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Abstract: Increased expression of the urokinase-type plasminogen activator (uPA) system is associ-
ated with tumor invasion, neo-angiogenesis, and metastatic spread, and has been shown to positively
correlate with a poor prognosis in several cancer types, including thyroid carcinomas. In recent years,
several uPA inhibitors were found to have anticancer effects in preclinical studies and in some phase
II clinical trials, which prompted us to evaluate uPA as a potential therapeutic target for the treatment
of patients affected by the most aggressive form of thyroid cancer, the anaplastic thyroid carcinoma
(ATC). In this study, we evaluated the in vitro and in vivo effects of WX-340, a highly specific and
selective uPA inhibitor, on two ATC-derived cell lines, CAL-62 and BHT-101. The results obtained
indicated that WX-340 was able to reduce cell adhesion and invasiveness in a dose-dependent manner
in both cell lines. In addition, WX-340 increased uPA receptor (uPAR) protein levels without affecting
its plasma membrane concentration. However, this compound was unable to significantly reduce
ATC growth in a xenograft model, indicating that uPA inhibition alone may not have the expected
therapeutic effects.

Keywords: anaplastic thyroid cancer; urokinase plasminogen activator; WX-340; xenograft; proliferation;
cell adhesion; cell migration; BHT-101; CAL-62

1. Introduction

Epithelial thyroid cancer (TC) represents about 96% of all endocrine malignancies
and is one of the most frequent cancers in women [1–3]. Its incidence has increased over
the last few decades, mainly as a result of the improved ability to diagnose malignant
transformation in small non-palpable thyroid nodules [3–5]. Grounded on histological and
clinical behavior, TC are divided in well-differentiated TC (DTC), comprising the papillary
(PTC) and follicular (FTC) histotypes, poorly differentiated TC (PDTC), and undifferenti-
ated or anaplastic TC (ATC) [6]. The PTC has a propensity to spread via lymphatic vessels
to local lymph nodes, while FTC is characterized by hematogenous diffusion producing
lung and bone metastases [6]. The less differentiated and more aggressive PDTC and
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ATC arise from the dedifferentiation of DTC, as suggested by the frequently encountered
coexistence of DTC with PDTC or ATC bearing similar genetic alterations [6–11]. The
PDTC was included as a separate entity in the WHO classification of TC in 2004, and it
is defined as a thyroglobulin producing, non-follicular, and non-papillary TC, having an
intermediate clinical behavior between DTC and ATC, characterized by widely infiltrative
growth, necrosis, vascular invasion, and numerous mitotic figures [8,11]. The ATC appear
as disseminated fleshy masses in the neck with areas of necrosis and hemorrhage. They
are composed of undifferentiated cells negative for common thyroid-lineage markers (e.g.,
thyroglobulin and natrium-iodide symporter), and originate three morphological patterns:
squamoid, pleomorphic giant cells, and spindle cells [6].

Total thyroidectomy followed by adjuvant therapy with 131I is the treatment of choice
for most patients affected by DTC, resulting in a 10-year survival rate of around 90% [12,13].
Comparatively, adverse outcomes are usually observed in patients with PDTC and ATC,
in which the reduced expression of the natrium/iodide symporter (NIS) renders the 131I
treatment ineffective, and external-beam irradiation or chemotherapy are equally unsuc-
cessful [14–16]. Patients with ATC have the worst prognosis with an average survival time
of a few months from diagnosis, and are little or unaffected by current cancer treatments.
These patients present with a rapidly growing thyroid mass and locoregional symptoms
(i.e., dyspnea, dysphagia, neck pain, hoarseness, and stroke), and in the majority of cases
death occurs following tumor airway obstruction [17]. Therefore, the identification of
new therapeutic approaches capable of ameliorating the fate of PDTC and ATC patients is
sorely needed.

The urokinase plasminogen activator (uPA) system (uPAS) consists of the uPA, its cog-
nate receptor (uPAR) and two specific inhibitors, the plasminogen activator inhibitor 1 (PAI-1)
and 2 (PAI-2) [18]. The uPA converts the proenzyme plasminogen in the serine protease
plasmin, involved in a number of physiopathological processes requiring basement mem-
brane (BM) and extracellular matrix (ECM) remodeling, including tumor progression and
metastatization [18]. Data accumulated over the past years have made it increasingly
clear that the uPAS has a multifunctional task in the neoplastic evolution, affecting tumor
angiogenesis, malignant cell proliferation, adhesion, migration, intravasation, and growth
at the metastatic site. Their relevance in cancer progression is supported by the finding
of an increased expression of uPA, uPAR, and PAI-1 in several malignant tumors, and by
the positive correlation between levels of one or more uPAS members and a poor prog-
nosis [18]. Over the last two decades, independent studies investigating the expression
of uPAS components in normal and cancer thyroid cells and tissues described alterations
of uPAS components following malignant transformation [18,19]. More importantly, the
upregulation of uPA, uPAR, and PAI-1 was associated with high-risk clinicopathological
factors, such as lymph node metastasis, higher TNM stage, shorter disease-free interval,
and overall survival [19–25].

To date, little information exists specifically concerning the expression of uPAS compo-
nents in PDTC or ATC, but data produced so far by independent studies agree in reporting
a trend of increased expression of uPA, uPAR, and PAI-1 in these aggressive forms com-
pared to DTC [20,26,27]. As for other types of solid tumors, experimental findings suggest
that uPAS components could represent valuable therapeutic targets also in thyroid can-
cers [18,28,29]. Inhibition can be implemented at multiple levels, i.e., by impairing uPA and
uPAR gene expression, uPA catalytic activity, uPA–uPAR binding, or uPAR interaction with
downstream effectors [18,30]. Over the years, several anti-uPA and anti-uPAR compounds
have been developed and tested both in vitro and in animal tumor models, some of which
showed effectiveness in preclinical studies and also in phase I/II clinical trials [18,30].
However, current knowledge on the therapeutic efficacy of uPA–uPAR inhibitors on PDTC
and ATC is still very limited. Anticancer effects on ATC cells were observed both in vivo
and in vitro by inhibiting transcription factors that promote uPA expression, i.e., NF-κB and
FOXM1, but multiple genes are regulated by these factors and thus the final result could
be due to the simultaneous dampening of several pathways [31,32]. More direct evidence
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emerged from a recent study showing that infection of ATC cells with a urokinase-targeted
recombinant oncolytic Sendai virus induced uPA-dependent cell fusion and cytotoxicity,
and had remarkable therapeutic efficacy in orthotopic ATC mouse models [33].

On this basis, our study was aimed at exploring the effects of a small molecule uPA
inhibitor (WX-340) on the tumorigenic behavior of two human cell lines derived from ATC
by means of in vitro and in vivo experiments.

2. Results

Initially, the inhibitory effect of WX-340 was monitored in vitro on uPA isolated from
human urine by means of colorimetric assay. A concentration range of 50 pM to 50 µM was
used to inhibit 10 Units of uPA, and the resulting IC50 was 90 nM (Figure 1).
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Figure 1. uPA inhibition assay. The activity of 10 Units of uPA purified from human urine was
measured with increasing concentrations of WX-340 (50 pM to 50 µM). IC50: half-maximal in-
hibitory concentration.

The growth of the ATC-derived cell lines CAL-62 and BHT-101 in the presence of WX-
340 was tested in dose-response experiments at two incubation times. No variations in the
mitochondrial dehydrogenases activity, directly proportional to the number of living cells,
was recorded in treated cells compared to control cells after 24 h and 72 h (see Figure 2).
Neither WX-340-dependent cell fusion nor cytotoxicity were observed in cell cultures.
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Figure 2. Dose-response proliferation assay. Cells were treated with increasing doses of WX-340 for
3 days, after which the tetrazolium salt WST-1 was added to cultures, and production of formazan
dye was read after 2 h by microplate reader. The average absorbance value of each point at T = 72 h
was subtracted to the average value measured in a plate at T = 0 h.

Then, we tested the ability of WX-340 to interfere with ATC cell adhesion by putting
cells pre-treated or not with the drug in a 96-well plate, and washing individual rows of
wells at regular time points. A significant delay in adhesion of CAL-62 cells was achieved



Int. J. Mol. Sci. 2022, 23, 3724 4 of 12

at the 1 µM dose, while for BHT-101 a similar delay was obtained with the 5 µM dose (see
Figure 3). Further increases in drug quantity did not exert greater effects on both cell lines.
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Figure 3. Adhesion assay. Cells pre-treated with increasing doses of WX-340 for 24 h were detached
with trypsin/EDTA, counted, and seeded in a 96-well plate. Separate well rows were washed after
15 min, 30 min, 60 min, or not washed. Finally, WST-1 was added to all wells and the OD was
measured 2 h later. * p < 0.05.

We also evaluated the invasive behavior of ATC cells incubated in culture medium
containing the drug before and during the assay. The results obtained demonstrated that
the presence of WX-340 significantly reduced cell migration across an ECM layer by about
50% for CAL-62 and 30% for BHT-101 compared to controls (see Figure 4).
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Figure 4. Invasion assay through Matrigel-coated nucleopore membranes. Cells pre-treated or not
with WX-340 5 µM for 24 h were counted and suspended in serum-free medium with or without fresh
added WX-340, then seeded in the upper reservoirs of Boyden chambers. The lower reservoirs were
filled with medium containing FBS as chemoattractant. After 6 h incubation, nucleopore membranes
were fixed and stained with violet Cresyl solution. Non-migrated cells were removed from the upper
layer, and migrated cells were estimated by cell count (CAL-62) or by measuring the ratio black
pixels/white pixels in binarized photos of membranes with the ImageJ software 1.53 (BHT-101).
* p < 0.05.

Moreover, we verified if the functional impairment of the uPA–uPAR complex could
lead to changes in either the whole-cell amount of uPAR or its plasma membrane fraction.
From Western blotting experiments with total extracts of treated and non-treated BHT-101
cells, a more than 2-fold increase in uPAR signal was observed at the dose 1 nM, much
lower than those producing functional effects (Figure 5A,B).
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Figure 6. Citofluorimetric detection of membrane uPAR in BHT-101 cells treated with WX-340
compared to control cells.

Finally, we tested the in vivo efficacy of WX-340 in counteracting tumor growth
in a xenograft mouse model of ATC obtained with the BHT-101 cell line. To this end,
we worked with five groups of athymic nude mice, four of which received the drug in
different doses and the fifth the vehicle alone. A slight reduction in nodule size was
observed in treated mice, however no statistically significant reductions in final tumor
masses were found in any of the drug-treated groups. A representative example of these
results is shown in Figure 7A. We also examined tumor sections by IHC experiments in
order to observe eventual structural changes produced by the drug. Again, there were no
appreciable differences in proliferation, percentage of necrotic tissue, and capillary density
(see Figure 7B–D).
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Figure 7. (A) Growth curves of tumor masses in ATC xenograft models. For convenience, only one
group of treated mice is represented together with the control group. Quantitative analysis of necrosis
(B), proliferation index (C), and vessel density (D) in tumor sections of treated mice vs. control mice.
Results are expressed as mean ± SD.

3. Discussion

To our knowledge, there is currently very little information about the expression
profile of uPAS components in ATC. However, the uPAS is overexpressed in the majority
of DTC and associated with high-risk clinicopathological features, thus it is reasonable to
believe that it also comes into play significantly in ATC.

In our experimental setting, we observed an increase in the total cellular amount
of uPAR protein following uPA inhibition, which could be interpreted as an enhanced
gene expression and a slowdown in receptor turnover aimed at compensating for the poor
activity of the uPA–uPAR complex. However, the plasma membrane fraction of uPAR
appeared unchanged, and this is a somewhat unexpected result, which will require fur-
ther investigation to be explained. As a consequence of the impaired uPA activity, ATC
cells showed reduced invasive capacity in vitro, and a slight but significant delay in the
formation of new cell adhesions. Contrarily from what was reported by Miyagawa and
colleagues [33], we did not notice induction of cell death nor fusion in treated cultures.
Although these authors used different ATC cell lines, this discrepancy is presumably due
to the different mode of uPA blockade, i.e., viral infection of cells and subsequent protein
cleavage rather than competitive inhibition by a small molecule. Furthermore, the most sub-
stantial difference between Miyagawa’s study and ours concerns the in vivo experiments,
because the administration of WX-340 has not been proved effective in counteracting tumor
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growth in xenografts. It can be assumed that the uPA-targeted oncolytic virus allows a
more capillary and homogeneous inhibitory effect within tumor masses compared to the
passive diffusion of a chemical compound. Secondly, it is noteworthy that while some uPA
or uPAR inhibitors have been found capable of producing cytotoxic damage and decreased
proliferation in some tumor cell types, induction of cell fusion was achieved only with this
virotherapy approach, and it is most likely caused by the viral infection itself regardless
of the uPA cleavage. This effect, combined with the intrinsic cytotoxicity recognized for
the control viral vector, is supposed to contribute considerably to the observed antitumor
effect [33].

On the whole, our results indicate that uPA inhibition alone is not sufficient to halt
the neoplastic growth of ATC. In view of the complexity and multiplicity of functions
performed by the uPAS, several hypotheses could be advanced to explain this failure. The
uPA-dependent proteolytic action of the plasmin could be partially compensated by that of
matrix metalloproteinases (MMPs), some of which are upregulated in ATC [34–36]. On the
other hand, some uPAR functions do not rely on uPA enzymatic activity, and are mediated
by the binding of the receptor with extracellular matrix components (i.e., vitronectin) or
membrane proteins (i.e., integrins, members of the low-density lipoprotein receptor family,
tyrosine kinase receptors, and G protein-coupled receptors) [18,37]. These interactions
trigger various intracellular signaling cascades affecting cell proliferation, adhesion, and
motility. In addition, proteolytic cleavage of the membrane uPAR releases soluble uPAR
(suPAR), including the entire extracellular moiety, or smaller fragments. These uPAR
forms are endowed with biological activities such as cell migration, chemotaxis, and uPA
scavenging, and can interfere with cellular uPAR functions [37,38].

Despite such potential shortcoming referable to all cancers, small molecule uPA in-
hibitors were shown to produce significant antineoplastic effects with other types of solid
tumors [39–41], which suggests the ability of ATC cells to compensate for the uPAS func-
tions turned off by drug treatment and to activate resistance mechanism(s). Although a
negative outcome is obviously disappointing when testing a potential therapeutic agent,
we believe that the information provided by this work may turn useful in a research area
where it is still necessary to increase efforts aimed at identifying an effective therapeutic
approach for the treatment of a highly aggressive and lethal cancer.

4. Materials and Methods
4.1. uPA Inhibitor

WX-340 is a small molecule competitive active-site inhibitor of the uPA enzymatic ac-
tivity with high potency and specificity, kindly provided to us by Wilex (Munich, Germany)
under Material Transfer Agreement. This compound was shown to inhibit human uPA with
Ki = 0.012 µM, and mouse uPA with Ki = 0.170 µM, while for other serine proteases (i.e.,
human plasmin, thrombin, tissue-PA, and factor Xa), the Ki were greater than 190 µM [34].
WX-340 was dissolved in D-mannitol 5% (w/v) aqueous solution, and stored in aliquots
at −20 ◦C until use. Before starting the experiments, the in vitro activity was tested with
the CHEMICON uPA Activity Assay Kit (Merck Life Science, Darmstadt, Germany), and
the IC50 was calculated by means of the GraphPad Prism software 6 (GraphPad Software,
La Jolla, CA, USA).

4.2. Cell Cultures

The ATC-derived cell lines BHT-101 and CAL-62 were purchased from DSMZ (Braun-
schweig, Germany). Cell cultures were maintained in medium DMEM containing 10%
(CAL-62) or 20% (BHT-101) fetal bovine serum (FBS) and 2 mM L-glutamine, at 37 ◦C
in 5% CO2 humidified atmosphere. In all the experiments, controls were performed by
treating cells with the drug diluent at the same volume of the highest dose of WX-340
administered. Culture media with or without inhibitor were changed every day until the
end of the incubation time.
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4.3. Proliferation Assay

Cells were seeded in 96-well plates (2.000 cells/well). After 4 h, the cell proliferation
reagent WST-1 was added to one plate, and the absorbance was measured 2 h later (T = 0)
with a microplate ELISA reader (Tecan Group Ltd., Männedorf, Switzerland). Other plates
were treated with increasing doses of WX-340 (from 0 to 5 µM) for one day (T = 24) or
3 days (T = 72), after which the WST-1 was added, and the absorbance read after 2 h. The
average absorbance value of each point at T = 24 h and at T = 72 h was subtracted to the
average value measured in a plate at T = 0 h.

4.4. Adhesion Assay

Cells cultured in Petri dishes were treated with increasing doses of WX-340 and
incubated for 24 h. After that, the cells were detached with trypsin/EDTA, counted,
resuspended, and put in a 96-well plate (8000 cells/well). Individual rows of wells were
washed 3 times with complete medium after 15 min, 30 min, or 60 min, while control wells
were not washed. Upon the last wash, WST-1 was added to all wells and the absorbance
was measured 2 h later. The average absorbance value of washed rows at each time lapse
was expressed as a percentage of the average value measured for non-washed rows.

4.5. Invasion Assay

Whatman nuclepore polycarbonate hydrophilic membranes with 8 µm pore size
(Cytiva, Loughborough, Leicestershire, UK) were put into Boyden chambers and pre-
coated by laying on top 25 µg of ECM Gel from Engelbreth-Holm-Swarm murine sarcoma
(Merck, Darmstadt, Germany), and letting it solidify overnight. Adherent cells were
cultured in complete medium supplemented with WX-340 5 µM for 24 h. Thereafter,
cells were detached with trypsin/EDTA, counted, and resuspended at a concentration
of 500,000 cells/mL in serum-free medium containing 0.1% bovine serum albumin and
WX-340 5 µM. The lower compartment of each chamber was filled with complete medium
as chemoattractant, while in the upper one 0.5 mL of cell suspension was added. Controls
were prepared in the same way without adding the drug. After 6 h incubation at 37 ◦C
in 5% CO2 humidified atmosphere, the membranes were placed in a 12 well plate, fixed
with 95% ethanol for 5 min and colored with violet Cresyl solution. The membranes were
positioned on slides so as to have non-invasive cells on the upper side, which were removed
by rubbing the surface with a cotton swab. Migrated CAL-62 cells were counted under
a microscope in 5 fields for each membrane, but migrated BHT-101 cells tended to form
clusters, making manual counting difficult. Hence, these membranes were photographed
with a camera installed on an optical microscope, the grayscale pictures were binarized,
and the ratio black pixels/white pixels—proportional to the cell density—was measured
with the ImageJ software (NIH, Bethesda, MD, USA).

4.6. Western Blotting

Cells were treated with increasing doses of WX-340 for 24 h, then lysed in RIPA buffer
with fresh added protease inhibitors. A total of forty µg of proteins were run in SDS-PAGE
under non-reducing conditions, and blotted onto nitrocellulose membranes. These were
saturated for 2 h with 5% nonfat dry milk in TBST, then incubated overnight at +4 ◦C with
primary antibodies anti-uPAR 1:2000 (R&D Systems, Minneapolis, MN, USA) and anti-β-
actin 1:20,000 (Sigma-Aldrich, Milan, Italy). After washing, membranes were incubated
with appropriate HRP-conjugated secondary antibodies 1:2000 (Thermo Fisher Scientific,
Rockford, IL, USA), and developed using the LiteAblot EXTEND (for uPAR) or PLUS (for
β-actin) chemiluminescent substrates (Euroclone, Milan, Italy). Densitometric analysis was
performed with the ImageJ software.

4.7. Flow Cytometric Analysis

Cell cultures were treated with WX-340 5 µM or the diluent for 48 h, then harvested
by scraping in cold phosphate buffered saline (PBS), washed, counted, and diluted in PBS.
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One-million cell suspensions were mixed to anti-uPAR antibody diluted 1:100 in PBS, and
incubated on ice for 30 min, washed, and incubated with anti-mouse FITC-conjugated
antibody diluted 1:50 in PBS for 30 min on ice in the dark. Negative controls were made
in parallel by omitting the primary antibody or the secondary antibody, or both. After
washing, cells were resuspended in PBS, and propidium iodide was added at a final
concentration of 50 µg/mL per million cells. Flow-cytometric analysis was performed with
the FACScalibur Flow cytometer and CellQUEST software 3.3 (BD Biosciences, San Jose,
CA, USA).

4.8. In Vivo Experiments

Athymic nude female mice (Foxn1nu/Foxn1+) (Harlan Laboratories) were housed in
individually ventilated cages (IVC) under controlled conditions (20–22 ◦C; 55–65% relative
humidity; 12/12 h light/dark cycle; standard irradiated diet and water ad libitum). At
5 weeks of age, the mice received a subcutaneous injection of 4.5 × 106 BHT-101 cells in
PBS. After two weeks, the tumor masses reached approximately 100 mm3, and mice were
randomly divided into 5 groups of 5 animals each. The WX-340 was administered daily via
intraperitoneal injection in a volume of 100 µL at the following doses: 10 mg/kg, 1 mg/kg,
0.1 mg/kg, and 0.01 mg/kg. An equal volume of diluent was administered to the control
group. The dose regimen was chosen based on a previous experiment performed with the
rat BN-472 mammary carcinoma model, slightly widening the WX-340 concentration range
used in this work [42]. Tumor sizes were measured with a caliper every 2 days. When
the tumor volumes reached an average of approximately 0.6–0.9 cm3, the mice, previously
euthanized with intra-peritoneal injections of Tiletamine/Zolazepam (800 mg/kg) and
Xylazine (100 mg/kg), were sacrificed and tumors were harvested and measured. Excised
tumors were fixed with 3.7% paraformaldehyde (PFA) (w/v) 1× PBS for 20 min at room
temperature and then embedded in paraffin. Consecutive tissue sections of 3 µm were
cut and deparaffinized in xylene, rehydrated through graded alcohol series, and stained
with hematoxylin–eosin (HE) for microscopic morphological analysis. Other sections were
immunostained to detect the proliferation marker Ki67 and the endothelial marker CD31.
At first, antigen retrieval was performed by putting the slides into a microwaves (750 W)
in pH 6 citrate buffer 0.01 mol/L for 20 min. Sections were incubated for 1 h at room
temperature with primary monoclonal antibodies anti-Ki67 (1:50, clone M7240, Dako, CA,
USA) and anti-CD31 (1:100, clone JC70A, Dako, CA, USA). Endogenous peroxidase activity
was blocked with 3% hydrogen peroxide for 15 min, then sections were incubated with
secondary HRP-conjugated antibodies, and a positive immunoreaction was observed by
adding of 3,3′-diaminobenzidine (DAB) and counterstaining with Mayer hematoxylin.
The reaction was amplified by means of the Universal LSAB2 System-HRP (Dako, CA,
USA). Negative control sections were prepared in parallel omitting the primary antibody.
Pictures of HE- and immunostained sections were captured with the Aperio scanner (Leica
Biosystems), and randomly selected images were analyzed to quantify necrotic tissue,
proliferation index, and blood microvessel density using the ImageJ software. The necrotic
tissue was evaluated as a percentage of necrotic areas relative to the total area, and the
proliferation index was expressed as a percentage of Ki67 positive cells out of the total
number. The blood microvessel density was calculated as ratio of the number of CD31+
vessels to the total area of five randomly selected fields per slide. Sections were viewed by
two independent investigators unaware of the sample identity, using a Leica microscope
(Leitz Camera, Wetzlar, Germany).

4.9. Statistics

All the results were obtained from three independent experiments, and are expressed
as mean ± S.D. Dose-response curves were analyzed by fitting points with four-parameter
logistic functions using the MyCurveFit program. Differences among groups were evalu-
ated by the Mann–Whitney U test, using the SPSS software 25 (Armonk, NY, USA). Data
were considered statistically different when the pertaining p values were <0.05.
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