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Context.Hanchuan Zupa granule (HCZP), as a Chinese traditional medicine, is used to treat asthma. Objective. To investigate the
molecular mechanisms of HCZP treatment of asthma.Materials and Methods. -irty Sprague Dawley (SD) rats were divided into
normal, asthma, and HCZP groups (n= 10). -e asthma model was sensitized by 1mg ovalbumin (OVA)/aluminum hydroxide
Al(OH)3mixture and then challenged with 1% aerosolized OVA for four weeks. Rats in the HCZP group received 10.08 g/kg/d
HCZP for four weeks during OVA challenge. -en, lung tissues of rats in each group were collected for RNA sequencing.
Moreover, the expression level of some core genes was detected by using western blotting and immunohistochemistry. Results.
Inflammatory cell infiltration and pathological damage of the lungs improved in the HCZP group. Compared with the asthma
group (0.049± 0.002mm2/mm; 0.036± 0.006mm2/mm; and 0.014± 0.001mm2/mm), total wall thickness (0.042± 0.001mm2/
mm), inner wall thickness (0.013± 0.001mm2/mm), and smooth muscle layer thickness (0.012± 0.001mm2/mm) significantly
decreased in the HCZP group. Bioinformatics analysis showed that hub genes such as bradykinin receptor B2 (Bdkrb2) and CD4
molecule (Cd4) had different expression patterns between model and HCZP groups. Two transcription factors, forkhead box Q1
(Foxq1) and nuclear factor of activated Tcells 2 (Nfatc2), served important regulatory roles in asthma. Compared with the model
group, Bdkrb2 protein expression increased and Nfatc2 protein expression decreased in the HCZP group. Discussion and
Conclusion. HCZP could alleviate asthma via regulating the expression of several hub genes, which might serve as therapeutic
targets for asthma. However, the mechanism of these genes will be studied in the future.

1. Introduction

Asthma, a common chronic respiratory disease in children
and adults, is characterized by reversible airway inflam-
mation obstruction and bronchial hyperresponsiveness [1].
Approximately 315 million people worldwide are affected by
asthma, among which about 10% have severe or uncon-
trolled asthma attacks [2]. Despite the advances in diagnosis
and treatment, it remains a serious global health problem
[3]. -e long-term goal of asthma management is to achieve
asthma control and minimize the risk of exacerbation [4].
Currently, pharmacotherapy of asthma mainly includes
bronchodilators and anti-inflammatory drugs, such as β2-

agonists and glucocorticoids [5]. However, previous evi-
dence indicates that β2-agonists are associated with an in-
creased risk of myocardial infarction, congestive heart
failure, and sudden cardiac death [6]; meanwhile, gluco-
corticoids possess extensive immunosuppressive activity and
potentially serious side effects and may further promote
human metapneumovirus infection which is capable of
eliciting inflammatory responses [7]. -us, it is necessary to
explore safe and effective drugs for asthma treatment.

Traditional Chinese medicine (TCM), widely reported to
be a complementary and alternative therapy for asthma
attacks, can alleviate airway hypersensitivity and inflam-
matory cell infiltration in patients with asthma [8, 9].
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Hanchuan Zupa granule (HCZP) is a Uyghur medical
compound preparation produced by modern technology on
the basis of Hanchuan Zupa powder in the classic Uyghur
medicine “Ruyi Chufang” [10]. It is composed of hyssop
(Hyssopus officinalis L. (Labiatae), 75 g), adiantum (Adian-
tum capillus-veneris L. (Adiantaceae), 75 g), licorice (Gly-
cyrrhiza uralensis Fisch. (Leguminosae), 70 g), fennel
(Foeniculum vulgare Mill. (Umbelliferae), 125 g), celery
seeds (Apium graveolens L. (Umbelliferae), 125 g), fenugreek
(Trigonella foenum-graecum L. (Leguminosae), 75 g), remote
lemongrass (Cymbopogon distans (Nees) Wats. (Grami-
neae), 75 g), rugosa rose (Rosa rugosa -unb. (Rosaceae),
75 g), and nettle seed (Urtica fissa E. Pritz. (Urticaceae), 70 g)
[10]. As a bronchomucotropic agent, HCZP has been widely
used in the treatment of the common cold, wind-cold cough,
and mucus hypersecretion in asthma [11]. In clinical ex-
periment, HCZP was shown to play a significant role in
improving lung function and reducing airway inflammation
in asthma patients [12, 13]. However, the systematic study of
the effect of HCZP on asthma and its potential molecular
mechanism are still limited.

Transcriptome sequencing techniques are widely used in
molecular biology research [14]. Yick et al. [15] explore the
cellular and molecular pathways in asthma using tran-
scriptomic analysis (RNA-seq). -ey found that asthma
group and normal group had different transcriptomic
profiles; in addition, genes such as pendrin and periostin
were differentially expressed between asthma and normal,
which might be relevant for the pathogenesis and treatment
of disease. Nevertheless, genes involved in the HCZP
treatment in asthma have not been discovered. Nowadays,
the application of RNA-seq in the study of TCM attracts
more and more attention of researchers. Due to the lack of
genomic data and gene sequence information, the medicinal
plants need a large amount of genetic information to analyze
the gene function in the whole level [16]. At present, the
whole-genome sequencing of most herbs cannot be detected,
so it is a quick way to compare the gene sequences and
identify the expressed genes by constructing the transcrip-
tion database [17]. For instance, Jiao et al. [18] revealed the
anti-inflammation mechanism of Ma Huang Tang on acute
bronchial asthma in mice using RNA-seq. -erefore, in the
present study, we constructed a rat model of asthma to
investigate the mechanism of HCZP treatment in asthma.
-e lung tissues from rat in the normal, model, and HCZP
groups were respectively extracted and used for RNA-Seq.
Our study may provide new insights into the molecular
mechanisms of HCZP treatment and provide candidate
biomarkers for targeted therapy of asthma.

2. Materials and Methods

2.1. Animals. -irty specific-pathogen-free (SPF) male
Sprague Dawley (SD) rats weighing 160–200 g were pur-
chased from the Laboratory Animal Center of Hubei Pro-
vincial Center for Disease Control and Prevention (Wuhan,
China). -e rats were kept in the Laboratory Animal Center
of Wuhan Hospital of Traditional Chinese Medicine
(Wuhan, China) under standard condition (12 h light/dark

cycle and 21± 1°C) and were acclimated to the conditions for
7 days before the experiment. All animal protocols were
approved by the Ethics Committee and Animal Manage-
ment Committee of Wuhan Hospital of Traditional Chinese
Medicine (Approved on 2017-06-02), which conformed to
the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health [19].

2.2.Model Establishment andDrug Treatment. -e rats were
randomly divided into three groups: normal, model, and
HCZP groups, with 10 rats in each group. HCZP was
provided by the Preparation Center of the Base of Tradi-
tional Chinese Medicine of Wuhan Hospital of Traditional
Chinese Medicine. In this study, the dose of HCZP ad-
ministered to each rat was selected based on the clinical use
of HCZP. Specifically, human doses of HCZP were con-
verted to rats doses according to the human-rat coefficient
(0.018) of skin surface area [20]; thus, HCZP was admin-
istered intragastrically at a dose of 10.08 g/kg. Rats in model
and HCZP groups were sensitized on day 1 and day 8 by
intraperitoneal injection with 1mL of OVA/Al(OH)3 nor-
mal saline mixture (containing 10mg OVA and 100mg
Al(OH)3) as described previously [21], while rats in normal
group were intraperitoneally injected with 1mL of normal
saline. Subsequently, the rats in model and HCZP groups
were challenged with 1% OVA for 30min every other day
from the 15th day through the 42th day; the rats in normal
group were atomized with normal saline from day 15 to day
42. Notably, during the stimulus period (from day 15 to 42),
rats in the HCZP were intragastrically given HCZP (10.08 g/
kg) 1 h before atomization, while rats in the model and
normal groups were given equal volume of normal saline.

Following a 4-week treatment, rats in each group were
given the last challenge after 24 h of withdrawal. Within 2 h
after the final challenge, rats were anesthetized with an
intraperitoneal injection of 3% pentobarbital sodium. -en,
the lung tissues were extracted and the residual blood on the
surface of the tissues was eliminated using normal saline.
-e left lung was fixed in neutral formalin and stored at 4°C
for hematoxylin-eosin (HE) staining and immunohisto-
chemistry (IHC), while the right lung tissues were stored at
−80°C for transcriptome sequencing.

2.3.H&EStaining. After modeling, the pathological changes
in the lungs were observed using H&E staining. Lung tissues
were fixed overnight in 4% neutral formalin, embedded in
paraffin, and cut into 5 μm sections [22]. -e sections were
dewaxed with xylene and washed with gradient alcohol and
distilled water. -en, they were stained with hematoxylin
and eosin. Finally, sections were sealed with neutral gum and
photographed under a microscope (Olympus IX73, Tokyo,
Japan). Moreover, H&E images were analyzed by Image-Pro
plus software. Briefly, the indicators of bronchial basal pe-
rimeter (Pbm), total wall area (WAt), inner wall area (WAi),
and smooth muscle area (WAm) were measured. -ese
measured values were standardized by Pbm, and WAt/Pbm,
WAi/Pbm, and WAm/Pbm represented the total wall
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thickness, inner wall thickness, and smooth muscle layer
thickness, respectively [23].

2.4. RNA Sequencing. Total RNA from each lung tissue
sample was extracted using TRIzol reagent (code no. 9109;
TaKaRa, Japan). -e 1% agarose gel was used to detect RNA
degradation and contamination. RNA purity was monitored
using the NanoDrop 2000 (-ermo Scientific). -en, RNA
concentration and integrity were evaluated using Invitrogen
Qubit RNA IQ kit (Q33221, -ermo Fisher Scientific in
Basingstoke, UK) and Agilent 2100 (Agilent Technologies,
Palo Alto, CA, USA), respectively. -en, rRNA from the
total RNA was depleted using Ribo-Zero Gold rRNA Re-
moval Kit (Illumina, San Diego, CA, USA) according to the
manufacturers’ instructions. -e treated RNAs were inter-
rupted randomly to 200–300 bp by adding ion solution, and
then the fragmented RNAs were used as templates to con-
struct the cDNA library.-e average insert size for the paired-
end libraries was 300–400 bp. After construction of libraries,
the concentration and size of library were determined by
fluorescence quantification and Agilent 2100 bioanalyzer
(Agilent Technologies), respectively. Finally, the libraries were
sequenced on the Illumina HiSeq platform [24].

2.5. Data Preprocessing. -e sequenced data could contain
some low-quality bases and incorrectly sequenced bases. In
order to filter out unreliable reads, we used the following steps
to control the quality of the raw data: (1) the reads with se-
quencing joints were removed; (2) when the N content of
sequencing read exceeded 10% of the base number of read,
their paired reads were removed; and (3) when the low-quality
(Q≤ 5) base number contained in any sequencing read
exceeded 50% of the read base number, paired read was ex-
cluded [25].

2.6. Screening of Differentially Expressed Genes (DEGs).
Raw data were standardized using the TMM algorithm in the
edgeR package (version 3.4, http://www.bioconductor.org/
packages/release/bioc/html/edgeR.html) [26] and converted
to logCPM value. -e differential expression analyses between
model vs. normal and HCZP vs. model were performed.-en,
the corresponding P values and logFC values of genes were
obtained. -e P values were adjusted by the Benja-
min–Hochberg method (adj. P value) [27]. In addition, genes
with adj. P value< 0.05 and |logFC|> 1 were defined as DEGs.
Furthermore, DEGs in model vs. normal groups as well as
model vs. HCZP were integrated using Venn analysis, and the
overlapping genes were thought to be related to HCZP
treatment.

2.7. Functional Enrichment Analysis of DEGs. In order to
explore the biological function of genes, the functional
enrichment analysis was performed. -e Gene Ontology
(GO) categories and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways of HCZP-related DEGs were
analyzed by using DAVID (version 6.8, https://david-d.
ncifcrf.gov/) [28]. Among these, GO annotation included

three categories: “biological process (BP),” “molecular
function (MF),” and “cellular component (CC)” [29].
Pvalue< 0.05 and count> 3 were defined as the enrichment
threshold.

2.8. Construction of Protein-Protein Interaction (PPI)
Network. -e interactions among genes were predicted
using the STRING database (version 10.0, http://www.string-
db.org/) [30]. -e input gene set was genes related to HCZP
treatment and the species selection was Rattus norvegicus
(rats). -e DEGs were mapped into STRING to obtain PPIs,
and a combined score of >0.7 was set as cut-off threshold.
-en, PPI network was visualized by Cytoscape software
(version 3.4.0, http://chianti.ucsd.edu/cytoscape-3.4.0/) [31].
Finally, the network topology was analyzed using CytoNCA
plugin (version 2.1.6, http://apps.cytoscape.org/apps/cytonca)
[32]. Furthermore, the key genes were identified based on
three centrality measures, including degree centrality (DC),
betweenness centrality (BC), and closeness centrality (CC)
[33].

2.9. TF Prediction and TF-Target Network Construction.
All the TFs with motifs in the rat were searched via JASPAR
2018 database (http://jaspar.genereg.net/) [34]. -en, these
TFs were intersected with the HCZP-related DEGs to obtain
the differentially changed TFs and corresponding motifs.
Furthermore, the binding site analysis of the TFs’ motif
information and genes’ promoter sequence in PPI network
were performed using online tool Find Individual Motif
Occurrences (FIMO, version 5.0.5, http://meme-suite.org/
tools/fimo) [35]. TF targets with P value< 0.0001 were se-
lected and then visualized by Cytoscape software.

2.10.miRNA-Target InteractionsPredictionandmiRNA-Target
Network Construction. miRNA targets were predicted using
four currently available methods from miRWalk 2.0 database
(http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/) [36],
including miRWalk, miRanda, miRDB, and Targetscan. -e
miRNA-target pairs that existed in four databases were se-
lected. Furthermore, miRNAs that simultaneously regulated at
least 10 genes were screened, and the miRNA-mRNA network
was constructed using Cytoscape software.

2.11. Western Blot (WB) Analysis. WB analysis was per-
formed to verify the results of bioinformatics analysis. -e
lung tissues of rats were homogenized with radio-
immunoprecipitation assay (RIPA) buffer (code no. P0013B,
Beyotime, Shanghai, China), which involved the addition of
phenylmethanesulfonyl fluoride (PMSF, no. ST506, Beyo-
time) and centrifuging at 10000 g for 10min. -e super-
natant was collected, and the concentrations of protein were
determined using the bicinchoninic acid (BCA) assay [37].
-e extracted proteins were separated on the SDS-PAGE gel
and transferred to polyvinylidene fluoride membrane. -e
membranes were blocked in 5% skim milk (0.75 g milk
powder + 15mL PBS) at 37°C for 2 h and then incubated
with the Bdkrb2 (cat. no. sc136216, Santa Cruz, CA, USA),
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Nfatc2 (cat. no. sc7296), and anti-β-actin (cat. no. ab8226,
Abcam, Shanghai, China) antibodies at 4°C overnight, re-
spectively. -en, the membranes were incubated with sec-
ondary antibody at 37°C for 2 h followed by washing with
PBST for six times; immunodetection was performed using
ECL system. -e images were obtained via TanoImage.

2.12. Immunohistochemistry. -e 5 μm paraffin slices were
used to perform IHC staining. After the sections were
dewaxed, the activity of endogenous catalase was
inhibited with 3% H2O2 for 10min at room temperature.
-e slices were incubated with PBS containing 10%
normal goat serum at 37°C for 30min to reduce non-
specific adsorption, followed by incubation with anti-
Bdkrb2 and anti-Nfatc2 antibodies at 4°C overnight. -en,
sections were washed with PBS and incubated with second
antibody at 37°C for 30min [38]. -ereafter, the sections
were incubated with SABC at 37°C for 0.5 h and placed in
DAB solution for staining [39]. Finally, the slices were
sealed with neutral gum and observed and photographed
under a microscope.

2.13. Statistical Analyses. All data are presented as mean-
s± standard deviation (SD). Statistical analyses and plotting
were performed using GraphPad Prism 5 (GraphPad Soft-
ware, San Diego, CA, USA). Statistical significance of the
differences between two groups was evaluated by using a
two-tailed Student’s t-test. -e results were considered to be
statistically significant at P< 0.05.

3. Results

3.1. H&E Staining Analysis. After treatment, the histo-
pathological alterations of lung tissues of rats in different
groups were observed by H&E staining. Compared with
the normal group (Figure 1(a)), H&E staining of the lung
tissues from rats in the model group indicated that there
was inflammatory cell infiltration around the bronchial
wall and blood vessels, which was predominantly com-
posed of eosinophils and lymphocytes (Figure 1(b)). In
addition, the epithelial cells were obviously hypertrophic,
the bronchial tubes narrowed, and the smooth muscles
destroyed in the model group. In contrast, HCZP-treated
rats showed alleviated symptoms, indicating pulmonary
inflammation, goblet cell proliferation, and mucus se-
cretion were significantly reduced (Figure 1(c)). More-
over, WAt/Pbm, WAi/Pbm, and WAm/Pbm in the model
group were significantly higher than those in the normal
group (normal vs. model: 0.033 ± 0.001mm2/mm vs.
0.049 ± 0.002mm2/mm; 0.011 ± 0.001mm2/mm vs.
0.036 ± 0.006mm2/mm; and 0.005 ± 0.0003mm2/mm vs.
0.014 ± 0.001mm2/mm). By comparison, WAt/Pbm,
WAi/Pbm, and WAm/Pbm in the HCZP group were
significantly lower than those of the model group (model
vs. HCZP: 0.049 ± 0.002mm2/mm vs. 0.042 ± 0.001mm2/
mm; 0.036 ± 0.006mm2/mm vs. 0.013 ± 0.001mm2/mm;
and 0.014 ± 0.001mm2/mm vs. 0.012 ± 0.001mm2/mm)
(Figure 1(d)).

3.2. High-Eroughput Sequencing Data. Using high-
throughput sequencing, more than 20,000,000 clean reads
were generated from each sample. -e total clean reads
ranged from 6.16 to 7.23G, the Q30 (%) of these samples was
about 90%, and the GC content of samples was less than
50%, suggesting that the quality of the sequencing data was
high and could be used for subsequent analysis. According
to the sequencing data, a total of 16,818 genes were identified
from nine samples, accounting for 78.7–89.9% of mapped
reads of all rats genes.

3.3. Screening of DEGs. According to the cut-off criterion of
P< 0.05 and |logFC|> 1, there were 1,678 DEGs in normal
vs. model, including 1,133 upregulated genes and 545
downregulated genes; in addition, 4,461 DEGs were iden-
tified between model and HCZP groups, including 1,912
upregulated genes and 2,549 downregulated genes. More-
over, the DEGs in normal vs. model and model vs. HCZP
were intersected to identify the genes that were related to
HCZP treatment. Finally, a total of 874 DEGs associated
with HCZP treatment were obtained (up- or down-regu-
lation of genes was consistent with that in the model vs.
normal group). -e expression pattern of HCZP-related
genes was basically consistent with that of the normal group,
which was different in the model group (Figure 2).

3.4. GO and KEGG Pathway Analyses of DEGs. GO analysis
indicated that DEGs were significantly enriched in 53
GO_BP, 16 GO_MF, and 16 GO_CC.-e top five GO terms
are shown in Figure 3. In the BP group, DEGs were mainly
enriched in immune response (GO: 0006955) and macro-
phage activation (GO: 0042116); in the MF group, these
genes were primarily enriched in antigen-binding peptide
(GO: 0042605) and receptor activity (GO: 0004872); in the
CC group, the majority of genes were enriched in extra-
cellular space (GO: 0005615) and external side of plasma
membrane (GO: 0009897). Furthermore, KEGG analysis
revealed that DEGs were significantly involved in 20
pathways. -e top five pathways included cell adhesion
molecules (CAMs) (rno04514), ECM-receptor interaction
(rno04512), antigen processing and presentation
(rno04612), type I diabetes mellitus (rno04940), and auto-
immune thyroid disease (rno05320) (Figure 3 and Table 1).

3.5. PPI Analysis of DEGs. -e identified DEGs were in-
troduced into the STRING database to obtain the PPI pairs,
and these PPIs were then visualized using Cytoscape soft-
ware. PPI network was composed of 282 nodes and 433
edges (Figure 4).-e top 10 nodes with degree scores >10 are
listed in Table 2. Among these, Bdkrb2 and CD4 might be
regarded as hub genes.

3.6. TF-Target Regulatory Network and miRNA-Target Net-
work Construction. To explore the regulatory relationship
between TF and genes, the TFs of the 874 DEGs were
predicted using JASPAR database. Two differentially upre-
gulated TFs, Nfatc2 and Foxq1, were obtained. -eir motifs

4 Evidence-Based Complementary and Alternative Medicine



are displayed in Figures 5(a)and 5(b). -e transcription
factor binding site of Nfatc2 was “TTTTCCA” and of Foxq1
was “∗ ∗ ∗ ∗GTTT∗ ∗ ∗ .” In addition, based on the
promoter sequence of the protein corresponding genes in
PPI network, the binding sites of TFs were identified using
the online tool FIMO. A total of 132 binding sites of Nfatc2
were found, which corresponded to 78 genes. Meanwhile, 85
binding sites of Foxq1 were obtained, corresponding to 48
genes. Subsequently, the TF-target regulatory network was
established (Figure 5(c)).

Using the miRWalk 2.0 database, 1,449 miRNA-target
pairs were obtained. -en, miRNAs that simultaneously
target at least 10 genes were selected to construct the
miRNA-target network. As shown in Figure 6, the miRNA-
target gene network was composed of four miRNAs (mo-
miR-495, mo-miR-742-3p, mo-miR-126b, and mo-miR-
742-3p), 39 target genes, and 44 miRNA-target gene in-
teractions. In this integrated network, five nodes (Ank3,
Rbm25, Ssh2, Cd36, and Rcan2) interacted with two
miRNAs (Figure 5(d)).

3.7.WB and IHCAnalysis. In order to verify the accuracy of
the transcriptome sequencing results, the protein expression
levels of two genes (Bdkrb2 and Nfatc2) were detected using
WB and IHC. WB showed that the expression level of
Bdkrb2 was significantly lower in the model group than in
the normal group (0.139± 0.004 vs. 0.999± 0.095, P< 0.001),
while it was markedly higher in HCZP-treated group than in
the model group (0.441± 0.038 vs. 0.139± 0.004, P< 0.001)

(Figure 6(a)). In addition, the level of Nfatc2 expression was
significantly higher in the model group than in the normal
group (1.806± 0.597 vs. 0.999± 0.089, P< 0.001), whereas
the Nfatc2 level in the HCZP group was observably
downregulated compared to that in the model group
(1.169± 0.081 vs. 1.806± 0.597, P< 0.001) (Figure 6(b)).

Next, IHC staining was performed to evaluate the ex-
pression levels of Bdkrb2 and Nfatc2. -e expression level of
Bdkrb2 was significantly decreased in the model group,
compared with that in the normal group (0.0006± 0.0002
vs. 0.00155± 0.00008, P< 0.001). After HCZP treatment, the
expression Bdkrb2 was increased (0.00143± 0.00006 vs.
0.0006± 0.0002, P< 0.001) (Figure 7(a)). Moreover, the
expression level of Nfatc2 in the model group was notably
higher than that in the normal group (0.0065± 0.0007 vs.
0.0033± 00004, P< 0.001); however, it decreased signifi-
cantly after HCZP treatment (0.0031± 0.00035 vs.
0.0065± 0.0007, P< 0.001) (Figure 7(b)). -ese results were
consistent with those of RNA sequencing, further con-
firming the therapeutic effect of HCZP on asthma.

4. Discussion

Although asthma can be treated with conventional therapies,
such as inhaled corticosteroids and bronchodilators, patients
with severe asthma still find the condition intractable. Our
study investigated the role of potential genes of HCZP,
providing new evidence for molecular therapy and the
development of novel drugs. In our analysis, a total of 874
DEGs related to HCZP treatment were screened. Functional
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enrichment analysis showed that these genes were mainly
enriched in GO_BP terms such as immune response and
negative regulation of Tcell proliferation as well as pathways
like CAMs. PPI analysis showed that Cd4 and Bdkrb2 were
with higher degrees and might be considered as hub genes.
We also screened two TFs (Foxq1 and Nfatc2) and four
miRNAs (mo-miR-495, mo-miR-742-3p, mo-miR-126b,
and mo-miR-672-3p) with higher degrees in the interaction
network. -e protein levels of Bdkrb2 and Nfatc2 were
verified using WB and IHC, which were in accordance with
the results of RNA-Seq.

-e CD4 gene encodes the membrane glycoprotein of
T lymphocytes and is a receptor for human immunodefi-
ciency virus. -is protein functions in initiating or enhancing
the early stage of T cell activation and may serve as an

important mediator of indirect neuronal injury in immune-
mediated disease [40]. In this study, functional enrichment
analysis showed that CD4 was notably associated with T cell
activation and adaptive immune response. Smith and Larché
[41] indicated that T cell activation in the body might lead to
manifestations of chronic allergic inflammation, including
bronchoconstriction and hyperresponsiveness. In addition,
adaptive immune response, a biological process in which
antigen-specific T/B lymphocytes activate, proliferate, and
differentiate into effector cells after receiving antigen stim-
ulation, is involved in innate and adaptive immunity [42].
Previous study revealed that the expression of CD4 might be
increased during inflammation and thrombosis, altering the
immune cell-mediated response and leading to atheroscle-
rosis [43]. In addition, Noble et al. [44] found that CD4 were
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increased in the lamina propria of inflamed inflammatory
bowel disease tissue. Furthermore, Lee et al. [45] reported the
relationship between primary immunodeficiency (PID) and
asthma, indicating that PID was a significant risk factor for
asthma exacerbation.-ese evidences indicated that CD4 was
closely involved in immune-mediated disease. However, the
relationship between asthma and CD4 gene has not been
reported. Taken together, we speculated that CD4 might play
a role in asthma by affecting immune-related biological
functions.

Another gene, Bdkrb2, was also linked to the asthma
treatment. Bdkrb2 encodes the receptor for bradykinins.
Among these, 9AA bradykinin causes of a number of re-
actions, including vasodilation, smooth muscle spasms, and
painful fibrous stimulation [46]. Sabatini et al. [47] found
that the Bdkrb2 was abnormally expressed in bronchial fi-
broblasts from asthmatics, indicating that bradykinins were
actively involved in the proliferation and differentiation of
bronchial fibroblasts, as well as airway remodeling in asthma
through MAPK pathway and EGF receptor transactivation.
Meanwhile, Ricciardolo et al. [48] revealed that bradykinin is
a vasoactive proinflammatory peptide that could activate
plasma and tissue kinin, thereby mediating acute inflam-
matory response of asthma, such as excessive mucus se-
cretion, smooth muscle contraction, and sensory nerve
stimulation. In this study, Bdkrb2 was significantly upre-
gulated in the asthma rats after HCZP treatment, suggesting
that HCZP might exert therapeutic effects on asthma by
affecting the expression of bradykinins.

Several studies reported the role of TFs in the patho-
genesis of asthma. In the present study, two TFs, including
Foxq1 and Nfatc2, were closely associated with HCZP
treatment. Nfatc2, a member of the activated Tcell family, is
transferred to the nucleus after being stimulated by the Tcell
receptor and becomes an active Tcell transcription complex,
which serves a crucial role in inducing gene transcription
during the immune response [49]. A previous study dem-
onstrated that the number of Tregulatory cells was increased
in Nfatc2-deficient mice, inducing immunosuppression to
control experimental asthma caused by allergens [50]. In this
study, we observed that the protein level of Nfatc2 was
significantly decreased after HCZP treatment, suggesting
that HCZP may play a therapeutic role by suppressing
Nfatc2 expression. In addition, Foxq1 is a member of the Fox
gene family known to be involved in cell cycle regulation, cell
signaling, and embryonic development [51]. -e relation-
ship between Foxq1 and immune-related diseases has been
explored. Ovsiy et al. [52] indicated that Foxq1 participated
in the development of chronic inflammatory disease atopic
dermatitis by stimulating monocyte movement and in-
creasing proinflammatory potential. However, no studies
have reported the roles of Foxq1 in asthma; further studies
with biological experiments are needed to illustrate its exact
molecular mechanism.

In addition to TFs, miRNAs also serve important roles in
the pathogenesis of asthma [53, 54]. In this study, we
identified four miRNAs (mo-miR-495, mo-miR-742-3p,
mo-miR-126b, and mo-miR-672-3p) that were involved in
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Figure 3: Functional enrichment analysis for DEGs. -e black line represents the value of −log10 (P value), and the length of the bar
represents the number of enriched genes.
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Table 1: Top 5 GO terms and KEGG pathways of DEGs.

Category Term Count Genes P value

GO_BP GO:0006955∼immune response 28

LOC100910650, CSF2, RT1-DB2, CXCL3,
CXCL11, RT1-BA, RT1-BB, TLR9,

LOC100361009, CCR10, ZAP70, RT1-CE10,
CD28, RT1-CE3, RT1-CE6, RGD1563231, RT1-
CE5, CTLA4, LOC100912707, RT1-A2, RT1-A1,

TNFRSF10B, CD36, CCR4, CD274, SLPI,
TNFAIP3, BMP6

3.30E− 07

GO_BP GO:0042116∼macrophage activation 5 CRTC3, CSF2, SLC7A2, AIF1, FOXP1 2.21E− 04

GO_BP GO:0042130∼negative regulation of T cell
proliferation 8 PDE5A, CD274, PLA2G2A, CTLA4, RT1-BA,

FOXP3, SHH, RT1-BB 2.72E− 04

GO_BP
GO:0002474∼antigen processing and

presentation of peptide antigen via MHC
class I

7 RT1-A2, RT1-CE3, RT1-A1, RT1-CE6, RT1-CE5,
RT1-CE10, RT1-T24-3 0.00112

GO_BP
GO:0000122∼negative regulation of

transcription from RNA polymerase II
promoter

42

TSHZ1, BACH2, TFCP2L1, FST, MITF, CBX4,
MYEF2, AURKB, ANKRD1, CBFA2T3, SHH,

EDNRB, NR1D1, RTF1, PER2, ZFP217, NFATC2,
ETV3, MDFI, TCF7, BEND3, LOC100912068,
IKZF1, MET, ASXL1, SKI, ZFP148, FOXP3,

LPIN1, FOXP1, FOXP2, SUZ12, HOXB3, HOXB4,
DACT1, CD36, PSEN1, HES5, HIPK2, SEMA4D,

HDAC7, BMP6

0.00128

GO_CC GO:0005615∼extracellular space 69

NRG4, PXDN, IL6ST, AMN, CXCL11, TPBGL,
SHH, LOC100361009, RATNP-3B, OGN,

SERPINE2, SERPINE3, SOSTDC1, RGD1305645,
EPPIN, CPA3, SPON1, HYAL1, STC2, ACTA2,
MMP13, LOC10091270,LYZL1, VEGFD, CD36,
KLHL17, HIST2H2BE, SERPINB7, PLA2G2A,

SLPI, COL1A1, SEMA4D, SCGB3A1,
RGD1359108, CSF2, BPIFB1, ADAMTS13,

CXCL3, SSH2, JCHAIN, CCL9, DCN, TIMP3,
ABI3BP, FBRS, CPZ, COL6A2, ANGPTL1, SCG2,
TMC8, IL1RL1, RGD1563231, MET, SELENOP,
CHI3L1, NLGN2, SERPINI1, CCL11, LCN2,
SBPL, S100 B, C1RL, MPO, IGFBP2, TPSAB1,

AGR2, SELE, COL20A1, BMP6

1.73E− 04

GO_CC GO:0009897∼external side of plasma
membrane 22

OSMR, IL1RL1, VTCN1, SELL, IL6ST,
TNFRSF13B, CTLA4, RT1-BA, IL7R, SPA17,

LOC100361105, RT1-BB, RT1-A2, CD36, CCR4,
CD274, CHRNA4, CHRNA7, CD4, KLRC1,

CD28, CD200R1

2.38E− 04

GO_CC GO:0042612∼MHC class I protein complex 6 RT1-A2, RT1-CE3, RT1-A1, RT1-CE6, RT1-CE5,
RT1-CE10 8.07E− 04

GO_CC GO:0005578∼proteinaceous extracellular
matrix 20

COL4A3, ADAMTS17, IL1RL1, ADAMTS13,
SPOCK2, DCN, TPBGL, TIMP3, MMP13,

ABI3BP, COL5A1, SHH, CPZ, ADAMTS7, OGN,
COL6A6, COL6A2, TNN, COL1A1, SPON1

8.13E− 04

GO_CC GO:0043198∼dendritic shaft 8 HCN2, PSEN1, PREX1, SLC12A5, NLGN2,
CHRNA7, GPER1, SYNGAP1 0.00358

GO_MF GO:0042605∼peptide antigen-binding 8 RT1-CE3, RT1-A1, TAP2, RT1-CE10, RT1-BA,
SLC7A5, RT1-BB, RT1-T24-3 2.01E− 04

GO_MF GO:0004872∼receptor activity 14

EXTL3, IZUMO1R, TNFRSF13 B, CTLA4,
TNFRSF17, NLGN2, FPR3, PAQR4, EDNRB,
ITGB7, TNFRSF19, ANTXR1, SEMA4D,

CD200R1

2.77E− 04

GO_MF GO:0004924∼oncostatin-M receptor
activity 3 OSMR, IL6ST, LIFR 0.00331
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Figure 4: Protein-protein interaction network of HCZP-related DEGs. Red node represents upregulated genes, and green node represents
downregulated genes. -e larger the node, the higher the degree of connectivity.

Table 1: Continued.

Category Term Count Genes P value

GO_MF GO:0042800∼histone methyltransferase
activity (H3-K4 specific) 5 KMT2A, SETD1B, KMT2C, DYDC1, DYDC2 0.00399

GO_MF GO:0005539∼glycosaminoglycan binding 5 SERPINE2, SPOCK2, DCN, ABI3BP, SHH 0.00480

KEGG_PATHWAY rno04514: cell adhesion molecules (CAMs) 23

CLDN8, CLDN7, RT1-CE3, VTCN1, SELL, RT1-
CE5, CTLA4, NLGN2, NTNG2, RT1-BA, CDH4,
RT1-BB, RT1-A2, RT1-A1, GLYCAM1, ITGB7,
CD274, RT1-CE10, CD4, SELE, SELPLG, CD28,

RT1-T24-3

1.51E− 08

KEGG_PATHWAY rno04512: ECM-receptor interaction 12
COL4A3, COL4A2, GP6, CD36, COL6A6, ITGB7,

COL6A2, ITGB5, TNN, COL1A1, COL5A3,
COL5A1

9.32E− 05

KEGG_PATHWAY rno04612: antigen processing and
presentation 12

LOC103692716, RT1-A2, RT1-CE3, RT1-A1,
TAP2, RT1-CE5, RT1-CE10, CD4, RT1-BA,

KLRC1, RT1-BB, RT1-T24-3
2.04E− 04

KEGG_PATHWAY rno04940: type I diabetes mellitus 10 RT1-A2, RT1-CE3, RT1-A1, RT1-CE5, RT1-CE10,
RT1-BA, GAD1, RT1-BB, RT1-T24-3, CD28 5.59E− 04

KEGG_PATHWAY rno05320: autoimmune thyroid disease 10 RT1-A2, RT1-CE3, RT1-A1, RT1-CE5, RT1-CE10,
CTLA4, RT1-BA, RT1-BB, RT1-T24-3, CD28 6.16E− 04
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Figure 5: Continued.

Table 2: -e topological property score of top 10 nodes in PPI network.

Gene name Degree Gene name Betweenness Gene name Closeness
Hvcn1 13 Csf2 9536.876 Csf2 0.00722
Bdkrb2 12 LOC680121 8310.523 Il7r 0.00722
Ccl9 12 Pik3ca 7250.114 Cd4 0.00722
LOC680121 12 Il7r 6126.990 LOC680121 0.00721
Col1a1 12 Cd4 5988.467 Cd274 0.00721
Fabp5 11 Met 5808.000 Ldlrap1 0.00721
Hist2h2be 11 Dcn 5656.000 Snap91 0.00721
Foxp3 11 Col1a1 5520.000 Foxp3 0.00721
Cxcl3 10 Gad1 5443.524 RatNP-3b 0.00720
Cd4 10 RatNP-3b 5180.190 Pik3ca 0.00720
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Figure 6: Western blot analysis of Bdkrb2 and Nfatc2 protein expression in rat lung tissues from different groups. (a) Representative
western blots showing protein level of Bdkrb2, and protein levels were standardized by β-actin. Quantification analysis showed that HCZP
increased Bdkrb2 protein level compared with model group. (b) Representative western blot bands of Nfatc2. Quantification analysis
showed that Nfatc2 protein level in the HCZP group was lower than in the model group. Data are represented as mean± SD (n= 3).
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asthma treatment. Studies indicated that miR-495 partici-
pated in the regulation of inflammatory response, which
acted as a negative modulator of inflammation-motivating
pathways [55, 56]. miR-742-3p was only reported to be
involved in excessive lipid deposition [57], and miR-126b
was essential for lymphatic system development in

mammals [58]. In addition, no article reported the rela-
tionship between miR-672-3p and diseases. Unfortu-
nately, these miRNAs have not been previously
documented in asthma; therefore, the roles of these
identified genes in asthma need to be investigated in
further research.
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Figure 7: Immunohistochemistry was performed for Bdkrb2 and Nfatc2. (a) Representative IHC staining images of Bdkrb2. Quantitative
analysis of the images showed HCZP increased the Bdkrb2 expression compared with model group. (b) Representative IHC staining images
of Nfatc2. Quantitative analysis showed HCZP decreased the Nfatc2 expression compared with model group. Data are represented as
mean± SD (n= 3). ∗∗∗P< 0.001 versus normal group. ###P< 0.001 versus the model group. AO: average optical.
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Modern genomics and proteomics tools have revealed
potential therapeutic antisense targets for asthma, providing
a theoretical basis for the development of anti-mRNA drugs
[59]. A previous study indicated that RNA-based gene si-
lencing strategy could not only be used as a research tool, but
also as a potential therapeutic intervention for allergic
asthma [60]. In this study, we identified several genes that
were associated with the development of asthma, and these
are potential molecular therapeutic targets for asthma.
However, our study had two main limitations. First, not all
of the identified potential hub genes have been verified.
Second, we found that miRNAs were related to asthma
treatment, but did not clarify their mechanism of action.
-erefore, these candidate biomarkers need to be further
validated using a larger sample population before they can be
applied in clinical therapy.

5. Conclusion

Based on transcriptome analysis, this study demonstrated
that HCZP alleviated the symptoms of asthma through
various mechanisms. Results revealed that the immune
response and Tcell differentiation-related genes contributed
to the therapeutic effect of HCZP against asthma. Our
findings could help identify novel and effective therapeutic
targets and provide evidence for a better understanding of
asthma pathology.
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