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True equilibrium measurement of transcription
factor-DNA binding affinities using automated
polarization microscopy
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The complex patterns of gene expression in metazoans are controlled by selective binding of
transcription factors (TFs) to regulatory DNA. To improve the quantitative understanding of
this process, we have developed a novel method that uses fluorescence anisotropy mea-
surements in a controlled delivery system to determine TF-DNA binding energies in solution
with high sensitivity and throughput. Owing to its large dynamic range, the method, named
high performance fluorescence anisotropy (HiP-FA), allows for reliable quantification of both
weak and strong binding; binding specificities are calculated on the basis of equilibrium
constant measurements for mutational DNA variants. We determine the binding preference
landscapes for 26 TFs and measure high absolute affinities, but mostly lower binding spe-
cificities than reported by other methods. The revised binding preferences give rise to
improved predictions of in vivo TF occupancy and enhancer expression. Our approach pro-
vides a powerful new tool for the systems-biological analysis of gene regulation.
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he key event in the spatio-temporal control of gene

expression is the binding of transcription factors (TFs) to

regulatory DNA. While ChIP-Seq and related methods
have proven useful in mapping TF binding to DNA genome-wide
in vivo, they have significant limitations, among them low spatial
and quantitative resolution, and the likelihood of capturing sub-
stantial unspecific or non-functional binding. Thus, measuring TF-
DNA interactions accurately in a controlled in vitro environment
remains a highly useful, complementary approach. The TF binding
preferences derived from such techniques, in the form of position-
weight matrices (PWMs), can subsequently be used to predict
binding sites in the genome, and in this fashion have proven to be
vital tools in reconstructing and modeling gene regulatory net-
works!2. In eukaryotes, the binding of TFs to DNA and the
resulting occupancy landscape is thought to be well described by
equilibrium thermodynamics, and the ideal method to quantify TF-
DNA interactions will therefore approximate equilibrium condi-
tions as closely as possible. This means that the measurement
should take place in solution, with no immobilization of interaction
partners or other mechanical or chemical interferences that might
affect the properties of the binding reaction®. The assay should be
sensitive enough to accurately capture both very high-affinity
binding and comparatively weak binding, i.e., washing and other
filtering steps should be avoided. Finally, the assay should be scal-
able such that the measurements can be performed efficiently for
large numbers of TFs and DNA sequences.

None of the currently available methods fulfill all these criteria
(for overview see Supplementary Table 1). The most widely used
high-throughput methods measure binding in non-equilibrium:
protein binding microarrays (PBM)* have increased their
throughput, but suffer from low sensitivity because of stringent
wash requirements, causing loss of weak binders. High-
throughput systematic evolution of ligands by exponential
enrichment (HT-SELEX)>° allows probing a large sequence space,
and SELEX-Seq’ can even be used to determine their relative
affinities. However, both techniques require a resin- or filter-based
selection step (including washing) that introduces bias. Finally,
bacterial one-hybrid (B1H)® has allowed the characterization of
the binding specificities of hundreds of transcription factors, but is
based on a strict bacterial survival selection. All these techniques
thus allow the testing of a large sequence space, but include
stringent washing or selection steps that exclude all but the very
strongest binders. Therefore, while they have proven very useful
and accurate in establishing consensus binding motifs de novo,
they typically arrive at overly specific motifs. In practice, these
highly specific binding motifs are often blurred by the addition of
“pseudo-counts”, thus artificially introducing weaker binding, to
permit modeling of experimental data or predicting expression
patterns. In addition, these methods critically rely on computa-
tional algorithms to identify motifs and model binding specificities
from the sequences of the binders. Different approaches to the
problem have been developed, and the appearance and informa-
tiongcl%ntent of a binding motif strongly depends on this analysis
step” .

In other experimental binding assays, such as surface plasmon
resonance (SPR)!!, mechanically induced trapping of molecular
interactions (MITOMI)'2, high-throughput sequencing-ﬂuorescent
ligand interaction profiling (HiTS-FLIP)'?>, and selective
microfluidics-based ligand enrichment followed by sequencing
(SMILE-Seq)'%, the binding events take place on a thin surface,
rather than in solution. While occasionally described as operating in
equilibrium!2, all such surface-bound assays have significant lim-
itations'>1%: since on a surface the number of molecules partici-
pating in the binding event is much smaller, the assays tend to be
less sensitive when measuring very low dissociation constants (Kps),
where protein concentrations are necessarily low. Since the

fluorescent background is higher on a surface than in solution,
adding noise, this in ]practice limits surface methods to measure Kps
in the nM range'>'® (Supplementary Fig. 3c); very high-affinity
binding in the pM range, as is commonly found in TF-DNA
interactions, is thus not accurately captured. Moreover, binding to
thin surfaces can lead to steric hindrance, unspecific adsorption,
and reduced molecular activity, making it difficult to accurately
quantify weak binding. Washing steps similarly curtail the capture
of weaker binding, and the immobilization of reaction partners on a
surface can alter the interaction properties. Finally, since these
methods use direct and not competitive titration, the active TF
concentration cannot be determined. Yet other assays, such as
DNase footprinting!’, electrophoretic mobilitg shift assay (EMSA)
18 and micro-scale thermophoresis (MST)'” do work in equili-
brium and solution, but are rather low in throughput.

To overcome the limitations of all these approaches, we have
devised a method that measures TF-DNA binding affinities in
equilibrium and in solution at relatively large scale. The method is
based on fluorescence anisotropy (FA), which is widely used for
determining the binding affinities between proteins and their
ligands, and has the advantage of measuring the interaction strength
optically and without interference with the binding event. We have
developed this method into high performance FA (HiP-FA) such
that it reliably covers a much wider dynamic range of absolute
binding affinities (10 pM < Kp < 10 uM) with binding partners of
equal molecular weight, and scaled the assay such that a sufficiently
large sequence space can be sampled with modest effort. We validate
HiP-FA experimentally usin§ EMSA and MST, and computationally
by modeling ChIP-Seq data®® and enhancer expression patterns.

Results

The HiP-FA assay. High performance fluorescence anisotropy
(HiP-FA) is based on the established fluorescence anisotropy (FA)
approach?!. FA provides a measure of the rotational speed of a
fluorescently labeled species, in our case a DNA oligomer. Binding
with TF increases the molecular weight and thereby decreases the
rotational speed of the labeled DNA oligomer, resulting in increased
FA (Fig. 1a). We implemented two crucial improvements over a
standard FA setup. First, we carry out a competition experiment
using a controlled delivery system within a single well (Fig. 1b, c).
TF and fluorescently labeled reference DNA are embedded in a
porous matrix and an unlabeled competitor DNA is loaded on top.
The competitor DNA forms a spatio-temporal gradient, leading to a
dynamically changing FA(z,t) signal. Second, we use a customized
epifluorescence microscope setup, allowing for scoring FA values
along the z-axis and providing greatly increased sensitivity. Thus,
up to 300 data points of a titration curve can be measured in each
well of a multi-well plate and, by curve-fitting, both the active
protein concentration and the absolute Kp, can be extracted (Fig. 1e,
f). The improved sensitivity makes it possible to measure binding
between molecules of similar molecular weight, in our case TF
protein and its DNA binding sequence.

Our setup consists of a conventional automated wide-field
microscope that is modified to accommodate polarized laser light
excitation and detection of the two polarization components of
the emitted fluorescence using a high numerical aperture (NA)
objective and an ultra-sensitive EM-CCD camera (Fig. 1d and
Supplementary Fig. 1). These modifications are readily imple-
mented and moderate in cost.

In the competitive binding assay, TF and dye-labeled reference
DNA (Cy5 or BODIPY630) are mixed at fixed concentrations and
embedded together in a porous agarose gel. The TF concentration
is in molar excess over dye-reference DNA to ensure that all DNA
oligomers are bound to the protein. Unlabeled competitor DNA
is then added on top of the agarose and, by diffusion, establishes a
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concentration gradient c(z,t) within the gel, whose shape changes
over time and with the position of the focal plane z (Fig. 1c and
Supplementary Fig. 2). The agarose matrix constitutes a non-
interacting aqueous environment and prevents convection,
essential for the reproducibility of DNA diffusion between wells.
As the competitor DNA diffuses through the matrix, it competes

with the dye-reference DNA for binding to the TF, resulting in a
dynamically changing FA signal of the dye-reference DNA, FA(z,
t) (Fig. 1e). This allows us to measure, over time, a continuous
titration series for a given competitor DNA oligomer within a
single well, comprising about 300 individual data points. The Kp
of the dye-reference DNA is explicitly determined by titrating
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with the same but unlabeled DNA sequence. To determine the
competitor concentration c(zt), which is needed to calculate the
TF-DNA dissociation constant, we use separate calibration wells,
typically five per plate, where DNA intercalating dye Nile Blue (NB)
is incorporated into the gel matrix and c(z,t) is determined by
measuring the dynamically changing FA signal of NB, FAyp(2:t)
(Supplementary Fig. 2). Each well is usually measured 25 times at
12 different z-positions. Single-well measurement of an entire
titration curve and competitive binding greatly reduces the amount
of required protein (4 or 0.25 pmol of protein per titration curve in
96- or 384-well plate format, Figs. 1b and 2a) and increases fidelity
and throughput. The assay can be performed manually, with a
coefficient of variation (CV) of <20%, or fully automated using a
robotic system, with improved reproducibility (CV < 15%) (Supple-
mentary Data 1). With the controlled delivery system, Kps can be
reliably measured down to 0.5nM. For extremely high affinities
(Kp <0.5nM), we use conventional competitive titration (Fig. 2b
and Methods), due to the limitations in accurately determining the
competitor concentration at very low levels. By changing the
sequence of the competitor DNA, we can readily measure all 3N
single-base mutations of any given consensus sequence of length N,
typically on a single 96-well plate. A detailed description of the
entire experimental and data analysis procedure can be found in the
Methods.

Applying HiP-FA to TFs of the segmentation network. To test
our method, we turned to the Drosophila segmentation gene
network?>?3, a transcriptional hierarchy that generates the
anterjor—posterior body plan of the embryo. In total, we tested 21
TFs representing different protein families from this network,
plus an additional five TFs from the Drosophila ecdysone net-
work. We used the DNA-binding domains (DBD)’, and, in one
case, full-length TF (Slpl); all proteins were expressed as GST-
fusion proteins in E. coli. The GST fusion does not alter the
results (Supplementary Fig. 3a).

As a starting point, we used the homeobox protein Bicoid (Bcd) for
a systematic validation of HiP-FA. The Bcd consensus sequence
(CGGTAATCCCT) represents the strongest binding sequence, based
on previous work?!, as well as our own HiP-FA (Fig. 1 and
Supplementary Data 1). We investigated the influence of all 33
possible point mutations within this 11mer, flanked by additional
bases at the 5" and 3" end. We measure Kps ranging from 2.2 nM for
the consensus up to 148nM for sequences with a single-point
mutation; we also show near-complete loss of binding for a heavily
mutated sequence (Fig. 1f). The binding affinity of Bed to its
consensus is in reasonable agreement with previous measurements
(1.14 nM?>; 3.0 nM29), as well as with our own EMSA measurement
(Kp = 1.8 nM, Supplementary Fig. 3b and Supplementary Methods).
We also find strong agreement when measuring selected sequences
over a range of binding strengths with MST (r=0.96; Fig. 2c and

Supplementary Methods; see Discussion). For the entire set of 26 TFs,
the Kps of the consensus sequences range from 50 pM (Cad), 0.9 nM
(Gt) to 48 nM (Ttk-F) (Fig. 3), and Kps for the most detrimental
single-point mutation range from 2.2nM (Cad), 1700 nM (Gt) to
~100 puM (Ttk-F). Thus, single-point mutations can result in a loss in
absolute affinity ranging from 44-fold (Cad) to about 2000-fold (Gt
and Ttk-F). These data demonstrate that HiP-FA is able to accurately
measure binding energies over a very large dynamic range.

We used our data to systematically characterize the binding
specificities of the 26 TFs. The DNA binding specificity of a TF is
typically represented by a position weight matrix (PWM), which
scores the binding strength contribution of every possible
nucleotide at every position of the binding site. The standard
PWM model has every position contributing independently to the
total binding energy and explains the binding preferences of most
TFs*’. Following established procedures?®?, we calculated PWMs
based on our Kp measurements; note that as we generate
quantitative binding data for each possible point-mutational
variant, no motif alignment algorithm is necessary (Methods).
We compared them with two types of PWMs, derived from other
experimental methods (Fig. 3): one (smaller) set of PWMs is based
on aligning all extant binding sites defined by DNA footprinting>?4,
another set is derived from bacterial one-hybrid (B1H) selection®.
Overall, the PWMs from the three sets are similar and largely share
the same consensus, but the HiP-FA-based PWMs do show
significant differences. In the case of Bcd, for example, mutations of
T in position 3 of our PWM (Figs. 1g and 3), which is part of the
core homeobox binding motif, lead to much stronger binding than
expected, given that the previous PWMs show G and A as much
less frequently occurring bases. Generally, many of the individual
point mutations retain fairly strong binding in our assay; as a result,
the HiP-FA-based Bcd PWM is less specific than the previous
versions, as is reflected in its lower information content (HiP-FA 5.6
bits<footprinting 9.6 bits<B1H 11.5 bits). This holds true for the
larger set of TFs as well: most HiP-FA-derived PWMs are less
specific than PWMs derived by other methods, but there are also
exceptions, such as Pdm2, Hkb, and Croc, indicating that low
specificity is not a generic feature of the assay (Fig. 3). The lower
specificity is not unexpected, given that other methods often require
stringent washes or selection, while HiP-FA measures equilibrium
binding energies over a wide range, allowing it to accurately capture
the weaker binding events. Note that we find a weak negative
correlation (Pearson coefficient —0.25) between TF affinity (Kp)
and specificity, as measured by the information content (IC) of the
PWM (Figs. 2d and 3). Thus, factors with more specific binding
preferences tend to bind with the DNA slightly more strongly.

Validation of HiP-FA-derived PWMs. Given the marked dif-
ferences between the three PWM sets, we sought to evaluate their
performance in explaining the experimental data that measure or

Fig. 1 HIP-FA assay and Bcd DNA-binding affinities. a Schematic depiction of fluorescence anisotropy (FA) assay. b Typical layout of a 96-well plate.
Competitor DNA oligomers with different sequences are added on top of the titration wells. The concentration c(z,t) of the competitor DNA is determined
by using calibration wells (green) that contain the intercalating dye, Nile Blue (NB), with competitor DNA added on top. ¢ Design of gel delivery system for
titrating competitor DNA in single wells. Protein and labeled reference DNA are embedded in porous agarose gel. The concentration profiles of TF, dye-
reference DNA, and competitor DNA are depicted on the right. FA(z,t) is measured iteratively in each well, while the competitor DNA is diffusing from the
top into the gel matrix. d Simplified HIP-FA microscopy setup. e FA(z,t) time trajectories for two titration wells measuring BCD binding to strong (in black)
and moderate (in red) DNA competitor. The z-stacks are acquired sequentially from the bottom (low DNA concentrations = high FA) to the top (high DNA
concentrations = low FA) of the gel. In total, 20 measurement cycles are performed in 7.5 min time intervals. The titration of the protein by the competitor
DNA can be monitored by the decrease of FA within a z-stack (high to low FA) over time. At t = O, the FA is high, since all labeled reference DNA is bound
to the protein; at the end of the measurements, the FA is low, since the labeled reference DNA has been replaced by the unlabeled competitor DNA
throughout the gel. The FA(z,t) decreases faster over time for the strong binder. f Representative FA titration measurements for Bcd and fitted curves for
strong (black), moderate (blue), weak (red), and very weak (green) binding (mutated bases relative to consensus in red). g Kp values for all 33 possible
single-point mutations of the Bcd consensus sequence CGGTAATCCCT; the nucleotides marked in bold represent the core binding site. The mutated
positions are marked in the sequence (N), columns show Kps for sequences containing nucleotides C, G, T, and A at that position, as indicated. Error bars
represent standard deviation of two replicates
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Fig. 2 Validation and reproducibility of the HiP-FA method and correlation between the dissociation constants and the information content. a Bcd binding
motifs obtained from measurements in 96- (left) and 384- (right) well plates using automation. The mean CVs for the Kps were 5% and 16% for the 96-
and 384-well plate formats, respectively. b Conventional competitive titration with HIP-FA of three competitor DNAs binding to Bcd with different affinity.
The inset shows the Bcd binding motif obtained by conventional competitive titration (average of two replicates). ¢ Scatter plot of Kps obtained by HIP-FA
vs. MST, each measured in a competitive assay for BCD-DBD binding to 10 different competitor sequences. Error bars represent standard deviations of two
replicate measurements. d Scatter plot of consensus sequence Kp vs. information content (IC) of PWMs for the 26 TFs tested

reflects in vivo TF occupancy (Fig. 4). We first tested how well the
different PWMs can predict experimental ChIP-Seq profiles of
five of the TFs where such data are available (Bcd, Cad, Kr, Hb,
Gt) in the genomic regions of 21 segmentation genes?’. Since all
PWDMs give rise to spurious predictions in regions of closed
chromatin, we used DNA accessibility as measured by DNase-Seq
as a filter (Fig. 4a and Supplementary Methods)®’. Chromatin
accessibility on its own already shows a moderate correlation with
the ChIP-Seq data, but the correlation improves significantly
when PWM-based binding site predictions are added. For all five
TFs, our HiP-FA-based PWMs score is substantially better in this
test than the PWMs derived from B1H or footprinting, showing
the highest total correlation (Supplementary Table 2) and best
performance in Precision-Recall plots (Fig. 4b). Remarkably, the
HiP-FA PWMs remain superior even when pseudo-counts are
added to the B1H and the footprinting PWMs, a common
practice to globally lower binding specificity. By contrast, the
performance of the HiP-FA PWMs does not change significantly
with the addition of pseudo-counts, suggesting that their lower
specificity is captured accurately. As a second, more complex test,
we employed a thermodynamic model>3! that predicts the
expression patterns of 37 known enhancers in the segmentation
network as a function of the enhancer sequence and of the binding
preferences and protein concentrations of the six most important
participating TFs (Bcd, Cad, Kr, Hb, Gt, Kni, bold in Fig. 3) (Fig. 4c

and Supplementary Methods). We ran the model with the different
PWM sets as inputs, while keeping all other inputs constant. Using
various metrics, we find that the HiP-FA PWMs consistently out-
perform the footprinting and BIH PWMs (Fig. 4c, d and Supple-
mentary Table 3), again even when the latter are aided by pseudo-
counts. This result is robust against various modifications of the
model, such as different objective functions for scoring the agree-
ment between predicted and measured expression patterns, or
thresholds for the number of binding site included. An extended
model that takes as input 16 of the segmentation TFs similarly
shows the HiP-FA PWMs performing substantially better than the
B1H PWMs (data not shown).

Discussion

HiP-FA is a powerful new approach to quantify TF-DNA inter-
actions that overcomes the limitations inherent in most existing
methods, and thus represents an important new tool for the
quantitative investigation of gene regulatory processes. The
method measures equilibrium binding energies directly over a
large dynamic range with high accuracy and at large scale.
Binding takes place in solution without immobilization of the
interacting partners, thus avoiding the limitations of surface-
based methods. The controlled delivery system allows the sam-
pling of many different competitor DNA concentrations rapidly
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Fig. 3 Binding specificities of 26 Drosophila transcription factors. The proteins are grouped by type of DNA-binding domains. HIP-FA PWMs are compared

with PWMs derived from DNase footprinting? 24

and bacterial one-hybrid (B1H) selection.? Overall, the HIP-FA binding motifs agree with the previous

data, but show lower binding specificity combined with high binding affinities. Information content (IC; in bits) and HIP-FA-measured Kps for the consensus

sequences are indicated

within a single well and generating high point-density titration
curves, while saving protein and increasing throughput.
Throughput is sufficient to measure all single-point mutations of
a consensus binding motif within a single 96-well plate and thus
derive a PWM that captures the full binding preference landscape
of a given TF. A key advantage of this approach is that the
strength of the weaker binding events is measured directly—there
are no washing or thresholding steps that such binding events
have to pass, and there is no need to rely on the assumption that

binding strength is reflected in the frequency of nucleotide
occurrence in a set of above-threshold binding sites, as is com-
mon in most high-throughput methods.

Since it also measures TF-DNA interaction in solution with a
highly sensitive readout, MST comes closest to HiP-FA as a
method, and we therefore used it to validate our approach. We
find excellent correlation between MST and HiP-FA measured
Kps, but observe a noisier MST signal for lower affinities (Fig. 2c).
The key drawbacks of MST when measuring TF-DNA
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cnce, oc, and Kr, based on the predicted binding sites and the DNA accessibility (DHS) information, compared to measured ChIP-Seq data. For the prediction,
we identified all TF binding sites and their relative strength using PWM and accessibility information, and then applied a gamma function to mimic the
fragment length distribution in the ChIP-Seq experiment. b Precision-Recall plot for the ChIP-Seq peak predictions over 20 segmentation loci. Each point
represents a threshold for the peak prediction; the thin gray line indicates the precision of a random guess. The area under curve (AUC) scores indicate the
overall quality of the predictions. ¢ Predicted expression patterns based on TF binding site content for four representative segmentation cis-regulatory
elements, compared with the measured patterns. Shown are relative expression levels from 80% to 20% egg length along the antero-posterior axis of
Drosophila blastoderm embryos. d Precision-Recall plot and AUC scores for the pattern predictions of all 37 cis-elements, as in b

interactions are the variable adsorption of the TF protein to the
capillary walls, thereby affecting the readout in a non-uniform
fashion, and the difficulty in scaling the method to high
throughput. Another potentially competitive method is the
recently developed SMiLE-seq'?, a microfluidics-based approach
that can identify TF-DNA binding specificities de novo in a semi-
high-throughput fashion. SMiLE-seq cannot directly measure the
dissociation constants, but relative TF-DNA binding strength is
inferred from k-mer enrichments in the library of sequenced
bound DNA oligos. We thus compared HiP-FA Kps with SMiLE-
seq k-mer enrichments for the three factors that were measured
by both methods (Supplementary Fig. 3c). We found a fair cor-
relation between the two data sets for the strongest binders (Kp <
20 nM, average Pearson coefficient 0.82), but no correlation for
the weaker binders. The weak binders might be partially lost by
the washing step applied on the microfluidic device; moreover,
the sequencing counts for the weaker binders were typically quite
low (<10 counts for 9-mers, data not shown), which means that
the Poisson noise is too high to permit accurate quantitation.
The throughput of HiP-FA is not sufficient to permit the de novo
discovery of TF binding motifs based on large libraries of random
DNA oligos; the method thus requires at least some prior

knowledge of a TF’s binding preferences. However, this is not a
major limitation, since consensus motifs are known for a large
fraction of TFs, and many methods can supply them>%8, Given a
moderate binder, the true maximal binding sequence can be found
by simple iteration. To ensure that equilibrium binding is captured,
HiP-FA also requires that the TF-DNA binding kinetics be much
faster than the diffusion of the competitor DNA through the gel,
which occurs within minutes. Similar to other in vitro methods??,
we find the Kopp rates for our TF-DNA interactions to be in the
order of seconds and thus sufficiently fast, and in the same range as
those measured by other methods"?’; the Koy rates are much faster
(Supplementary Fig. 4). We also checked that the Kps obtained by
HiP-FA are the same as when measured in conventional compe-
titive titration (Fig. 2b and Methods), in which the protein and the
DNA are incubated for 1h to ensure equilibrium (Supplementary
Fig. 5). If one seeks to measure interactions with slower binding
kinetics, the delivery rate of the competitor in the assay can be
retarded by lowering its concentration or reducing the gel pore size.
Our data indicate that HiP-FA can measure the dissociation con-
stants reliably over six orders of magnitude, from 10 pM to 10 uM.
The lowest K we measured so far was 50 pM (consensus sequence
of Cad). The limitation in the high Kp range only comes from non-
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specific binding, a known phenomenon for transcription factors;
zinc fingers proteins in particular are prone to interact in a non-
specific manner with DNA backbones®>34,

We have assumed positional independence in constructing our
PWNMs, limiting the number of sequences that need to be tested.
However, we established HiP-FA in 384 as well as 96 multi-well
plate format, permitting the measurement of hundreds of DNA
sequences in parallel. Therefore, our assay can readily be
expanded to measure all possible di-nucleotides or other depen-
dencies within the binding sequence, which may be important for
some TFs>*>3¢, or to measure binding to two neighboring sites.
Other DNA features can be assayed as well, such as the role of
nucleotides flanking the core binding site or the sequence context
more generally. There is no principal limitation regarding the size
of the DNA sequences or of the proteins that can be tested. HiP-
FA can be implemented by modest adaptation of a standard
epifluorescence microscope and can easily be extended to probe
other types of molecular interactions, by using the controlled
delivery system to generate concentration gradients for other
kinds of ligands, such as drugs, peptides, and proteins.

Our approach has generated refined maps for the binding
affinity landscapes of 26 TFs, mostly from the Drosophila seg-
mentation gene network. We find that their binding specificities
cover a wide range, but are in most cases lower than previously
measured. Despite their shorter length and lower information
content, our PWMs perform significantly better than the PWMs
derived from DNA footprinting and B1H data, both in explaining
in vivo TF occupancy as measured by ChIP-Seq, and in predicting
the spatio-temporal expression of segmentation enhancers. In a
computational study, Weirauch et al.” similarly concluded that
shorter binding motifs with lower information content improve
the prediction of ChIP-Seq data. If individual binding sites carry
less information than previously thought, the genome-wide spe-
cificity is presumably achieved by local clustering of homotypic or
heterotypic sites, i.e., neighboring low-affinity binding sites for
the same factor, which also improves robustness against devel-
opmental perturbation®’, or neighboring sequences that allow
binding of other TFs and thereby define a combinatorial code®.
Our findings suggest that this phenomenon is pervasive and a
point to the need for a deeper analysis of the genomic context of
TF binding sites.

In contrast, the absolute binding affinities of the TFs we mea-
sured to their consensus DNA sequence and mutant variants are
surprisingly high (Fig. 3). Some of the C2H2 Zn finger proteins
show high binding affinity coupled with low specificity suggesting
that much of the binding energy derives from interaction with the
phosphate backbone of the DNA?*%, Most TFs regulate multiple
genes in parallel and thus have to bind many different cis-element
sequences genome-wide; at the same time, many TFs are expressed
at relatively low concentrations (100-500 molecules per
nucleus®*47). Thus, given the relatively low abundance of available
TF molecules, high-affinity binding may help ensure that the total
occupancy time of TF molecules at their target sites is sufficient to
properly effect transcriptional regulation.

Methods

Protein expression and purification. For many transcription factors, it is difficult
to express full-length proteins at high levels in bacteria or eukaryotic cells>*. There-
fore, we cloned the DNA-binding domains (DBDs) of the TFs (excepted for slpl),
flanked by 14 additional amino acids on either side, into the bacterial expression
vector, pGEX-6P-1 (GE Healthcare). The polypeptide of interest is fused to an N-
terminal glutathione (GST) tag and placed under the control of an IPTG-inducible
promoter. The appropriate TF sequences were PCR amplified from either the DGC
Gold clone collection (bed, cad, kni, hkb, croc, nub, optix, GATAe; kindly provided by
J. Miiller), from a TF DNA library (zelda, sip1, pan, br, ecR, cic; kindly provided by B.
Deplancke) or cDNA prepared from blastoderm embryos (Kr, hb, gt, fkh, ems, gsc,
Eip93, oc, pdm2, ttk, tll, and D). The TF-GST fusion constructs were verified by
sequencing. The DNA amino-acid sequences of the binding domains can be found in

Supplementary Data 1. The fusion constructs were transformed into chemically
competent E. coli (Top10f, homemade), and the protein expression was induced by 1
mM IPTG for 20 h at 18 °C. Incubation at this temperature allows proper protein
folding and higher expression levels. The proteins were purified on 5 ml GSTrap
columns using an AKTA protein purification system (GE Healthcare), following the
manufacturer’s protocol. Certain protein preparations contained high levels of bac-
terial DNA contamination, as judged by the UV spectroscopy (Nanodrop,Thermo
Scientific), and were therefore subjected to an additional Heparin purification step
using 1 ml HiTrapHEP columns. The purity of the proteins was verified by SDS-
PAGE. For full-length protein (Slp1), the following modifications were done: the
coding sequences were cloned via the gateway method from the entry vectors*! into
the destination vector that was analogous to the before used pGEX6P1. The plasmids
were transformed into E. coli BL21-CodonPlus (DE3)-RIPL and expressed via auto-
induction*? for 4h at 37°C and 18 h at 18 °C.

Controlled delivery assay. The competitive DNA-binding assay is typically per-
formed in 96- or low volume 384-well plate format (175-pum-thick glass bottom;
Greiner SensoPlates) (Fig. 1 and Supplementary Fig. 2). Each well contains agarose
gel at the bottom and is topped with a competitor DNA, which then diffuses into
the agarose gel, thereby forming a concentration gradient whose shape changes
over time ¢(z,t). We checked that the agarose matrix does not lead to any bias in the
measurements of the binding energies, e.g., unspecific adsorption to the gel matrix.
In the experiment, two different types of wells are used: in the titration or mea-
surement wells, protein and reference DNA labeled with Cy5 are embedded within
the agarose gel; Cy5 emits in the far-red range of the visible spectrum and thereby
reduces the autofluorescence background. In the calibration wells, only the DNA-
intercalating dye Nile Blue is embedded (NB, Sigma). The NB dye binds to the
competitor DNA as it diffuses through the gel and thus acts as a concentration
sensor. This property is used to determine the concentration of the competitor
DNA c(z,t) (Supplementary Fig. 2, for details see below). Typically, three to five
calibration wells per plate are enough to determine the DNA concentration
accurately, with a CV of <30% between wells.

Once c(z,t) is determined from the calibration wells, the FA in the titration wells
can be displayed as a function of concentration (Fig. 1f). These titration curves can
then be automatically fitted by our FA software (see below). For competitive assay,
the fitting procedure requires the dissociation constant Kp, for the Cy5-reference
DNA-TF interaction, which is obtained separately, by using the same but unlabeled
DNA sequence to compete against the labeled DNA in the presence of TF.
Different reference DNA sequences will yield the same Kp, values for any given
competitor sequence; however, Kp measurements are most accurate within a range
of two orders of magnitude above or below the Kp, of the reference DNA. We
therefore typically choose the reference DNA so that its binding affinity falls to the
low-to-middle range of the expected Kps.

Designing DNA binding sequences and DNA annealing. We seek to measure the
Kp values for all possible single-point mutations of the TF consensus sequence,
which is typically 6-10 bp long; flanking bases are added on either side to create
DNA oligomers of 16 or 18 bp in length. To establish the consensus, we start from
a previously published PWM, e.g., B1H, and test the selected positions with single-
point mutations to verify the consensus and to determine the positions that con-
tribute most to the binding energy. In a second round, we then test all 3N
mutations of the true consensus sequence. Note that the secondary binding sites
within the DNA oligomer would be recognized during FA measurement and curve
fitting, and can be excluded experimentally by finding a non-binding sequence
through a more extensive mutation of the consensus. If the initial consensus
sequence is incorrect, more mutational iterations may be necessary.

The forward and reverse strands of the DNA oligomers are annealed in water at
a concentration of 200 nM for the Cy5-labeled reference DNA and 50 uM for the
competitor DNA. The hybridization reactions are performed on a PCR thermal
cycler (Eppendorf) by heating up the complementary strands at 70 °C and lowering
the temperature to room temperature (RT) (at a ramp of 0.1 K/s).

For the full-length protein (Slp1), interactions of the full-length protein with the
fluorescent label of the reference DNA can be a concern depending of the factor. To
minimize these interactions, the dye of the labeled reference DNA was changed to
BODIPY630 (Eurofins) whose fluorescence proved to be less sensitive to its
environment. In addition, the dye was separated from the binding site by a longer spacer
of 22 nucleotides. To make oligo synthesis more efficient and economical, a modular
system of three oligomers was developed—the sequence containing the binding site was
chosen as described above. The spacer sequence with the Bodipy dye covalently attached
to its 5’ was chosen in order to avoid any strong binding sites (such as parts of the
consensus sequence). A third oligomer complementary to both the reference and the
spacer sequence was designed and the DNA was annealed as described above.

Gel preparation. 0.5% w/v low melting temperature agarose (Sigma) is dissolved in
the binding buffer (33 mM phosphate buffer pH = 7.0, 90 mM NaCl, and 0.01%
Tween 20) at 75 °C. This buffer proved superior to the commonly used Tris
binding buffer (see under EMSA), since it increases the stability of the proteins
(>10h at RT) and prevents dimerization of the GST. The agarose gel solution is
cooled down to 32 °C. For the titration wells, hybridized Cy5-reference DNA (1
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nM), TF protein (Crr = 20-60 nM), and DTT (0.1 mM) are added to the 32°C
agarose gel solution, mixed thoroughly, and pipetted into the titration wells of the
well plate (200 pl in 96-well plate, 13 pl in 384-well plate). For the calibration wells,
NB (5nM) is added to the 32 °C agarose gel solution, mixed thoroughly, and 200/
13 pl are pipetted to the calibration wells of the wellplate.

Adding the competitor DNA solution. To prevent the formation of concentration
gradients of the labeled DNA and the protein within the gel, it is important that the
binding buffer, Cy5-reference DNA and TF have the same concentration in the gel
and in the competitor DNA solution on top. Therefore, the competitor DNA
solutions are diluted 2:1 in a 3x binding buffer containing Cy5-reference DNA (3
nM), TF protein at a concentration 3x Crg for the titration wells, and diluted 2:1 in
3x binding buffer with NB (15 nM) for the calibration wells.

A volume of 50 pl (96-well plate) or 7 ul (384-well plate) of the hybridized
competitor DNA solutions is added simultaneously with an electronic
multichannel pipette (Eppendorf) or with an automated 96-well pipettor on top of
the titration and calibration wells. With manual pipetting, the transfer of the gel to
the wells should be performed quickly (within less than 2-3 min) to minimize time
differences in competitor DNA diffusion between different wells. The plate is then
immediately imaged by automated fluorescent microscopy.

Automation of the gel binding assay. The entire gel binding assay can be pre-
pared manually. However, we transferred the procedure to a Beckmann Coulter
Biomek NXp robotic system, which leads to improved accuracy and reproduci-
bility. For example, a critical pipetting step in the assay is the addition of agarose
gel solution within the wells of a 96-well plate. The CV for the added volumes
improves from 5% with electronic multi-channel pipettes (Eppendorf) to ~1% with
the automated system. For the measured dissociation constants, the mean CV
improves from <20% with manual pipetting to <15%, and in some cases as low as
5% with automated pipetting in 96-well plate format.

Experimental setup for microscopy. The FA measurements that are commonly
performed on commercial microplate readers, with minimum dye concentration that
can be detected with an acceptable signal-to-noise ratio (SNR), is typically >5-10 nM.
To accurately measure the high-affinity interactions, such as TF-DNA binding in the
nM regime or below, very low-labeled-DNA concentrations have to be used (<1 nM),
and determining a single dissociation constant requires a concentration series for the
titrating species, using one well per titration point. For all these reasons, it is crucial to
have an instrument with improved sensitivity and throughput. Therefore, we built a
microscopy setup that can achieve high sensitivity for fluorescence detection as well as
fast data acquisition (Supplementary Fig. 1a) and such a setup is capable of measuring
FA at different z-positions within the agarose gel matrix, permitting to measure an
entire titration series within one well.

Our setup is based on an inverted widefield microscope, using a Leica DMI6000
body equipped with a motorized stage, a z-piezo stage, and a long distance objective
(LEICA HCX PL FLUOAR L 60x/0.60 N.A. Dry). The Cy5-labeled reference DNA
molecules are excited at 638 nm with a continuous diode laser (PHOxX 638-40,
Omicron, 40 mW) with an intensity of 0.5 kW cm~2. The fluorescence is detected on
the focal plane of a back-illuminated EM-CCD camera in frame transfer mode (Andor
iXon DV897, 512 px x 512 px). Incident laser light is blocked by a dichroic mirror
(640 nm cutoff, AHF) and a bandpass filter (ET bandpass 700/75, AHF). For the
measurement of FA, a linear polarizer (Thorlabs) is mounted in the excitation path to
set the polarization of the excitation light. The fluorescence signal passes behind the
emission filter through a polarizing beam splitter (Thorlabs), which splits the emitted
light into its perpendicularly and parallel polarized components. These are then
focused with an achromatic lens of 200 mm focal length (Thorlabs) on the chip of the
camera, and are imaged simultaneously (Supplementary Fig. 1b). The signal-to-noise
ratio of FA is typically >10 for concentrations of Cy5-reference DNA solutions as low
as 0.1 nM. The detection is highly sensitive due to the use of a high numerical aperture
objective, resulting in efficient light collection, and an EM-CCD camera. Thus, small
FA changes as low as 10-15 mP can be accurately detected, whereas with a
conventional setup, much larger FA changes have to occur in order to be reliably
measured. As a result, HiP-FA can monitor binding reactions for which the mass
increase is as low as a factor 2. Given that in a typical FA assay the species with the
lower molecular weight is labeled (if possible), this implies that HiP-FA is sensitive
enough to detect any binding event, whatever the change in mass following the
binding reaction.

Image acquisition. For each well, the time series of z-stacks containing 12 fluorescent
images of the gel are acquired sequentially at a time resolution of 100-300 ms per
frame and with 145 pm step-size, with the lowest z-focal plane at a distance of 1400 um
from the coverslip surface. It is important to image so deep into the bulk agarose gel to
avoid polarization bias for the fluorescence signal due to the partial back reflection of
the emitted light on the coverslip surface. The z-stacks are acquired from bottom to
top, and generally the measurement of the wellplate is repeated 20-25 time until
diffusion of the competitor DNA into the gel is nearly complete. Typically, one cycle is
acquired within 5-10 min, depending of the number of wells measured. As the binding
kinetics of our TFs are fast (approximately seconds), this measurement time is long
enough to ensure the thermodynamic equilibrium. During one cycle, the competitor

concentration will differ by less than 30% between the first and the last well, which is
sufficiently low not to impede accurate calculation of Kps. The total measurement time
for a wellplate is typically 1.5-2.5 h. Note that, in case of slower binding kinetics or of a
larger DNA sequence space, we can slow down the delivery rate of the competitor
DNA by either reducing its concentration on top of the gel or by increasing the density
of the agarose gel.

Calculation of the fluorescence anisotropy. Once a wellplate has been imaged, it
is necessary to extract the average intensity values for the parallel (I7) and per-
pendicularly (I") polarized components from the raw fluorescence images of all
wells and in an automated fashion. We use a Labview 9.0 (National Instruments)
custom-written program (available upon request) that computes the mean pixel
intensities from single frames of the two regions of interest (Supplementary

Fig. 1b), corresponding to I~ and I, For each well, FA(z,t) is computed for each z-
position and time point ¢ according to:

I7(z,t) — Gx I (z,1)

FA(z,t) = FE 2 (z0)

(1)

where G is the so-called instrument G-factor, which corrects for any bias toward
the perpendicular channel (for our setup G is 1.15).

Determination of competitor DNA concentrations. We determine the compe-
titor DNA concentration c(z,t) in the gel matrix by using the calibration wells with
NB as a sensor for DNA concentration (3-5 calibration wells per wellplate or more
depending on SNR). The diffusivity of the competitor DNA in the gel matrix and
its affinity to NB depend on the length of the oligomer (different molecular
weights), but is independent of its sequence (Supplementary Fig. 2a). Thus, any
DNA sequence can be used and c¢(z,t) corresponds directly to the competitor DNA
concentrations in the titration wells, provided that all DNA oligomers have the
same number of residues. To determine c(z,t), we first perform a conventional
titration series, where NB (5nM) is embedded in the agarose gel together with
different concentrations of the competitor DNA (Supplementary Fig. 2a). The
resulting calibration curve is then used to extract ¢(z,f) from the FAxg(z,t) mea-
surements obtained within the calibration wells on each plate (Supplementary
Fig. 2b). However, as the affinity of NB to DNA is relatively weak (Kp=1.7 uM),
direct determination of ¢(z,t) is only possible for ¢ > 100 nM. To obtain c(zt) for ¢
<100 nM, we fitted and extrapolated the concentration profiles c(t) at a given focal
plane z, according to Eq. (2) (Supplementary Fig. 2¢) This equation is commonly
used to calculate one-dimensional sugar concentration gradients, e.g., protein
separation. 344 Note that using the fitted function c(z,t) also improves the accuracy
for c(z,t) > 100 nM, since it averages out fluctuations in concentration.

-z
c(z,t) = <1 e <m)> ?

where ¢, is the concentration of the competitor DNA on top of the gel at t =0, erf
is the error function, z is the position of the focal plane, D is the diffusion coef-
ficient of the competitor DNA in the buffer containing agarose gel, and t, is the
starting time of the measurements. During the fitting procedure, ¢, is kept constant,
¢ and = are used as free parameters.

Eq. {21—3 assumes free one-dimensional diffusion of the competitor DNA within
the gel matrix which, for this purpose can be considered a homogeneous medium,
since the gyro-radius of the DNA oligomers (approximately nm) is much smaller
than the pore size of the agarose gel (approximately pm). Eq. (2) assumes equal
volumes of gel and competitor DNA solution on top; there is no analytical solution
when the volumes are different. For our case, Eq. (2) constitutes an approximation
of ¢(z,t) since the volume of the competitor solution is smaller than the volume of
the agarose gel in a well (50 pl compared to 200 pl in a 96-well plate; 7 pl compared
to 13 ul in a low volume 384-well plate).

Fitting procedure of the FA titration curves. Our Labview analysis program
displays the titration curves obtained by plotting FA(z,t) as a function of c(z,t) for each
individual well and fits them automatically according to the analytical solution, as
determined by Roehrl et al.** for competitive fluorescence anisotropy assays:

2y/(d —3e)cos(?) — d

3Kp1 + 24/(d? — 3e) cos(g) —d

FA = Cx

+B (3)

with
d = Kpy + Kpa + Lst + Lt — Ry
e = (Lt — Rr)Kpy + (Lst — Rr)Kpz + Kp1 Kp,
f = —Kp1KpaRy
6 = arccos (772"13 e 27) )

2¢/(d?=3¢)®

Ry is the total input concentration of the TF, Ly the unlabeled, and Lgr the labeled
DNA concentration. Kp, is the dissociation constant of interaction between the two
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species, L and R. The dissociation constant Kp, serves as a reference for the determi-
nation of Kp, and is obtained from the competitive binding of unlabeled DNA oligomer
against labeled DNA oligomer of the same sequence in the presence of TF. C and B are
experimental normalization parameters corresponding roughly to the anisotropy hub of
the titration curve and to its offset, respectively. Experimentally, R and Lgr are kept
constant, and the relationship between Lt and FA is analyzed to extract Kp,.

The fitting procedure involves using four free parameters in total: Kp, Ry, C, and
B. Therefore, as noted before, an important advantage of the competitive assay is the
ability to determine Ry, which corresponds to the concentration of active protein, in
addition to Kp,. This is of paramount importance when unwanted phenomena, such
as protein dimerization or unfolding, might occur that would lead to erroneous
estimation of the true (active) TF concentration and thus of Kp,. In fact, for all TEs
investigated here, we observe that the concentration of active protein, i.e., TF
molecules that actually bind to DNA, is only 40-60% of the total protein
concentration, as determined by UV spectrometry. Finally, the software exports, for
all titration wells, the parameters obtained during the fitting procedure, in particular
the dissociation constant Kp, and the concentration of active protein Rr.

Extrapolation of the competitor DNA concentrations. At DNA concentrations
lower than 100 nM, we extrapolate c(z,t) from the weakly DNA binding NB dye. To
test the validity of this extrapolation, we used DRAQ5 (Biostatus), which has a
higher affinity to DNA (Kp~10nM) as a second dye. We measured the DNA
concentrations from 1 to 100 nM and compared them to the extrapolations
obtained from NB measurements (Supplementary Fig. 2c). The data points
obtained with DRAQ5 align well with the extrapolated c(z,t) curves for C < 100 nM,
which indicates that NB is sufficient for accurate determination of c(z,t) over a
broad range of concentrations. Note that, the DRAQ5 signal is much noisier than
the NB signal, since the dye is 10-fold dimmer.

Competitive titration for very strong DNA binding. In our competitive binding
assay, the concentration of the active protein is given by the shift of the FA titration
curve along the concentration axis, while Kp, is given by the slope at its inflexion
point; steep slopes correspond to low K, values. Low K, values are thus more difficult
to measure, since the point density around the inflexion point is lower and these
points are more sensitive to the accuracy with which c(z,t) is determined while
diffusing through the agarose gel. In practice, this currently limits the use of agarose
gel for delivering competitor DNA to Kp, > 0.5 nM. However, with our HIP-FA setup,
we can measure Kps as low as 50 pM by conducting conventional competitive
titrations without agarose gel in a 96-well plate format. By using automation, we
serially dilute the unlabeled competitor DNA in a single row of a 96-well plate (0,
1.25,3.5,9, 19, 45, 90, 190, 425, 900, 1900, 4000 nM) and added Cy5- or BODIPY630-
reference DNA (1 nM) and BCD(-GST) (20-50 nM) at a constant concentration, with
a total volume of 200 ul per well in the binding buffer (20 mM Tris-acetate pH 7.0, 50
nM Na(l, 0.01% Tween-20, 0.1 mM DTT). After 40 min, the FA value of each sample
is measured and the data points are used to construct equilibrium binding curves that
can be fitted with Eq. (3) (Fig. 3b). The Kps are determined by conventional com-
petitive titration, and thus the binding specificities are very close to those determined
by HIP-FA (Fig. 3a, b). In the current study, the Kps and the resulting PWMs for the
TFs Kr, Cad, and Croc were obtained in this fashion.

Kinetic measurements of transcription factor-DNA interactions. Dissociation
half-times 7,4 were measured using our HiP-FA setup. TF and its corresponding
Cy5-reference DNA were mixed at the same concentration as in the HiP-FA assay
in 200 pl of binding buffer in a well of a 96-well plate. The laser excitation beam
was focused within the medium and a fluorescence time series was measured
continuously with a time resolution of 300 ms/frame (FA timetrace in Supple-
mentary Fig. 5a). At t=10s, the unlabeled competitor DNA solution (strong
binder) was quickly added to the medium (C = 100 nM) and pipette-mixed thor-
oughly (green arrow). The abrupt changes in FA observed at t>10s for all TFs,
except for Pan, that was measured using conventional competitive titration (dis-
sociation curves shown for Bed and Cad in Supplementary Fig. 5a), reveal fast
dissociation kinetics within seconds for all studied TFs (Supplementary Fig. 5b).

The dissociation half-times 7,4 were obtained by fitting the FA dissociation
curves with Eq. (4) assuming a first-order dissociation kinetic:

(1)
FA(t) =A+ Be o (4)
where A, B are constants and f, is the time of addition of the competitor DNA.

The dissociation and association rate constants kopp and koyn were calculated
according to Egs. 5 and 6, respectively.

1
k = 5
OFF TOFF ( )
k
kon = % (6)
D

where kp is the dissociation constant determined by HiP-FA.

PWM construction and use of pseudo counts. In addition to determining the
absolute affinity of TF to DNA sequence, accurate modeling of its sequence specificity
is of central importance, since in vivo the TF has to be able to distinguish the
functional sites from the nonfunctional sites within all accessible regions in the
genome. Specificity is a measure of how strongly the TF binds to all possible DNA
sequences, relative to the consensus. It is typically captured in the form of a
PWM*%47, which represents the relative preference for a nucleotide at any given
position within the binding site. The standard PWM model assumes that each
position contributes independently to the total binding strength. The validity of this
assumption is the subject of much discussion, but it seems to work reasonably well for
most TFs?”. In practice, PWMs are most often determined by counting the nucleotide
frequencies at each position of the aligned binding sites, where what counts as a
binding site is determined by methods, such as DNA footprinting or B1H selection,
with thresholding being a critical issue. Note that, depending on the length of the
experimentally identified binding sequences and the characteristics of the preferred
motif, properly aligning the sites can be a difficult task. An alternative approach is to
derive a PWM from direct affinity measurements. Under the additivity assumption,
one needs to only determine the Kp, of the consensus sequence and of each single base
mutation of the consensus. The PWM can then be constructed by,

1

Koy
pp="2—7F (7)
Zhe{AAc. G.T} ﬁ

where pj, is the (inferred) probability of nucleotide b at a particular sequence position
and Kp,, the K measured for the corresponding mutation. The specificity of a PWM
can be summarized by its information content, calculated as:

PWM,os(b)
IC= ans Zbe {A,C,G, T} PWMpos (b) log, T ops(b)

(®)
where PWMs (b)is the probability of finding nucleotide b at position pos in the
PWM, and Pg(b) is the background probability of nucleotide b, which we set to 0.25
for all nucleotides.

All HiP-FA derived PWMs are listed in Supplementary Data 1 (average PWMs
of 2 or 3 replicates). The BIH PWMs were taken from Noyes et al.®. The
footprinting PWMs are taken from Schroeder et al.2* with the exception of Kni, for
which we realigned the known binding sites to better match the consensus
established by BIH and HiP-FA; these PWMs are also collected in Supplementary
Data 1. The sequence logos for the different PWMs were created using WebLogo
3.0 (http://weblogo.threeplusone.com/create.cgi).

Many methods yield overly specific PWMs, either because they rely on a small
number of recorded binding sites, or are produced by a method that is biased
toward strong binding events. In this case, weaker potential sites can have a PWM
score of zero, which would be highly limiting in binding site prediction tasks. A
common remedy is to add pseudo-counts (PC)*%, which ensure that no binding site
has zero probability. In the case of the footprinting and the BIH PWMs, which
each typically rely on around 10-30 recorded binding sequences, we add 0.25 to
every entry in the PWM, representing one additional unspecific site. When
applying PC to the HIP-FA PWMs, we add an uncertainty of 1% in every entry.

Software availability. The HiP-FA software and test datasets can be downloaded
from https://github.com/GeneCenterMunich/HiP-FA

Data availability. The datasets generated during and/or analyzed during the
current study are available from the corresponding author on reasonable request.
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