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To characterize the impact of gut microbiota on host metabolism, we investigated the multi-
compartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n¼5) and its germ-
free (GF) equivalent (n¼5). We confirm that the microbiome strongly impacts on the metabolism of
bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and
glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore
we demonstrate that (1) well-defined metabolic differences exist in all examined compartments
between the metabotypes of GF and conventional mice: bacterial co-metabolic products such as
hippurate (urine) and 5-aminovalerate (colon epithelium) were found at reduced concentrations,
whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences
kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo-
inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at
both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses
to a variety of dietary modulation and drug exposures relevant to personalized health-care
investigations.
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Introduction

The gut microbiota (microbiome) form a complex and
dynamic ecosystem that constantly interacts with host
metabolism (Dunne, 2001; Hooper and Gordon, 2001; Bour-
lioux et al, 2003). The microbiome provides trophic (Hooper
and Gordon, 2001) and protective (Umesaki and Setoyama,
2000) functions and impact on the host’s energy metabolism
(Savage, 1986), facilitating the absorption of complex carbo-
hydrates (fiber breakdown) and influencing the homeostasis
of amino acids (Hooper et al, 2002). For example in humans,
1–20% of the circulating plasma lysine and threonine are
derived from gut bacterial synthesis (Metges, 2000). The
microbiota also synthesize essential vitamins such as vitamin
K (Hooper et al, 2002) and group B vitamins (Burkholder and
McVeigh, 1942). These close symbiotic relationships are the
result of co-evolutionary processes, through which natural
selection has promoted the host genotypes that provide well-

adapted adhesion sites for specific microorganisms (Bäckhed
et al, 2005). In total, the mammalian symbiotic superorganism
can contain significantly more active DNA in the fan of genes
from the microbiome than in the host genome (Nicholson et al,
2005). Indeed, the symbiotic microbiotal speciation of some
invertebrates (e.g. plataspid insects) has been shown to be
closely connected with host evolution and take control of
many metabolic functions resulting in host genome reduction
(Hosokawa et al, 2006). The indigenous microbiota of
mammals also strongly influences the metabolism of many
drugs and nutrients, modifying both their bioavailability and
metabolic fate (Nicholson et al, 2005). For example, phytoes-
trogens are metabolized into active compounds by gut
microbiota (Setchell, 1998; Atkinson et al, 2005). But
despite their evident important contribution to host biology
and function, some bacterial species contained in the gut also
have the potential to generate carcinogens or can be the
source of opportunistic infections (Berg, 1996). For instance,
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Helicobacter pylori is well known to be part of the commensal
flora of the stomach that can cause gastritis, gastric
ulcers and, in some cases, gastric cancer (Amieva and
El-Omar, 2008).

We have recently demonstrated a close relationship between
the metabolism of gut microbiota and the susceptibility of
rodents to insulin resistance in high-fat diet studies (Dumas
et al, 2006a). In this context, recent works have shown that
even subtle changes in the gut microbiota have an impact on
the host phenotype (Holmes and Nicholson, 2005; Robosky
et al, 2005; Rohde et al, 2007). Other investigations have
demonstrated the close link between obesity and gut micro-
biota in human and mice (Bäckhed et al, 2004, 2007; Ley et al,
2006; Turnbaugh et al, 2006).

Germ-free (GF) animal studies have been widely used as a
source of knowledge on the gut microbiota contributions to
host homeostatic controls (Wostmann, 1981). GF mice display
unusual gut morphology, i.e. larger cecum, thinner intestinal
villi, when compared with conventional animals as well as
physiological and immunological abnormalities, i.e. lower
peristalsis, decreased inflammatory responses (Berg, 1996).
GF animals have also been used to observe the developmental
mechanisms of the gastrointestinal tract in interaction with the
gut microbiota (Bates et al, 2006). However, despite the
extensive use of GF models, the exact mechanisms involved in
the morphologic, physiologic and immunologic modifications
in GF animals remain unclear. The characterization of the
metabolic differences between conventional and GF mice is,
therefore, an essential step toward better understanding the
interaction between host and gut microbiota.

Metabonomic approaches combining spectroscopic profil-
ing techniques with pattern recognition analysis have proved
useful in the assessment of the systemic metabolic responses
of organisms to drugs or nutrients (Nicholson et al, 2002;
Lindon et al, 2004; Dumas et al, 2006b; Rezzi et al, 2007). This
approach has been successfully applied on biofluids and intact
intestinal tissues in rodents to demonstrate the involvement of
microbiota in the mammalian metabolism (Nicholls et al,
2003; Wang et al, 2005; Martin et al, 2006). In addition,
metabonomic approaches have been recently used to demon-
strate that hippurate excretion, a marker of gut microbiotal
activity in protein catabolism to benzoate, varies between
normal and obese rats (Williams et al, 2005) and the close link
between gut microbiota and fatty liver phenotype in insulin-
resistant mice (Dumas et al, 2006a).

In the current study, we employed a high-resolution 1H NMR
spectroscopic approach to investigate the metabolic pheno-
type, or metabotype (Gavaghan et al, 2000), of GF mice from
urine and tissues (gut, liver and kidney) and to determine the
biochemical consequences of the absent microbiome on these
biological matrices.

Results

Spectra from biofluids and tissue aqueous extracts contain
prominent signals from metabolites representing numerous
major metabolic pathways. For each analyzed biological
matrix, a typical spectrum obtained from a conventional and
a GF mouse is displayed (Figures 1A and B, 2A and B, 3A and B,

4A and B, and 5A and B) and Table I shows the NMR
assignment and corresponding resonance multiplicity. The
summaries of all statistical models are shown in Table II. The
main metabolic differences in GF group were summarized for
all biological matrices in Table III.

Urine

The urine profile was characterized by high levels of taurine, 2-
oxoglutarate, trimethylamine (TMA), citrate and succinate as
previously reported (Bollard et al, 2005) (Figure 1A and B).
The urinary profile of GF mice was characterized by low levels
of hippurate, phenylacetylglycine (PAG), phenolic metabo-
lites, 4-hydroxypropionic acid (4-HPP), 3-hydroxycinnamic
acid (3-HCA) and N-acetylated glycoprotein signal and a
marked high level of creatinine (Figure 1C).

Liver

Glucose resonances (d 3.25–3.84) were predominant in the
liver profile, which was also dominated by high levels of
taurine and trimethylamine-N-oxide (TMAO) (Figure 2A and
B). The oxidized glutathione (GSSG) pattern was readily
identified in the one-dimensional (1D) spectrum. It is possible
to differentiate between the reduced (GSH) and the oxidized
(GSSG) forms of glutathione by 2D NMR because the
resonances of the magnetically non-equivalent protons of the
cysteine b-CH2 residue in GSH (d 2.95) shift to high frequency
in GSSG (d 3.29 and 2.95) (Koga et al, 1986). The statistical
model built from all liver spectra displayed an outlier in the GF
group (data not shown). This highly dilute sample was
removed from the subsequent analysis and the model was
recalculated with four individuals in the GF group against five
individuals in the conventional group. The metabolite profile
of the liver from GF mice exhibited significant higher levels of
TMAO and phosphocholine. Not significant higher levels of
tauro-conjugated bile acids and glycine were noted in the GF
mouse profile (Figure 2C). In addition, a lower level of GSSG
together with a higher level of hypotaurine was observed in the
liver of two GF animals.

Kidney

The kidney 1H NMR profiles were dominated by osmoprotec-
tant compounds such as myo-inositol, glycine, betaine, choline
and taurine (Yancey, 2005) (Figure 3A and B). The metabolite
profile of the kidney from GF mice was characterized by higher
levels of betaine, choline, myo-inositol, scyllo-inositol, etha-
nolamine, inosine and an unknown compound (U1) in the
aromatic region of the spectra (d 7.14 (d) and d 7.30 (d))
(Figure 3C).

Gut compartments

Duodenum, jejunum and ileum were all characterized by high
levels of tyrosine when compared with the other tissue extracts
(Figure 4A, B; Supplementary Figures S1A and B, and S2A and
B) together with creatine and taurine, a feature shared with the
colon (Figure 5A and B). The colonic metabolite profile was
characterized by high levels of myo-inositol and scyllo-inositol,
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as previously described (Martin et al, 2007b) (Figure 5A).
Globally, these gut profiles also displayed similar patterns to
those observed in human biopsies (Wang et al, 2007). Tauro-
conjugated bile acids were observed only in duodenum, ileum
and jejunum profiles.

Aqueous extract profiles of gut tissues from GF mice were
markedly different to those from conventional mice (Figures
4C and 5C; Supplementary Figures S1C and S2C). The
metabolite profile of the duodenum from GF mice was mainly
characterized by higher levels of tauro-conjugated bile acids
and alanine and lower levels of glycerophosphocholine (GPC)
when compared with conventional mice (Supplementary

Figure S1C). Two highly diluted samples in the jejunum
profiles of the GF group were outliers and hence orthogonal
projection on latent structures (O-PLS-DA) correlation coeffi-
cients (r2) were not significant (Supplementary Figure S2C).
However, the GF group had higher levels of creatine and tauro-
conjugated bile acids and lower levels of tyrosine in the jejunal
tissue (Supplementary Figure S2C). The ileum of GF mice was
also characterized by a higher level of tauro-conjugated bile
acids and lower levels of glutamate, fumarate, lactate,
phosphocholine and alanine when compared with the ileum
from conventional mice (Figure 4C). Finally, when compared
with conventional mice, the metabolite profile of the colon
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Figure 1 1H NMR spectra (600 MHz) of urine samples from germ-free (GF) (A) and conventional (B) mice. The aromatic region (d 6.5–9.0) has been vertically
expanded � 4. (C) Plot of O-PLS-DA coefficients related to the discrimination between 1H NMR spectra of urine from GF (top) and conventional (bottom) mice.
For identification of the peak numbers, refer to codes in Table II.
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from GF mice revealed a higher level in a complex carbo-
hydrate identified as raffinose (Supplementary Figure S3), and
lower levels of lactate, creatine, 5-aminovalerate, propionate,
glutamine, myo-inositol, scyllo-inositol (Moreno and Arus,
1996), GPC, phosphocholine, choline, formate, uracil and
fumarate (Figure 5C).

Discussion

In this study, the metabotypes derived from different biological
matrices from GF and conventional mice were characterized
(Nicholson et al, 2002; Lindon et al, 2004) and it was showed
that the metabolic impact of the microbiota extended beyond
the intestinal tissue and biofluids to major organs such as the
liver and kidney.

Evidence of gut microbiota re-processing
of dietary metabolites

A major source of the intestinal metabolites is produced from
dietary nutrients by both the intestinal cells and the gut
microbiota. This production occurs mainly in the first 25% of
the small intestine for amino acids, and in cecum and colon for
fatty acids (Hooper et al, 2002). Here, metabolic variations in
response to gut microbial activity are observed in the
biochemical profiles of intestinal tissue extracts with increas-
ing effect along the continuous gastrointestinal tract. More
specifically, it was observed that duodenum and jejunum
displayed fewer metabolic differences between GF and
conventional mice, whereas ileum and particularly colon were
the most affected (Table III). This reflects the higher microbial
loads found in ileum and colon (Dunne, 2001). In particular,
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Figure 2 1H NMR spectra (600 MHz) of liver aqueous extracts of germ-free (GF) (A) and conventional (B) mice. The aromatic region (d 6.5–9.0) has been vertically
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5-aminovalerate was not observed in colon aqueous extract
profiles of GF animals, which is consistent with its reported
characterization as a product of protein degradation by several
anaerobic bacteria, particularly clostridial strains (Figure 5C)
(Barker, 1981; Barker et al, 1987). 5-Aminovalerate is degraded
to acetate, ammonia and propionate. A higher concentration of
propionate also observed in colon profile of conventional mice
is consistent with the higher concentration of 5-aminovalerate.

More evidence of the crucial role of gut bacteria in the
digestion of dietary nutrients is seen in the lower urinary level
of several microbial co-metabolites (hippurate, 4-HPP and 3-
HCA) in GF mice (Figure 1C). Indeed, it has been reported that
gut microbiota are able to metabolize polyphenols, such as
chlorogenic acids, into more absorbable compounds such as 4-
HPP, 3-HCA and benzoic acid (Goodwin et al, 1994; Manach
et al, 2004). Benzoic acid is then detoxified through conjuga-
tion with glycine in the liver and the kidney to form hippurate
(benzoylglycine), a more hydrophilic metabolite that is then
secreted by the renal tubular cells and excreted in the urine

(Goodwin et al, 1994; Williams et al, 2002; Nicholls et al,
2003). Another microbial co-metabolite, PAG, was also found
in lower concentration in the urinary profile of GF animals
(Figure 1C), illustrating that microorganisms are crucial actors
in the production of these urinary metabolites through the
modulation of food processing.

Evidence of the host–gut bacterial metabolic
interaction: bile acid co-metabolism

The metabolism and synthesis of the major bile acids are
another example of mammalian–microbiotal co-metabolism
that has been reported recently as crucial in determining the
host phenotype (Martin et al, 2007a). In the present study, the
metabolite profiles of duodenum, jejunum and ileum
(Figure 4C) were all characterized by a higher concentration
of tauro-conjugated bile acids in GF mice, which is not
apparent in the colon profile (Figure 5C). In conventional animals,
tauro- and glycine-conjugated bile acids are deconjugated by
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gut microbiota, facilitating their fecal elimination. Here, in the
absence of microorganisms, primary bile acids are reabsorbed
into the enterohepatic cycle, without deconjugation, by
passive diffusion in duodenum and jejunum and by active
transport in the terminal part of the ileum (Berg, 1996; Houten
et al, 2006) (Figure 7). This increased recycling of bile acids is
also suggested by the significantly higher level of phosphocho-
line and by the observed trend of higher concentration of bile
acids in the liver metabolic profile of GF mice (Figure 2C). In
fact, phosphocholine is the source of phosphatidylcholine, the
most common phospholipid in bile, and its secretion is under
control of certain bile acids, mainly cholic acid and deoxy-
cholic acid, in hepatocytes (Uchida et al, 1980; Alvaro et al,
1986; Hofmann, 1999). Thus, the observation of the higher
level of phosphocholine in liver GF profile may be the result of
either a modification of bile acid profile or a higher level of bile
acids in hepatocytes.

Microbial modification of bile acid metabolism may have
many biological consequences, as bile acids participate in the
regulation of dietary lipid absorption and cholesterol meta-
bolism. They also function as signaling molecules linking to a
G-protein-coupled receptor family (Kawamata et al, 2003;
Kostenis, 2004) or directly triggering the farnesoid X receptor
(FXR), which is a hepatocyte nuclear receptor involved in the
regulation of lipid and glucose metabolism (Makishima et al,
1999; Claudel et al, 2005; Modica and Moschetta, 2006). Bile
acids exert strong influences on the regulation of the
expression of some cytochrome P450 (CYP) detoxification
enzymes in the liver (Houten et al, 2006). It is also well known
that CYP are key enzymes in the production of bile acids from
cholesterol (Russell, 2003). Furthermore, Gram-negative
bacteria produce endotoxins (lipopolysaccharides) that affect
the expression of some CYP enzymes in the liver (Ueyama
et al, 2005). Thereby, the microbiota may have an impact on
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Figure 4 1H NMR spectra (600 MHz) of ileum aqueous extracts of germ-free (GF) (A) and conventional (B) mice. The aromatic region (d 6.5–9.0) has been vertically
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host energy homeostasis by participating, directly or indir-
ectly, in the control of bile acid metabolism.

Evidence of the modulation of host cell pathways
and physiology by gut microbiota

The colonic metabolite profile in GF mice was characterized by
lower levels of choline and its phosphorylated derivatives,
GPC and phosphocholine. This is likely due to the disturbance
of the membrane of colonocytes in GF animals. The observed
accumulation of raffinose in these cells is probably also a
consequence of this disruption. Raffinose is an oligosaccharide
that is only digested by the gut microbiota, as monogastric
animals do not express pancreatic a-galactosidase (LeBlanc
et al, 2004). In GF animals, it seems that this trisaccharide is
able to cross the epithelial membrane and accumulates in
colonocytes where it induces a rise in osmotic pressure. This
phenomenon provokes a well-described signaling cascade that

leads to the release of the mobile osmolytes, GPC, myo-inositol
and scyllo-inositol (Wehner, 2003; Alfieri, 2007) (Figure 6).
Interestingly, lower levels of these metabolites have previously
been associated with human colon adenocarcinoma (Moreno
and Arus, 1996), and have also been observed in the brain of
patients with hepatic encephalopathy (Lien et al, 1994;
Albrecht and Jones, 1999) or associated with osmoregulatory
function in the brain in response to atrophy (Tsang et al, 2006).
These physiological changes were correlated with significantly
lower creatine concentrations that can be associated with
lower energy demands and with a lower peristalsis due to an
impaired function of the smooth muscle layer in GF mice
(Berg, 1996). Furthermore, a number of metabolites involved
directly (e.g. fumarate) or indirectly (e.g. glutamate, aspartate,
alanine and lactate) in energy pathways were present at lower
levels in the ilial and colonic epithelium. Aspartate and
fumarate are also key metabolites in the metabolism of urea
associated with the citric acid cycle, a pathway that enables the
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Table I Full 1H NMR chemical shift data for discriminating metabolites assigned in urine and tissue samples (note that signals for unassigned or non-significantly
discriminating metabolites are not reported)

Code Metabolite d 1H (multiplicity) group Compartments
observed

1 2-Oxoisocaproate 0.94 (d) CH3, 2.18 (m) CH, 2.64 (d) CH2 U
2 2-Oxoglutarate 2.47 (t) gCH2, 3.03 (t) bCH2 U
3 D-3-Hydroxybutyrate 1.20 (d) CH3, 2.31 (dd) 1

2 aCH2, 2.41 (dd) 1
2 aCH2, 4.16 (dt) CH L

4 3-Hydroxycinnamate 6.49 (d) aCH, 6.92 (d) H2, 7.09 (s) H6, 7.17 (d) H4, 7.33 (m) H3/b-CH U
5 4-Hydroxyphenylpropionate 2.52 (t) aCH, 2.91 (t) bCH, 6.92 (d) H2/H6, 7.22 (d) H3/H5 U
6 5-Aminovalerate 1.64 (m) b/gCH2, 2.25 (t) aCH2, 3.02 (t) dCH2 C
7 5-Hydroxytryptophan 3.23 (dd) 1

2 bCH2, 3.41 (dd) 1
2 bCH2, 4.02 CHNH2, 6.88 H6, 7.14 H2, 7.28, 7.41 H7 U

8 Acetate 1.92 (s) CH3 U, L, K, D, J, I, C
9 Adenosine diphosphate 4.20 (dd) 1

2 CH2, 4.23 (dd) 1
2 CH2, 4.27 (dt) H5, 4.50 (m) H4, 4.77 (m) H3, 6.12 (d) H2, 8.18 (s) H7,

8.50 (s) H12, 8.55 (s) H12
L, K

10 Alanine 1.48 (d) bCH3, 3.79 (m) CH L, K, D, J, I, C
11 Aspartate 2.68 (AB of ABX) 1

2 bCH2, 2.82 (AB of ABX) 1
2 bCH2, 3.91 (X of ABX) aCH K, D, J, I, C

12 Betaine 3.27 (s) CH3, 3.90 (s) CH2 K
13 Bile acids (mixed) 0.70 (s) CH3, 1.05 (s) CH3 L, D, J, I
14 Choline 3.20 (s) N-(CH3)3, 3.51 (t) bCH2, 4.05 (t) aCH2 L, K, D; J, I, C
15 Citrate 2.69 (AB) 1

2 CH2, 2.55 (AB) 1
2 CH2 U

16 Creatine 3.03 (s) N-CH3, 3.94 (s) CH2 U, K, D, J, I, C
17 Creatinine 3.06 (s) N-CH3, 4.05 (s) CH2 U
18 Dimethylamine 2.72 (s) CH3 U
19 Ethanolamine 3.13 (t) NH-CH2, 3.83 (t) HO-CH2 K
20 Formate 8.46 (s) CH U, D, J, I, C
21 Fumarate 6.52 (s) CH U, L, K, D, J, I, C
22 a-Glucose 3.42 (t) H4, 3.54 (dd) H2, 3.71 (t) H3, 3.72 (m) 1

2 CH2-C6, 3.76 (m) 1
2 CH2-C6, 3.83 (ddd) H5, 5.23 (d) H1 L, K, D, J, I, C

23 b-Glucose 3.24 (dd) H2, 3.40 (t) H4, 3.47 (ddd) H5, 3.48 (t) H3, 3.84 (m) 1
2 CH2-C6, 3.90 (dd) 1

2 CH2-C6, 4.64 (d) H1 L
24 Glutamate 2.08 (m) bCH2, 2.34 (m) gCH2, 3.75 (m) aCH K, D, J, I, C
25 Glutamine 2.15 (m) bCH2, 2.46 (m) gCH2, 3.77 (m) aCH L, K, D, J, I, C
26 Glutathione (oxidized) 2.17 (m) bCH2 Glu, 2.55 (m) gCH2 Glu, 2.98 (AB of ABX, broad) and 3.30 (AB of ABX, broad) bCH2 Cys,

3.78, aCH2 Gly, 4.75 (X of ABX, broad) aCH Cys
L

27 Glycine 3.56 (s) aCH U, D, J, I
28 Glycerophosphocholine 3.23 (s) N-(CH3)3, 4.32 (m broad) CH D, J, C
29 Glycogen 3.83 (m broad), 5.41 (m broad) L
30 Guanine 7.72 (s) CH U
31 Guanosine 3.86 (m) CH2, 4.24 (m) H5, 4.41 (t) H40, 5.91 (d) H20, 8.00 (s) H8 U, D, J
32 Hippurate 3.97 (d) CH2, 7.56 (t) m-CH, 7.65 (t) p-CH, 7.84 (d) aCH U
33 Histidine 3.14 1

2 bCH2 (AB of ABX), 3.25 1
2 bCH2 (AB of ABX), 3.99 aCH (X of ABX), 7.08 (s) H5, 7.83 (s) H3 L, K

34 Hypotaurine 2.64 (t) CH2-NH2, 3.37 (t) CH2-SO3 L
35 Inosine 3.85 1

2 CH2 (AB of ABX), 3.92 1
2 CH2 (AB of ABX), 4.28 H50 (X of ABX), 6.10 (d) H20, 8.24 (s) H8, 8.34 (s) H2 L, K, D, J, I, C

36 Isoleucine 0.95 (t) dCH3, 1.01 (d) bCH3, 1.26 (m) 1
2 gCH2, 1.48 (m) 1

2 gCH2, 1.98 (m) bCH 3.68 (d) aCH U, L, K, D, J, I, C
37 Isovaleric acid 0.92 (d) CH3, 1.94 (m) CH, 2.05 (d) CH2 U
38 Lactate 1.33 (d) bCH3, 4.12 (q) aCH L, K, D, J, I, C
39 Leucine 0.96 (d) dCH3, 1.71 (m) gCH, 3.73 (t) aCH L, K, D, J, I, C
40 Lysine 1.48 (m) gCH2, 1.73 (m) dCH2, 1.91 (m) bCH2, 3.03 (t) eCH2, 3.76 (t) aCH K, D, J, I, C
41 myo-Inositol 3.29 (t) H5, 3.53 (dd) H1/H3, 3.63 (t) H4/H6, 4.06 (t) H2 K, D, J, C
42 N-Acetylcysteine 2.08 (s) CH3, 2.94 (m) CH2, 4.39 (m) CH U
43 Nicotinurate 3.99 (s) CH2, 7.6 (dd) H5, 8.25 (d) H4, 8.71 (d) H6, 8.94 (s) H2 L, K
44 Phosphocholine 3.22 (s) N-(CH3)3, 3.62 (t) bCH2, 4.23 (m) aCH2 L, I, C
45 Phenylacetylglycine 3.67 (s) dCH2, 3.75 (d) aCH2, 7.35 (m) H2/H6, 7.37 (t) H4, 7.42 (m) H3/H5 U
46 Phenylalanine 3.13 1

2 bCH2 (AB of ABX), 3.28 1
2 bCH2 (AB of ABX), 4.00 aCH (X of ABX), 7.33 (m) H2/H6, 7.39 (t) H4,

7.43 (m) H3/H5
L, K, D, J, I, C

47 Putrescine 1.80 (m broad) bCH2, 3.05 (m broad) aCH2 U
48 Raffinose 3.53 (s), 3.55–3.59 (m), 3.68 (s), 3.70–3.92 (m), 3.96 (t), 4.00–4.07 (m), 4.23 (d) H3 (fructose),

5.00 (d) H21 (galactose), 5.43 (d) H7 (glucose)
C

49 scyllo-Inositol 3.35 (s) CH C
50 Succinate 2.41 (s) CH3 U, L, K
51 Taurine 3.27 (t) CH2-SO3, 3.43 (t) CH2-NH U, L, K, D, J, I, C
52 Trimethylamine 2.86 (s) CH3 U
53 Trimethylamine N-oxide 3.27 (s) (CH3)3 U, L
54 Tyrosine 3.06 1

2 bCH2 (AB of ABX), 3.16 1
2 bCH2 (AB of ABX), 3.94 aCH (X of ABX), 6.87 (d) H2/H6, 7.18 (d) H3/H5 L, K, D, J, I, C

55 Uridine diphosphate 4.21 (dd) 1
2 CH2, 4.25 (dd) 1

2 CH2, 4.37 (dt) H5, 4.39 (dd) H4, 4.43 H3, 5.96 (m) H2, 5.98 (d) H10,
7.98 (d) H11

U, L

56 Uracil 5.78 (d) CH, 7.52 (d) CH I, C
57 Uridine 3.81 (dd) 1

2 CH2, 3.92 (dd) 1
2 CH2, 4.12 (dt) H5, 4.24 (dd) H4, 4.36 (dd) H3, 5.88 (d) H10, 5.92 (m) H2,

7.88 (d) H11
L, K, D, J

58 Uridine triphosphate 4.25 (dd) 1
2 CH2, 4.28 (dd) 1

2 CH2, 4.39 (dt) H5, 4.40 (dd) H4, 4.45(dd) H3, 5.90 (d) H10, 5.98 (m) H2,
7.98 (d) H11

L

59 Valine 0.99 (d) gCH3, 1.05 (d) g0CH3, 2.28 (m) bCH, 3.62 (d) aCH L, K, D, J, I, C

The numbering/nomenclature of compounds follows the IUPAC system.
Key: s, singlet; d, doublet, dd, doublet of doublets; t, triplet; m, multiplet; ABX refers to second-order spin system usually of the form CH2CH where all three protons are
non-equivalent; C, colon; D, duodenum; I, ileum; J, jejunum; K, kidney; L, liver; U, urine.
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elimination of ammonia produced endogenously from the
catabolism of amino acids, and exogenously from the
degradation of proteins by gut microflora (Metzler, 2003)
(Figure 7). The massive production of exogenous ammonium
in colon lumen results in a high intake of ammonium in
colonocytes where it is partially detoxified into urea (Mouillé
et al, 1999). Thus, it is assumed that the observed lower levels
of fumarate, glutamate, aspartate, alanine and lactate in GF
profiles reflect the lower input of ammonia and/or the lower
smooth muscle activity in these animals. All of these
perturbations emphasize the fundamental role of gut micro-
biota in colonic epithelial metabolism.

Moreover, the liver metabotype of GF animals indicated
other bacterial-related changes. A lower level of GSSG, the
oxidized form of the powerful antioxidative compound GSH

(Meister and Anderson, 1983) and a higher level of hypotaur-
ine were observed in two GF animals of a total of four
(Figure 2C). Despite the restricted numbers of individuals
included in this study, it is possible that a subgroup of animals
may exist. GSSG represents 1% of the total amount of
glutathione in vivo (Deneke and Fanburg, 1989). In this study,
GSH was not observed because it is readily oxidized to GSSG
by exposure to atmospheric oxygen during sample prepara-
tion. Thus, it can be considered that the observed GSSG reflects
the whole amount of glutathione in the liver extract. Normally,
glutathione, rather than hypotaurine, is the predominant
antioxidative molecule in the liver. Furthermore, it has been
demonstrated that hypotaurine is also a strong antioxidative
compound (Aruoma et al, 1988; Yancey, 2005). The observa-
tion of a high level of hypotaurine concomitant with low level
of glutathione indicates a perturbation of the cell response to
oxidative stress. Thus, for these two individuals, the higher
level of hypotaurine may compensate for the lack of
glutathione in the liver. It is noteworthy that the low total
glutathione content was associated in these two animals with
high levels of glycine, which is an essential amino acid for
glutathione biosynthesis (Meister and Tate, 1976). Taken
together, these observations indicate a perturbed g-glutamyl
cycle activity in the liver of two GF mice and this may be
suggestive of altered cysteine metabolism (Meister, 1988). The
low level of total glutathione in GF animals may impact on
many metabolic pathways as it is also a coenzyme involved in
the regulation of protein synthesis and degradation, as well as

Table II Summaries of O-PLS-DA statistical models

Sample Orthogonal component Q2Y R2X

Duodenum 0 0.57 0.27
Jejunum 1 0.37 0.52
Ileum 0 0.46 0.26
Colon 1 0.70 0.34
Liver 1 0.58 0.47
Kidney 1 0.42 0.61
Urine 1 0.83 0.39

Q2Y, cross-validated predicted percentage of the response Y; R2X, variation of
X explained by the model.

Table III Summary of variations of metabolite signals with the highest discriminant power for each model

Metabolite d (p.p.m.) Duodenum Jejunum Ileum Colon Liver Kidney Urine

3-HCA 7.07 �0.93
4-HPP 6.89 �0.92
5-Aminovalerate 2.236 �0.86
Alanine 1.476 +0.84 �0.83
Aspartate 2.81 �0.84
Betaine 3.904 +0.98
Choline 3.2052 +0.94
Creatine 3.04 +0.52 �0.83
Creatinine 4.08 +0.89
Ethanolamine 3.1448 +0.87
Formate 8.459 �0.76
Fumarate 6.520 �0.79 �0.91
Glutamate 2.078 �0.85
Glutathione 2.5528 �0.71
Glycine 3.559 +0.49 +0.79
GPC 3.2312 �0.85 �0.85
Hippurate 7.84 �0.93
Hypotaurine 2.645 +0.60
Inosine 8.3468 +0.88
Lactate 1.336 �0.79 �0.78
Nac 2.185 �0.76
myo-Inositol 3.5288 �0.76 +0.92
PAG 7.38 �0.87
Phosphocholine 3.2252 �0.76 +0.93
Raffinose 5.435 +0.86
scyllo-Inositol 3.3485 �0.72 +0.78
Tauro-conjugated bile acids 0.697 +0.93 +0.51 +0.78 +0.66
TMAO 3.269 +0.85
Tyrosine 6.909 �0.81
Uracil 5.811 �0.94

Full chemical shift data for each metabolite are reported in Table I. The correlation coefficients with the discriminant axis for the metabolites involved in the difference
between GF and conventional animals are presented as either higher (+) or lower level (�) compared with the conventional control.
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in the mechanism of immune system and in the prostaglandin
metabolism (Meister and Anderson, 1983; DeLeve and
Kaplowitz, 1991; Uhlig and Wendel, 1992; Wang and Ballatori,
1998).

TMAO variation contributes to the statistical separation
between the metabolic profiles of livers from GF and
conventional mice (Figure 2C). TMAO was expected to be
lower in GF animals as previously observed in urine profiles
during re-colonization of GF rats (Nicholls et al, 2003). Here,
we observed a significantly higher level of TMAO in GF mice.
TMAO in the liver derives either from a direct absorption of
TMAO contained in the diet, from the gut microbial processing
of choline and carnitine, or is endogenously synthesized by the
oxidation of TMA to TMAO by the flavin-containing mono-
oxygenase isomer 3 (FMO3) (Smith et al, 1994; Zhang et al,
2007). As the two groups were fed exactly the same diet, it can
be deduced that the higher level of TMAO found in the liver of
GF animals comes from either a greater uptake of TMA/TMAO
contained in the diet, or from a higher endogenous synthesis.
In contrast to humans, expression of FMO3 in mouse is sex
dependent with a much lower expression in males. However, it
has been recently demonstrated that this expression is highly
inducible by TCDD (dioxin) in an aryl hydrocarbon receptor-

dependent manner (Tijet et al, 2006). Thus, it is possible that
FMO3 in male GF animals was induced.

A lower level of N-acetylated glycoprotein (Nac) signal was
observed in the urine of GF animals (Figure 1C). This signal
comes from the most abundant glycoprotein in urine, the
Tamm–Horsfall protein (THP), also known as uromodulin, a
small glycoprotein (B90 kDa) secreted by the thick ascending
limb of the Henle’s loop of the nephron (Serafini-Cessi et al,
2003). This protein is of particular interest in that its role is
associated with the prevention of urinary tract infections. The
N-glycans at the protein surface bind to uropathogenic strains
of Escherichia coli, preventing the adhesion of these pathogens
to the bladder wall (Pak et al, 2001; Mo et al, 2004). Here, the
observed lower levels of Nac in GF urine profiles may be
caused by a lower amount of THP in the urine or by a lower
glycosylation of the protein. The protective function of THP is
driven by N-glycans, so this observation reveals that protec-
tion against urinary tract pathogens is affected in the absence
of gut microbiota. Also, choline, betaine, myo-inositol and
scyllo-inositol were elevated in kidneys from GF mice
(Figure 3C). All these metabolites are osmoprotectants (Burg,
1995) and it has been shown that their level increases in
kidney cells when the environment becomes hypertonic
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(Yamauchi et al, 1991; Burg, 1995; Beck et al, 1998; Burger-
Kentischer et al, 1999). Both decrease in THP concentration in
urine and hypertonicity of interstitial fluid in kidney have been
associated with renal dysfunction (Seldin and Giebisch, 2000),
but it was not possible in this study to establish a link between
these two observations.

Finally, the observed increased excretion of creatinine, a
biomarker of muscle mass, in the urine of GF mice (Figure 1) is
likely related to the lean phenotype of GF mice, as confirmed in
a recent study (Bäckhed et al, 2007). Collectively, these data
demonstrate that gut microbiota have a function in the control
of the metabolic phenotype of the colon and liver and
influence the whole-body metabolic homeostasis of the host.

Conclusions

We have demonstrated that gut microbiotal activities have an
impact on site-specific intestinal epithelial biochemistry and
influence at ‘long-range’ hepatic and renal metabolite profiles
as well as the global metabolic phenotype of the host
(summarized in Figure 7). It would be of considerable interest
to correlate the compartmentalized metabolite profiles with
the known bacterial strains that compose the microbiota and

this is the focus of an ongoing investigation. Gut microbiota
seem to be an important regulator of the bile acid metabolism
and may have an impact on CYP enzyme induction status.
These results also suggest the potential impact of the gut
microbiota on antioxidant mechanisms in the liver but further
studies are needed. We also show that gut microbiome
influences the renal metabolite profile possibly in response
to interstitial hypertonicity. By acting directly or indirectly on
the metabolism of liver and kidney, key organs of body
physiology (i.e. homeostasis of arterial pressure and equili-
brium of cholesterol and electrolyte levels), the gut microbiota
can be considered as a major contributor of host homeostasis.
Improved knowledge of host–microbiome interactions will
lead to a better understanding of individual variation in
relation to health status and interventional outcomes (Clayton
et al, 2006; Nicholson, 2006).

Materials and methods

Animal handling and sample preparation

All studies were conducted according to the Swiss legislation on
animal experimentation.

One group of five GF C3H/HeJ mice (Charles River, France) was
maintained in isolators on g-ray-irradiated food (R03-10) and g-ray-
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irradiated water, whereas the other group of five conventional C3H/
HeJ mice was maintained under identical conditions but in a
conventional environment with non-irradiated food and water.
Isolators were checked every week for any bacterial contamination
throughout the life of GF animals. Throughout the duration of the
study, water and food were provided ad libitum. Mice were euthanized
when they were 8 weeks old, at which time urine and organs
(duodenum, jejunum, ileum, colon, liver and kidney) were collected.
Samples were snap frozen in liquid nitrogen and stored at �801C until
analysis.

1H NMR spectroscopy

Urine samples were freeze-dried and dissolved in 50mL of phosphate
buffer 0.2 M (pH 7.4) in D2O plus 0.05% sodium 3-(tri-methylsilyl)-
propionate-2,3-d4 (TSP) before transferring to capillary tubes for
analysis by 1H NMR spectroscopy.

Tissue samples were homogenized and extracted in acetonitrile/
water (1:1), as previously described (Waters et al, 2002). The
supernatant containing the aqueous phase was collected, freeze-dried
and dissolved in 600 ml of D2O. Samples were centrifuged for 10 min at
15 000 g, and 500ml of the supernatant and 50ml of water were used for
later analysis by NMR spectroscopy.

All 1H NMR spectra were acquired on a Bruker Avance 600 MHz
Spectrometer (Bruker Analytische GmbH, Rheinstetten, Germany)
operating at 600.13 MHz and using a standard 1D pulse sequence
(Nicholson et al, 1995) (recycle delay (RD)–901–t1–901–tm–901–ac-
quire free induction decay (FID)) with water suppression applied
during RD of 2 s and mixing time (tm) of 100 ms and a 901 pulse set at
9.75ms. Spectra were acquired using 256 scans into 32K data points
with a spectral width of 12 000 Hz. The FIDs were multiplied by an
exponential function corresponding to 0.3 Hz line broadening. Zero
filling of a factor of four for all tissue extracts and two for urine samples
was also applied to the FIDs. All spectra were manually phased,
baseline corrected and calibrated to lactate (d 1.33) for tissue extracts
and to TSP (d 0.00) for urine samples. Metabolites were assigned using
data from literature (Nicholson et al, 1995; Fan, 1996; Garrod et al,
2001) and additional two-dimensional (2D) NMR experiments on
selected samples.

The 2D 1H–1H NMR spectra were performed on a Bruker DRX 400
Spectrometer operating at 400.13 MHz (Bruker Analytische GmbH)
using 2D correlation spectroscopy (Aue et al, 1975) and total
correlation spectroscopy (Glaser et al, 1996) experiments. 2D 1H–13C
heteronuclear single quantum coherence NMR (Bodenhausen and
Ruben, 1980) was performed on liver aqueous extracts on a Bruker
DRX 500 Spectrometer operating at 499.9 MHz (Bruker Analytische
GmbH) equipped with a 5 mm 1H–13C inverse cryoprobe.

Data analysis

To eliminate the variability in water resonance presaturation, the
chemical shift region between d 4.66 and 4.88 was removed from all
spectra before statistical analysis, except for liver where to avoid bias
due to baseline distortion, the region between d 4.77 and 5.38 was
removed. As previously described (Cloarec et al, 2005), all data were
analyzed on full-resolution spectra (35 600 data points for liver and
36 500 data points for all other tissue extracts), normalized to the total
peak area and models were constructed using O-PLS-DA with unit
variance scaling on Matlab 7.0.1 software (The MathWorks Inc.).
Despite the use of phosphate buffer, many urine spectra still displayed
subtle pH-dependent shifts; therefore, the O-PLS-DAwas performed on
larger bins of 0.005 p.p.m. (1750 bucketed points) to minimize minor
frequency changes in spatial components.

To aid interpretation, the O-PLS coefficients were plotted into a
spectral domain using the back-scaling method (Cloarec et al, 2005).
Using this method, the weights of each variable are back-scaled to their
initial metric of the data and then the shape of NMR spectra and the
sign of the coefficients are preserved. However, the weights of the
variables can still be compared using a colour code corresponding to
the square of the actual O-PLS coefficients. By construction, the O-PLS
coefficients are directly proportional to the correlation coefficients
between the discriminant axis and the NMR data. For this reason, the

square of the coefficients can be represented in terms of correlation
after applying the same corrective factor to all coefficients, allowing by
this way an estimation of the amount of variance of each NMRvariable
involved in the discrimination.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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