance of individual slopes about the slope of the average 
person. ×Represents an interaction between the two factors; interactions are presented based on multiplicative 
interaction model. ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05.

 < 65 Years of age  > 65 Years of age

Men Women Men Women

β 95% CI β 95% CI β 95% CI β 95% CI

Baseline

PGS 1.41*** 1.10–1.71*** 1.69*** 1.29–2.10*** 0.57** 0.25–0.88*** 1.09*** 0.59–1.59***

Higher degree – – – – – – – –

Secondary qualification 0.33 − 0.13 to 0.82 1.02*** 0.45–1.60*** 0.28 − 0.28 to -0.86 0.39 − 0.40 to 1.20

Primary qualification 0.42 − 0.08 to 0.93 1.25*** 0.64–1.85*** 0.52* 0.02–1.07* 1.04** 0.35–1.72**

PGS × higher qualification – – – – – – – –

PGS × secondary qualification − 0.34 − 0.81 to 0.12 − 0.17 − 0.73 to 0.37 0.62* 0.09–1.16* 0.56 − 0.40 to 1.20

PGS × primary qualification − 0.19 − 0.68 to 0.30 − 0.46 − 1.03 to 0.12 0.34 − 0.11 to 0.79 − 0.05 − 0.66 to 0.55

Rate of change

PGS − 0.00 − 0.03 to 0.02 − 0.01 − 0.02 to 0.05 0.01 − 0.04 to 0.05 0.04 − 0.02  to 0.10

Higher qualification – – – – – – – –

Secondary qualification 0.06** 0.02–0.10** 0.02 − 0.02 to 0.07 0.07 0.00–0.14 0.01 − 0.07 to 0.10

Primary qualification 0.06** 0.01–0.11** 0.05 − 0.00 to 0.10 0.02 − 0.04 to 0.09 − 0.07 − 0.14 to 0.01

PGS × higher qualification – – – – – – – –

PGS × secondary qualification 0.01 − 0.02 to 0.05 − 0.03 − 0.08 to 0.01 0.02 − 0.04 to 0.08 − 0.03 − 0.12 t o 0.04

PGS × primary qualification 0.01 − 0.03 to 0.06 0.01 − 0.04 to 0.06 − 0.03 − 0.09 to 0.03 − 0.01 − 0.08 to 0.06

Variancea

Within-person 0.04 0.03–0.05 0.05 0.03–0.06 0.03 0.02–0.07 0.04 0.02–0.09

In initial status 15.89 14.74–17.13 24.44 22.78–26.22 12.79 11.22–14.58 20.72 18.58–23.12

In rate of change 0.03 − 0.06 to 0.11 0.01 − 0.11 to 0.11 − 0.06 − 0.26 to 0.14 0.15 − 0.04 to 0.33
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Figure 1.   Mean Body Mass Index (BMI) at baseline for different levels of educational attainment between male 
and female respondents.

Figure 2.   Mean Body Mass Index (BMI) at baseline for different levels of subjective social status between male 
and female respondents.
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and in the mid and lower income tertiles did not show higher BMI at baseline as in the main analyses (Supple-
mentary Table 5).

Discussion
To our knowledge, the present study is the first to investigate GxE interactions between an aggregate measure 
of genetic risk for BMI and three dimensions of socioeconomic position the rate of change in BMI across older 
adulthood. Consistent with previous findings15,45, our results showed that a higher BMI-PGS was associated with 
higher baseline BMI (~ 64 years of age) in both men and women. However, contrary to our second hypothesis, 
BMI-PGS was not significantly associated with a higher rate of change in BMI during the 12-year follow-up 
period. These results may imply that polygenic factors that contribute to BMI variation in mid-to-older adult-
hood may differ from those which influence BMI fluctuations at older ages.

Consistent with previous findings, our results demonstrate that lower levels of educational attainment, SSS 
and income were associated with higher baseline BMI more so in women than in men46. Moreover, males with 
lower SSS and incomes even showed lower BMI values at baseline. Hence, women in mid-to-late adulthood may 
be more exposed to the limited opportunities for physical activity and lower quality diet present in lower socio-
economic settings than are men, and therefore show a stronger social gradient in BMI outcomes than men of the 
same social standing47,48. For instance, the well reported ‘gender pension gap’ or the tendency for women in the 
UK to enter retirement with a lower private pension wealth and income retirement than men across the social 
gradient49, may result in greater obesogenic exposures for women in later adulthood. With fewer resources and 
larger occupational demands in later life, women may be exposed to a greater risk of adiposity development across 
older adulthood than men of a similar social position50. Nonetheless, a reverse causal effect between obesity 

Table 3.   Adjusted longitudinal mixed models exploring the main effect of polygenic score for BMI (BMI-
PGS) and subjective social status, and interactions between these two variables in relation to BMI trajectories 
during the 12-year follow-up period. The adjusted models were adjusted for 4 principal components to 
account for any ancestry differences in genetic structures that could bias the results, as well as; marital status, 
physical activity level, presence of longstanding limiting illness, self-reported health, depressive symptoms, 
and smoking status. Adjusted models used robust standard errors to relax the assumption that standard errors 
carried identical and equal distributions, due to the presence of heteroscedascity. CI, confidence intervals; 
PGS, polygenic score; BMI, body mass index. a The within-person variance is the overall residual variance 
in cognition that is not explained by the model. The initial status variance component is the variance of 
individuals’ intercepts about the intercept of the average person. The rate of change variance component is 
the variance of individual slopes about the slope of the average person. ×Represents an interaction between 
the two factors; interactions are presented based on multiplicative interaction model. ***p ≤ 0.001, **p ≤ 0.01, 
*p ≤ 0.05.

 < 65 Years of age  > 65 Years of age

Men Women Men Women

β 95% CI β 95% CI β 95% CI β 95% CI

Baseline

PGS 1.28*** 0.87–1.68*** 1.54*** 1.01–2.01*** 0.52* 0.10–0.94* 1.23*** 0.61–1.84***

Top tertile – – – – – – – –

Middle tertile − 0.33 − 0.81 to 0.15 0.75* 0.20–1.29* 0.05 − 0.49 to 0.60 0.37 − 0.35 to 1.09

Bottom tertile − 1.68*** − 2.55 to − 0.82*** 1.16* 0.08–2.24* 0.44 − 0.45 to 1.35 0.37 − 0.74 to 1.47

PGS × top tertile – – – – – – – –

PGS × middle 
tertile − 0.02 − 0.49 to 0.45 0.01 − 0.45 to 0.62 0.42 − 0.06 to 0.92 − 0.06 − 0.75 to 0.62

PGS × bottom 
tertile 0.41 − 0.44 to 1.26 − 1.41** − 2.46 to − 0.36** 0.64 − 0.45 to 1.41 0.20 − 0.91 to 1.31

Rate of change

PGS 0.03 − 0.01 to 0.07 0.01 − 0.03 to 0.05 0.03 − 0.00 to 0.08 0.08 − 0.02 to .18

Top tertile – – – – – – – –

Middle tertile 0.03 − 0.02 to 0.08 − 0.02 − 0.07 to 0.03 − 0.03 − 0.09 to 0.03 0.01 − 0.09 to 0.11

Bottom tertile 0.02 − 0.08–0.11 0.03 − 0.06–0.12 − 0.01 − 0.14–0.12 − 0.08 − 0.24–0.07

PGS × top tertile – – – – – – – –

PGS × middle 
tertile − 0.03 − 0.07 to 0.01 0.00 − 0.04 to 0.05 − 0.04 − 0.08 to 0.01 − 0.06 − 0.17 to − 0.04

PGS × bottom 
tertile − 0.09* − 0.17 to − 0.01 − 0.01 − 0.12 to 0.10 − 0.01 − 0.10 to 0.09 − 0.16* − 0.33 to − 0.07*

Variancea

Within-person 0.05 0.03–0.06 0.05 0.03–0.06 0.03 0.02–0.07 0.04 0.03–0.09

In initial status 15.80 14.27 to 17.50 25.11 22.92–27.49 12.93 11.34–14.73 21.14 19.05–23.45

In rate of change 0.05 − 0.10 to 0.20 − 0.03 − 0.18 to 0.12 − 0.06 − 0.26 to 0.13 0.13 − 0.06 to 0.32
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and labour market outcomes may be present, as findings have consistently shown that developing obesity influ-
ences a women’s labour market outcomes, and hence income and SSS, to a greater extent than men51,52. A novel 
finding was also that SSS was only associated with baseline BMI in adults aged 65 or less. It has been proposed 
that those who perceive themselves to have fewer social and economic lower resources may be more exposed 
and more susceptible to the obesogenic environment20. Hence, as younger populations have developed in the 
context of a more obesogenic environment, the influence of self-perceived resources might therefore be stronger 
in younger age groups20. This finding highlights how BMI inequalities may vary across specific age ranges, and 
future investigations may benefit from exploring social gradients across both gender, SEP measures, and vary-
ing stages of the life course.

Three GxE interactions between socioeconomic positioning and BMI-PGS were observed. First, the BMI-PGS 
showed a stronger association with baseline BMI in men (aged ≤ 65) with a secondary qualification than those 
with a higher qualification. Hence, a lower educational attainment may accentuate genetic risk for BMI as less 
education may place individuals within more obesogenic environments where opportunities to express underly-
ing genetic risk are more pervasive17,21. Similarly, we further observed that in men of a lower income (aged ≤ 65) 
a higher BMI-PGS scores were associated with higher baseline BMI values, as compared to those in a higher 
income group. Finally, for women aged ≤ 65 or younger, a higher BMI-PGS was associated with a lower baseline 
BMI only for those in the lowest SSS tertile. Together, these findings might suggest that women’s expression of 
polygenic risk towards a higher BMI is more influenced by subjective measures of social standing than tangible 
levels of education or income. Nonetheless, while these findings provide evidence that the expression of polygenic 
predisposition may be sensitive to the socioeconomic environment, it is noteworthy that, similar Tyrell et al21, the 
present GxE interactions produced smaller effect sizes than the direct effects of socioeconomic status on BMI.

Strengths and limitations.  In the present study, we analysed a large population-based cohort who are 
representative of older adults in England. Confidence in these findings is also strengthened by using LMMs, 
which are an optimal way to describe the changes in continuous dependent variables over time taking into 

Table 4.   Adjusted longitudinal mixed models exploring the main effect of polygenic score for BMI (BMI-
PGS) and income, and interactions between these two variables in relation to BMI trajectories during the 
12-year follow-up period. The adjusted models were adjusted for 4 principal components to account for any 
ancestry differences in genetic structures that could bias the results, as well as; marital status, physical activity 
level, presence of longstanding limiting illness, self-reported health, depressive symptoms, and smoking status. 
CI, confidence intervals; PGS, polygenic score; BMI, body mass index. a The within-person variance is the 
overall residual variance in cognition that is not explained by the model. The initial status variance component 
is the variance of individuals’ intercepts about the intercept of the average person. The rate of change 
variance component is the variance of individual slopes about the slope of the average person. ×Represents 
an interaction between the two factors; interactions are presented based on multiplicative interaction model. 
***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05.

 < 65 Years of age  > 65 Years of age

Men Women Men Women

β 95% CI β 95% CI β 95% CI β 95% CI

Baseline

PGS 1.41*** 1.12 to 1.69*** 1.52*** 1.17–1.85*** 0.85*** 0.47–1.22*** 1.33*** 0.75–1.91***

High income – – – – – – – –

Intermediate income 0.09 − 0.36 to 0.56 0.51 − 0.04 to 1.06 − 0.67* − 1.21 to − 0.13* 0.81* 0.09–1.53*

Low income − 0.39 − 0.91 to 0.13 0.55 − 0.02 to 1.13 − 0.35 − 0.87 to 0.18 0.86* 0.18–1.48*

PGS × high income – – – – – – – –

PGS × intermediate 
income 0.17 − 0.29 to 0.63 0.14 − 0.41 to 0.69 − 0.09 − 0.61 to 0.43 − 0.24 − 1.01 to 0.51

PGS × Low income − 0.72** − 1.21 to − 0.23** − 0.22 − 0.78 to 0.33 0.22 − 0.28 to 0.73 − 0.17 − 0.84 to 0.50

Rate of change

PGS − 0.00 − 0.02 to 0.02 0.01 − 0.01 to 0.04 0.01 − 0.02 to 0.05 − 0.02 − 0.09 to 0.06

High income – – – – – – – –

Intermediate income 0.03 − 0.01 to 0.08 0.03 − 0.02 to 0.07 0.05 − 0.01 to 0.12 − 0.03 − 0.08 to 0.08

Low income 0.03 − 0.02 to 0.08 0.03 − 0.01 to .08 0.06 − 0.00 to 0.12 − 0.04 − 0.12 to 0.04

PGS × high income – – – – – – – –

PGS × intermediate 
income 0.00 − 0.04 to 0.04 − 0.04 − 0.08 to 0.01 0.01 − 0.06 to 0.07 0.06 − 0.03 to 0.15

PGS × low income 0.01 − 0.03 to 0.06 0.02 − 0.02 to 0.08 − 0.03 − 0.09 to 0.03 0.04 − 0.05 to 0.13

Variancea

Within-person 0.04 0.03–0.05 0.05 0.04–0.06 0.03 0.02–0.07 0.04 0.02–0.08

In initial status 16.02 14.88–17.25 25.22 23.57–26.99 13.59 11.33–14.67 20.95 18.95–23.16

In rate of change 0.06 − 0.02 to .14 − 0.04 − 0.15 to 0.07 0.07 − 0.02 to 0.15 − 0.02 − 0.12 to 0.08
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account intra and inter-individual variation. Moreover, the sample utilised in the present study was appropriate 
for evaluating the stated hypotheses as it was substantially larger or similar in size to samples used in previous 
work19,20.

Nonetheless, given the observational nature of this study, we cannot infer causality or eliminate the role 
of residual confounding. It is feasible that PGS utilised in the present study, having encompassed hundreds to 
thousands of common variants, may have accumulated noise which masks the true associations with changes 
in BMI over time16. Moreover, the poor generalizability of genetic studies across populations is noteworthy as 
PGSs are predominately based on in European participants40. Moreover, as GWASs do not, by design, capture 
other structural variants beyond SNPs such as rare variants, poorly tagged or multiple independent variants, 
G × G interaction, epigenetics and gene-environment correlation53. Moreover, to avoid overfitting the present 
GxE models we also were unable to adjust our analyses for interactions between the covariates and the present 
BMI-PGS and SEP variables, as advised by Keller et al.53 Finally, the use of height data from Wave 6 (2012) to 
calculate BMI at wave 8 (2016) may have affected the validity of the final follow-up BMI measures.

Conclusion
The BMI-PGS was associated with higher BMI at baseline (~64 years old) but not with the rate of change in BMI 
over the 12-year follow-up period. Moreover, women’s BMI appeared to be more adversely affected by lower 
education, lower SSS, and less income than men’s BMI. Crucially, the current results highlight the potential for 
educational attainment, SSS, and income to influence BMI in adulthood through interaction with a BMI-PGS, 
although effect sizes were small. Taken together, lower socioeconomic positioning may adversely influence BMI 
in adulthood both independently and through accentuation of genetic risk. However, further research must 
clarify the extent to which cumulative measures of socioeconomic conditions may influence the expression of 
genetic propensity towards a higher BMI.

Data availability
The ELSA data are available in public, open-access repository (the UK Data Archive) which is freely available 
and can be accessed at https://​disco​ver.​ukdat​aserv​ice.​ac.​uk.
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