
J Pathol Inform  Editor-in-Chief:
   Anil V. Parwani , Liron Pantanowitz, 
   Pittsburgh, PA, USA Pittsburgh, PA, USA 

For entire Editorial Board visit : www.jpathinformatics.org/editorialboard.asp

OPEN ACCESS 
HTML format

Symposium - Original Research

Atlas-guided correction of brain histology distortion

Xi Qiu1,2,3, Lin Shi2, Tony Pridmore3, Alain Pitiot3, Defeng Wang2 

1Rotman Research Institute, University of Toronto, Canada, 2Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, China,  3School of 
Computer Science, University of Nottingham, UK

E-mail: *Xi Qiu - nqiu@rotman-baycrest.on.ca 
*Corresponding author

Received: 15 June 11 Accepted: 23 September 11 Published: 19 January 12

This article may be cited as:
Qiu X, Shi L, Pridmore T, Pitiot A, Wang D. Atlas-guided correction of brain histology distortion. J Pathol Inform 2011;2:S7.

Available FREE in open access from: http://www.jpathinformatics.org/text.asp?2011/2/2/7/92038

Copyright: © 2011  Qiu X.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

Abstract
Histological tissue preparation stages (e.g., cutting, sectioning, etc.) often introduce tissue 
distortions that prevent a smooth 3D reconstruction from being built. In this paper, we 
propose a method to correct histology distortions by running a piecewise registration 
scheme. It takes the information of several consecutive slices in a neighborhood into 
account. In order to achieve an accurate anatomic presentation, we run the method 
iteratively with the assistance from a pre-segmented brain atlas. The registration 
parameters are optimized to accommodate different brain sub-regions, e.g., cerebellum, 
hippocampus, etc. The results are evaluated by both visual and quantitative approaches. 
The proposed method has been proved to be robust enough for reconstructing an 
accurate and smooth mouse brain volume.
Key words: Piecewise image registration, Histology volume reconstruction, Histology 
distortion correction, Atlas-guided correction
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INTRODUCTION

Building and studying 3D representations of anatomical 
organs, such as the brain, plays an important role in 
modern biology and medical science. While 3D imaging 
methods such as MRI and CT provide accurate 3D 
structural information, 2D imaging methods such as 
histology and optical microscopy typically generate images 
with much higher resolution and better specific contrast. 
When studying the mouse brain, it is ideal to combine 
the advantages of both 3D and 2D imaging technologies. 
The classical approach is to reconstruct a 3D mouse 
brain volume from a series of histology slice images that 
provide more tissue details than MR images. [1-3] However, 
histology acquisition generally induces a lot of artifacts 
(holes, folding, tearing, sketching, etc.). Detecting and 
correcting the artifacts becomes a central issue when 
reconstructing a 3D volume from a series of histology 

slices. Indeed, they can make the distorted regions 
significantly different from the corresponding regions 
in adjacent slices. In a typical pairwise registration 
approach, artifacts lead to registration errors that tend to 
propagate to the adjacent slices through the slice-by-slice 
registration so that it prevents a smooth 3D brain volume 
from being reconstructed. Therefore, postacquisition 
distortion corrections are necessary.[1,2] As discussed, a 
conventional slice-by-slice 2D registration is not sufficient 
to correct the histology distortions.[4] In this case, 3D 
registration techniques can be employed to overcome the 
problem. [2,4-6]

Since studies in region of interest of mouse brain have 
been very popular in the past several decades, many 3D 
atlases are made available to support the research. [7-10] 
Mostly, they were acquired by one of the 3D imaging 
techniques (e.g., MRI, CT), and then manually 
segmented by biologists. The resolution of those atlases 
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varies a lot due to the different acquisition means and 
settings. The details of segmentations also differ a lot 
based on the degree of how small the functional regions 
in brain that the researchers required. Because the 
segmentation of the regions of interest in the atlas is 
reasonably closed to the ground truth,[2,11,12] it can be used 
as very supportive information to improve the quality and 
the accuracy of histological reconstruction.

A 3D volume reference acquired from the same brain 
of histology slices before sectioning would be perfect to 
correct the anatomically wrong information. However, 
such reference is not always available due to lack of 
equipment, limit of project, etc. While mouse brain 
anatomic atlas has been developed maturely, atlas from 
the same strain may not be the same individual as the 
histology sections, but still reasonably similar, hence can 
be used as a 3D volume reference. Moreover, atlases 
are well labeled with clear delineations of anatomical 
components that can lead us to correct the anatomical 
structures and shapes more locally and more purposefully. 

Researchers have proposed approaches to detect distorted 
slices by evaluating the quality of image registration 
between slices.[5] Other methods[13,14] are based on the 
idea of eliminating the distorted slices rather than 
correcting them where possible. Quite often, most of 
serial histology slices have different types of distortions in 
different regions. If they are all removed, there may be not 
sufficient information left to reconstruct a 3D volume. A 
framework[15] was proposed to detect the distorted slices 
and predict the possible distorted structures while it may 
not be robust enough for a large amount of distortions. 
Therefore, we developed a method that takes more local 
information into account in a piecewise fashion and 
borrows information from a 3D atlas to improve the 
accuracy and robustness of distortion correction. 

METHODOLOGY

Piecewise correction of histology distortion 
Block-matching registration
In this method, we register histology slice Si’s neighbors 
located up to m slices away to itself using block-matching 
registration technique,[4] provided the slice thickness 
is small and even. Then, the local corresponding 
displacements dr

j→i (r: region of interest; j = i+n; 
n = 1,2, ...,m) across those m slices are put together for 
comparison as shown in Figure 1. If the structure is not 
distorted and follows a smooth transition across several 
consecutive sections, the corresponding displacement 
vectors should have similar directional trends and similar 
lengths. However, if there is a structural distortion in at 
least one slice, the displacement vector of the distorted 
region in that slice will differ in direction and/or length 
from its counterpart vectors. Consequently, our target is 
to find those significantly different vectors so that we 

can have the knowledge of in which slice and where in 
that slice there may be a distortion, and also how the 
distortion may look like. 

Displacement weighted-averaging
To make a fair comparison of the vectors, we employ 
a Gaussian filter to weight the distance n between 
the floating images and the reference image. The 
vector of interest receives the heaviest weight and 
the displacements of the corresponding regions in 
the neighboring slices receive smaller weights as their 
distance n to slice Si increases, i.e.
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where σ is standard deviation of Gaussian distribution.

In addition to the Gaussian filter, averaged similarity 
measure CC (correlation coefficient) of the ROI has also 
been taken into account to weight the displacements. 
The regions that are more similar to the ROI receive 
higher weights, and vice versa:

 (2)

where m is the number of the slices in this iteration.

Therefore, by combining the two terms of weights, we 
then derive a new set of displacements dr

j→i for the ROI r 
as shown in Figure 1:
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Outlier detection using Z-score testing
Our outlier detection is based on standardized Z-score 

testing, i.e., 0x
z

n

m
s
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Figure 1: Displacements of the corresponding regions before and 
after weighted averaging
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 (4)

where Tr
i is the transformation in region r at slice i;  u(Tr

j→i) 
and σ(Tr

j→i) are the mean and the standard deviation of 
the displacements in region r at slice i to j, respectively.

In order to achieve good accuracy, we set the confidence 
level to 95%, and consequently, the Z = 1.64.

After the Z-score test, we identify the transformation 
that significantly differs from the others. Based on our 
theory, the ROI in that slice is very likely to be distorted. 
We should run our piecewise correction on that region.

Registration of outlier to nonoutlier regions
For every outlier region routlier found in the last step, we 
apply the block-matching algorithm again to warp routlier 
to its neighboring slices. For example, if Si+2 in Figure 1 is 
found to have outlier region, the estimated displacement 
for the outlier region is
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Here, we assume droutlier is invertible, i.e. droutlier = (d
–1
routlier)

–1

Therefore, by applying the inverted displacement to 
the outlier region, we make the outlier regions more 
similar to its nonoutlier neighbors, e.g., in Figure 2. We 
then implement this algorithm to every outlier region 
found within the slice neighborhood to correct histology 
distortions.

Our algorithm also runs iteratively to cover all the 
histology slices. In each iteration, we treat m consecutive 
slices Si~Si+m–1 as a registration neighborhood and choose 
the first slice of those m ones as the reference image. In 
the next iteration, neighborhood window shifts by one 
slice, i.e., Si+1~Si+m. By this way, every slice is treated as 
the reference of a group of consecutive slices to avoid 
reference bias.

Displacement regularization and filtering
Inevitably, a fair amount of outlier displacements might be 
generated by registration error. They may not match the 
anatomical features of interest adequately. An adaptive 
displacement regularization approach[16] estimates a rigid 
transformation within a predefined circular neighborhood 
cut to fit the local geometry around the region of interest 

and for each surrounding region that a displacement 
has been computed. Inhomogeneous displacements 
caused by registration error are regularized by this rigid 
transformation.

To make the whole displacement field even smoother, 
a mean filter is also applied in a circular neighborhood 
around every region of interest. The filter averages 
displacements in both x and y directions:
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where j is the regions within the circular neighborhood 
around region of interest.

Finally, we warp every slice using the regularized and 
filtered displacement fields. All the corrected slices are 
then registered pair by pair to form a volume.

Atlas-guided anatomic structure recovery
A mouse brain has been reconstructed in the previous 
section. Nevertheless, the fact of lack of support 
and proof from a 3D ground truth still prevents 
the reconstructed volume from becoming a solid 
foundation for future studies. Therefore, a 3D reference 
is still necessary here for correcting the shape of 
reconstruction and, much expectantly, improving 
local smoothness as well. Consequently, we introduce 
a structural-improving technique of reconstructed 
volume guided by a presegmented 3D atlas of mouse 
brain. The already reconstructed volume is fused with 
the atlas. In each brain subregion, we further refine 
the parameters of our piecewise distortion correction 
method to achieve accurate brain structure and better 
volume smoothness. 

Method framework
1  Register the 3D brain atlas of the same mouse strain 

to our reconstruction by the 3D fusion technique.[2]

2.  Warp the atlas labels to the space of our reconstruction 
by the transformation of 1.

3.  Label the brain regions in the reconstruction according 
to the warped atlas segmentation.

4.  Refine the parameters for distortion correction to 
adapt the different brain regions.

5.  Reconstruct a new volume using the refined 
parameters.

The method is operated in a coarse-to-fine fashion. 
The above steps are looped until a stopping criterion 
has been met. In the first iteration, a set of initial 
parameters is assigned for step 3. Those parameters 
are recommended as a prior knowledge by our 
neurologists based on the atlas. Thereafter, all the 
following iterations halve the parameters from the last 
iteration. We implement the method in this way to 
ensure the parameters can be optimized rapidly. The 

Figure 2: The distortion (dot-line square) in Si+2 is corrected by 
applying the inverted displacement of (5)
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stopping criterion is defined as an evaluation of mean 
smoothness[3] of the reconstructed volume, i.e., when 
mean smoothness measure Sk≤1, we stop the loop and 
output the reconstruction as the final result. 

EXPERIMENTAL RESULTS

Experiment setup and parameters
In our experiment, a set of 350 Nissl-stained coronal 
images acquired by cyro-sectioning a single frozen 
C57BL/6J adult mouse brain from LONI Research Lab at 
the UCLA was used. Each image was sized to 900 × 900 
pixels in a resolution of 10 µm per pixel during acquisition. 
The distance between the consecutive sections is 25 µm. 
In order to reduce the registration errors, we ran a prior 
step by applying a Gaussian filter (σ = 3) on the images 
to downsize them and reduce noise.

The computation of 87 iterations consumed a total ~40 
hours, averaging ~15 minutes for the local correction of 
each slice. The block size of 1111, lattice site of every 10 
pixels, and exploration neighborhood size of 71×71 were 
chosen, which was sufficient to cover the misaligning 
range for different slices in the dataset. Geometrical 
rigid regularization was applied on a circular range with a 
radius of 50 pixels and followed by an averaging filter with 
a radius of 20 pixels to optimize the raw displacement 
fields derived by the block-matching registration.

Based on the synthesized consideration of all the atlas’ 
features,[2] the MR C57BL/6J Mouse Brain Atlas built by 
Brookhaven National Laboratory (BNL) was chosen as 
the 3D reference in our study.

2D correction results
The tuning regularization radius R (0~∞) will change 
the displacement field significantly. When R = 0, 
the geometrical regularization takes no effect on 
the displacement field, which equals a fully flexible 
transformation; whereas when R = ∞), a global rigid 
transformation will be yielded. As the R value becomes 
larger, the displacements become lighter and more 
evened out. Based on the resolution of our dataset and 
the minimum size of the topological texture we wanted 
to recover, we chose R=50 pixels as the radius of the 
regularization circular neighborhood.

After the displacement field had been calculated for 
outlier correction, we applied a serious of postprocessing 
steps to the displacement field in order. Parameters were 
regularization radius=50, averaging filter radius=20, and 
bilinear interpolation. Clearly, the corrected consecutive 
slices were locally aligned much better in details as 
highlighted in Figure 3. The better alignment would 
increase the reconstruction quality significantly.

3D reconstruction results
The chosen BNL atlas volume was registered to our 

reconstruction result from the method described in the 
Piecewise Correction of Histology Distortion section. 
The derived transformation was then applied to warp the 
atlas labels to the reconstruction. As Figure 4 shows, the 
main anatomical brain regions have been labelled in our 
reconstructed volume.

In our experiment, parameters were halved every iteration 
to quickly regress to the optimized combination. Table 1 
shows the final set of the optimized parameters.

Figure 4: Warped atlas labels superimposed on top of the 
reconstructed volume

Figure 3: Distortion correction results in 2D: Two consecutive slices 
(no. 138 in red and no. 139 in green; perfect alignments: yellow) 
superimposed: (a) before and (b) after the piecewise distortion 
correction

a b

Figure 5: Hippocampus reconstructions in Sagittal view: (a) rigid-
body alignment; (b) piecewise distortion correction only; (c) atlas-
guided correction based on the initial parameters; (d) atlas-guided 
correction based on the optimized parameters

a b c d

Table 1: The optimized parameters

bsize NR RReg RAve dMaj

Cerebral cortex 15×15 40×40 50 30 3
Cerebellum 7×7 40×40 30 20 3
Midbrain 25×25 50×50 80 50 3
Thalamus 25×25 55×55 80 50 3
Corpus callosum 7×7 35×35 20 20 3
Hippocampus 5×5 25×25 15 15 3

bsize: block size, NR: exploration neighborhood size, RReg: regularization radius, RAve: 
average filter radius, dMaj: majority filter window. 
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In Figure 5, the hippocampus reconstructed by the 
optimized parameters in Table 1 shows the accurate anatomic 
structure and the smoothest texture among the four.

A further noise removing tool – majority filter[17] – can 
be employed to ensure a smoother appearance of the 

reconstructed volume in the applications where intensity 
inhomogeneity is zero-tolerant, e.g., high-resolution 
visualization and atlas building. 

To clearly show the advantages and the possible 
drawbacks of our atlas-guided scheme, we compared 
our results in Figure 6 (c) with Guest’s (a), Ju’s (b) 
corresponding views of results and also Paxino’s histology 
atlas[10] as a reference.

Among the three sets of results, our reconstructed volume 
was noted that the inside anatomical features became 
a lot more coherent. Moreover, the result showed that 
the shapes of many key structures had been recovered 
thanks to the scheme of labeling out the brain regions 
and dealing with them in a respective manner. Our result 
was found to have more matches of anatomical regions 
with Paxino’s atlas compared to either Guest’s or Ju’s 
results, in particular, hippocampus, corpus callosum, and 
cerebellum.

To evaluate the quality of smoothness achieved in 
our reconstructed volume, we employed a smoothness 
measure[3] Sk for every slice k as the following:
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where A(i,j) denotes the location of (i,j) in the warped 
image under evaluation; B(i,j) and C(i,j)  denote the 
locations of the corresponding pixels of (i,j) on the two 
neighboring slices, respectively. Sk acts similar to the 
CAM measure.[18] 

By the definition, Sk reflects the average distance from 
each pixel A(i,j) to the mid-point of its two corresponding 
pixels in the consecutive slices, i.e., 

( , ) ( , )
2

B i j C i j+
  (8)

In other words, in the reconstructed volume, 
each pixel deviates averagely from the middle of 
its two corresponding pixels on the neighboring 
slices by  (B(i,j) + C(i,j)–2A(i,j)) pixels.

To ensure that our reconstructed volume has achieved the 
satisfaction quantitatively, we computed a smoothness 
evaluation Sk which was also used as the stopping criterion 
in our iterative program. With the optimized parameters 
and majority filtering of three sections on each side, 
we achieved a reconstruction with a mean smoothness 
evaluation Sk = 0.92, i.e., in the reconstructed volume, on 
average, each point deviates from the middle of its two 
corresponding pixels on the neighboring sections by only 
about 0.46 pixel (9.8% closer than Ju’s result: 0.51 pixel[3]).

Figure 6: Result comparisons in axial and sagittal views: (a, b) 
reconstructed volume[3,18]; (c) our result; (d) no. 157 axial and no. 
110 sagittal section of Paxino’s atlas[10]

a

a

c

c

b

b

d

d
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DISCUSSION AND CONCLUSION

In this paper, we proposed a piecewise registration 
scheme and an atlas-guided anatomy recovery for 
mouse brain reconstruction. 2D distortions in histology 
slice were corrected in some degrees with the help 
from the undistorted information from the slice’s 
neighbors. Presegmented atlas labels were firstly warped 
to the space of our reconstructed volume after the 
piecewise registration. Labeled anatomical regions 
in our reconstruction were then assigned an initial 
set of parameters of the piecewise registration and 
the optimization steps by neurologists based on the 
anatomical feature of the individual brain regions. Our 
automated framework was then operated to optimize 
the parameters iteratively by correcting local distortion 
piecewisely and rewarping the corrected sections 
pairwisely. 

For result inspection, both visual and quantitative 
evaluations had been performed in comparison with 
other competitive approaches. Despite lacking global 
alignment in some regions compared to other methods 
due to the local nature of the atlas labels we referenced 
to, our results still showed clear advantages of local 
smoothness and better matching with the real histology 
sections over other methods in the comparison. 
Moreover, our method requires the least manual 
manipulation in the comparison. 

In summary, our method has been proved as a reliable 
and robust way to correct distortions of local regions 
across consecutive histology sections and to subsequently 
reconstruct a smooth volume of mouse brain. 
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