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Abstract

Summary: Recent years have seen an increase in the number of structures available, not only for new proteins but
also for the same protein crystallized with different molecules and proteins. While protein design software has pro-
ven to be successful in designing and modifying proteins, they can also be overly sensitive to small conformational
differences between structures of the same protein. To cope with this, we introduce here pyFoldX, a python library
that allows the integrative analysis of structures of the same protein using FoldX, an established forcefield and mod-
elling software. The library offers new functionalities for handling different structures of the same protein, an
improved molecular parametrization module and an easy integration with the data analysis ecosystem of the python
programming language.

Availability and implementation: pyFoldX rely on the FoldX software for energy calculations and modelling, which
can be downloaded upon registration in http://foldxsuite.crg.eu/ and its licence is free of charge for academics. The
pyFoldX library is open-source. Full details on installation, tutorials covering the library functionality and the scripts
used to generate the data and figures presented in this paper are available at https://github.com/leandroradusky/
pyFoldX.

Contact: luis.serrano@crg.eu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Outstanding advances in the experimentally determinable biomolec-
ular space have been recently made (Berman et al., 2020); also, the
last CASP competition (Senior et al., 2020) revealed striking
improvements in the field of in silico biomolecular modelling. It is
now increasingly likely that a protein of interest has several struc-
tures, alone or in complex with other biomolecules and ligands;
however, protein design software users/researchers creating struc-
tural datasets commonly only select one of the available structures
(normally the one with highest resolution and/or the highest se-
quence coverage) and disregard the rest. This loses the potential
power of using different structures of the same protein and can re-
sult in significant differences in the analyses due to small conform-
ational differences (Delgado Blanco et al., 2020) or the presence of
different molecular partners along available structures (Kiel and
Serrano, 2014).

Thus, there is a need for bioinformatics tools that allow all avail-
able structures for a target protein to be considered when trying to
diagnose mutational effects or to engineer new properties. These

tools should take into account all structural information resulting
from the formation of complexes and binding modes, as well as the
distinct conformations arising from the crystallization conditions.

Here, we introduce pyFoldX, a python library powered by the
FoldX suite (Delgado et al., 2019; Schymkowitz et al., 2005).
pyFoldX enables full integration of standardized data analysis tools
within the python programming language. The pyFoldX library
mainly comprises two packages: (i) the structure package, which
contains classes to handle single structures or ensembles of struc-
tures (Fig. 1A). It is fully integrated with FoldX functionality (energy
measurements, mutational modelling, etc.) and stores the results of
energetic calculations in pandas data frames (McKinney, 2015); and
(ii) the paramx package, which improves a functionality introduced
in the latest version of FoldX, thus allowing for user-friendly param-
eterization of new molecules (Fig. 1B) based on standard atom types.
Using these new functionalities, we created a comprehensive data-
base of repaired PDB structures with minimized energy and
improved structural quality. Our results from analysing a compre-
hensive set of benign and pathogenic mutations mapped into protein
structures underscored that considering the ensemble of available
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structures can improve the FoldX diagnosis. We have made the
pyFoldX code open to the public and encourage the community to
extend the library and/or request new specific features.

2 Functionality and results

2.1 Molecule parameterization
A key feature that was introduced in the last version of FoldX was
the possibility to parameterize small molecules not previously recog-
nized by the software; this feature was effectively used on the par-
ameterization of RNA bases. We have now improved it in pyFoldX
by allowing the auto parameterization of molecules through the sim-
ple definition of template atoms (Supplementary Table S1). This fea-
ture will permit users to introduce new organic molecules in the
FoldX force field using atoms that fit into the template atom set pro-
vided. A complete tutorial that demonstrates the parameterization
of a glucose molecule complexed with a lectin is available online
(Tutorials section of project’s GitHub).

2.2 Mutational effect diagnosis
Taking advantage of the integration of pyFoldX with pandas, we built
a random forest classifier (n_estimators¼500) using the sklearn li-
brary (Trappenberg, 2019). This allowed us to assess the accuracy of
FoldX energetic features, along with other structural annotations, as
well as to discriminate between benign and pathogenic mutations con-
tained in the Missense3D-DB (Khanna et al., 2021). This dataset con-
tains 31283 structurally mapped non-redundant variants and its
publicly available in the Supplementary Material of the cited paper.
We trained the classifier with a random set encompassing 80% of the
annotated mutations (this procedure was repeated several times for
different randomly train and test dataset with no significant differen-
ces), with the remaining 20% used for testing (Fig. 1C). We then

analysed mutations along the ensemble of good resolution structures
(resolution <2.0 Å) for the same set of mutations. Based on the classi-
fier probabilities for a mutation to belong to the ‘pathogenic’ or ‘be-
nign’ category (Ppathogenic¼1-Pbenign), we found that mutations
classified as benign tend to keep such classification along the ensemble
of available structures for their proteins. This allowed us to achieve a
better separation in the histogram of probabilities from both types of
mutations (Fig. 1D). Notably, we observed a better discriminative
power when we analysed structural ensembles than when we used the
best structure (e.g. in terms of resolution), giving us a highly accurate
classification (AUC¼0.9; Fig. 1E).

Note that the pyFoldX’s GitHub webpage include: (i) tutorials
on how features that feed the classifier are computed; (ii) the data-
sets of these features along single structures and ensembles muta-
tions and (iii) scripts showing how the random forest classifier was
created and used.

2.3 FoldX-repaired protein DataBank
By combining the PDB_REDO (Joosten et al., 2014) structure re-
finement method with the FoldX RepairPDB command for side-
chain energy minimization, we designed a pipeline using pyFoldX to
refine the quality for virtually all the structures in the Protein Data
Bank (Berman et al., 2007; Supplementary Fig. S2). We first exam-
ined the structures to determine if they contained organic com-
pounds not recognized by FoldX; we then parameterized the most
frequent ones. Supplementary Table S2 shows the list of new mole-
cules now parameterized and recognized by FoldX.

In general, the resulting repaired structures presented lower ener-
gies when evaluated with independent force fields (Alford et al., 2017;
Yang and Zhou, 2008; Supplementary Fig. S2A) as well as improved
structural quality features (as measured with WHAT_CHECK;
Dunbrack, 2004; Supplementary Fig. S2B). If any of the independent

Fig. 1. (A) pyFoldx structure-handling capabilities. Single structures can be instantiated from different formats, while ensembles of structures of the same protein can be instan-

tiated from the protein’s UniProt accession. FoldX commands can be executed into structures and ensembles, returning pandas dataframes with energies and, if applicable,

objects with the transformed structures. (B) Example of parametrization of a glucose molecule with the pyFoldX paramx package. (C) Analysed mutations dataset description.

To train a random forest classifier, 80% of the Missense3D-DB mutations were used in order to estimate the probability of belonging to the ‘pathogenic’ category. The remain-

ing 20% were used for testing and analysed by using the indicated structure in the database and the ensemble of good resolution structures for these proteins. (D) Histogram of

probability of belonging to the ‘pathogenic’ category given by the created classifier for mutations mapped into their best structure by Missense3D-DB (left) and the mean of the

probabilities for all crystals of good resolution along its ensemble (right). (E) ROC curve of mutation class prediction by the generated classifier taking into account best crystal

(orange lines) or mean predictions for crystals along ensemble (blue lines). Thin lines: classifying mutations as pathogenic (Ppathogenic>0.5) or benign (Ppathogenic�0.5). Thick

lines: mutations with no clear prediction are discarded (0.4>Ppathogenic>0.7). Overall, predictions are better when ensembles are considered and high accuracy is achieved

(AUC¼0.9) when no clear predictions are discarded from the analysis
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force fields reported higher energies with respect to the original
entries, the structures were further analysed to determine potential
flaws in FoldX modelling. The predicted high energies were due pro-

line rotamers placed by FoldX but penalized by these force fields
(Supplementary Fig. S3). FoldX uses a probabilistic method that

depends on the previous phi, psi and chi angles to generate rotamers;
therefore, it is possible that some of the generated rotamers have a
poor representation in the PDB structures. Note that all the generated

structure files are available online for downloading or as object instan-
tiation through pyFoldX structure package.

3 Discussion and perspectives

Here, we present pyFoldX, a novel library fusing FoldX modelling

functionalities within the python programming language. pyFoldX
enables easy analyses of extensive structural datasets, and in-depth en-
ergy analyses and modelling along the ensemble of structures available

for a single protein, in a user-friendly manner. Notably, comprehen-
sive analysis using pyFoldX of mispredicted energy changes versus ex-

perimentally measured mutations should lead to improvements in the
FoldX sidechain modelling routines and force field. Mutational effect
diagnosis can now be improved by incorporating other non-structural

features, and other machine learning strategies can be investigated to
improve the built classifier. The possibility to parameterize novel or-

ganic molecules presents opportunities for ligand binding modelling;
notably for carbohydrate molecules, given the ability of pyFoldX to
handle mmCIF formatted files that correct historic errors on these

kinds of interactions (Feng et al., 2021). Overall, we believe that this
tool will provide the structural biology community with a more

powerful way to access FoldX functionalities, useful for instance for
determining effects of mutations or for engineering new properties
into proteins/protein–ligand complexes.
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