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ABSTRACT
Pancreatic carcinoma (PC) is a lethal cancer. Gut microbiota is associated with 

some risk factors of PC, e.g. obesity and types II diabetes. However, the specific gut 
microbial profile in clinical PC in China has never been reported. This prospective 
study collected 85 PC and 57 matched healthy controls (HC) to analyze microbial 
characteristics by MiSeq sequencing. The results showed that gut microbial diversity 
was decreased in PC with an unique microbial profile, which partly attributed to its 
decrease of alpha diversity. Microbial alterations in PC featured by the increase of 
certain pathogens and lipopolysaccharides-producing bacteria, and the decrease of 
probiotics and butyrate-producing bacteria. Microbial community in obstruction cases 
was separated from the un-obstructed cases. Streptococcus was associated with the 
bile. Furthermore, 23 microbial functions e.g. Leucine and LPS biosynthesis were 
enriched, while 13 functions were reduced in PC. Importantly, based on 40 genera 
associated with PC, microbial markers achieves a high classification power with AUC 
of 0.842. In conclusion, gut microbial profile was unique in PC, providing a microbial 
marker for non-invasive PC diagnosis.

INTRODUCTION

Pancreatic carcinoma (PC), an aggressively lethal 
cancer with a poor prognosis, is a common cancer 
worldwide, accounting for 216,000 new cases annually 
and has approximately 23% of 1-year survival and 5% 
of 5-year survival [1, 2]. There are 46,000 estimated 
new cases and 39,590 deaths in the United States [3]. It 
is essential to search for new techniques to improve the 

diagnosis, prognosis and survival of PC. Therefore, bio-
markers that can identify early PC are needed. 

Recently, thousands of potential bio-markers in 
blood and tumors are reported [4, 5], but very few have 
been validated for clinical use [4–6]. The risk factors of 
PC include age, tobacco, obesity, chronic pancreatitis, and 
types II diabetes (T2D) [7, 8]. 

With more knowledge on microbiota, the role of 
bacteria in carcinogenesis is being recognized [9, 10]. 
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There are reports on the possible association between PC 
and bacteria, such as H. pylori [11–13]. The role of human 
microbiota in PC etiology has been studied [14, 15]. The 
further association between salivary microbiota and PC or 
chronic pancreatitis has been confirmed [16, 17].  

Gut microbiota works as the biggest micro-
ecosystem [18, 19]. It is closely associated with a series of 
chronic diseases, such as obesity [20], non-alcoholic fatty 
liver disease [21, 22] and T2D [23]. These diseases are also 
risk factors for PC [7, 8]. Gut microbiota can also promote 
carcinogenesis, e.g. hepatocellular carcinoma (HCC) [24] 
and colorectal cancer [25, 26], and regulate inflammation 
[27, 28]. Thus, it is hypothesized that gut microbiota is 
associated with PC but gut microbial characteristics in 
clinical PC have not been reported. In this prospective 
study, 167 stool samples were collected from patients 
with pancreatic neoplasm and healthy controls (HC). After 
confirmation exams, 85 PC patients and 57 matched HC 
were processed for Miseq sequencing. The gut microbial 
composition, taxonomic difference, microbial function 
prediction and microbial markers were performed. 

RESULTS

A total of 102 patients with pancreatic neoplasm 
and 65 HC with matched age, gender and body mass 
index (BMI) were enrolled initially. After confirmation, 
5 patients without pathology confirmation, 3 patients with 
pseudo-cyst, 3 patients with cystadenoma, 2 patients with 
hetero-topic spleen and 1 patient with lymphoma were 
excluded. After DNA extraction, 16S rRNA sequencing 
and data quality control, 8 HC and 3 PC patients were 
further discarded. Finally, 85 PC and 57 matched HC 
samples were included for the final analysis (Figure 1). 
According to the anatomy of PC, 85 PC were divided 
into 54 (63.5%) pancreatic head cancers (PCH) and 31 
(36.5%) body and tail cancers (PCB); according to serum 
levels of direct bilirubin (DB), 54 PCH were divided into 
22 (40.7%) PCH with obstruction of common bile duct 
(PCH-O) and 32 (59.3%) PCH with the un-obstruction 
(PCH-unO). Based on clinical TNM staging, 54 cases of 
PC were stage I and 31 cases were stage II. As for PCH, 
32 cases of PCH were stage I and 22 cases were stage 
II, which were consistent with the un-obstruction and 
obstruction classification.

As shown in Table 1, there were no significant 
differences in age, gender and BMI between PC and HC. 
In clinical parameters, PC patients presented increased 
levels of DB and tumor markers, but a decreased level 
of albumin, as compared with HC. PCH patients showed 
elevated levels of alanine transaminase (ALT), aspartate 
aminotransferase (AST), total bilirubin and DB, versus 
PCB patients. Notably, the indicators in PCH were mainly 
attributed to PCH-O patients who presented significantly 
increased ALT, AST, gamma-glutamyl transpeptidase, 
total bilirubin and DB, versus PCH-unO.

The final 142 samples from PC and HC were pooled 
into 14 libraries according to 16S rRNA sequencing data. 
The 4,816,686 qualified reads from 9,179,689 raw reads 
were filtered for downstream analysis. The 2,130,000 reads 
were chosen randomly from each sample with a 15,000 
reads cutoff. Finally, 880 Operational Taxonomy Units 
(OTUs) were obtained and annotated (Supplementary 
Data File 1), in which 535 qualified OTUs were clustered 
(Supplementary Data File 2), but 345 OTUs were 
discarded because of their low coverage. The 4,602,883 
(95.56%) of all qualified reads could be clustered into 
qualified OTUs with randomly chosen qualified reads. 
Notably, 98.0665% and 92.3249% of all reads were 
assigned into family and genus levels respectively.

Gut microbial diversity is decreased in PC

Gut microbial diversity was analyzed after 
equalizing sample sizes to 15,000 reads by random 
subtraction. Compared with HC, microbial diversity 
significantly decreased in PC, as estimated by Shannon 
index (2.82 vs 3.17, p < 0.001) with two tailed unpaired t 
test (Figure 2A and Supplementary Data File 3). This was 
also validated by other diversity parameters (Chao1: 195.8 
vs 174.6, p < 0.01 and Simpson: 0.89 vs 0.85, p < 0.01, 
Supplementary Figure 1A). The subgroup analysis of PC 
indicated that alpha diversity index, shown by Shannon 
index, was remarkably reduced in both PCH and PCB as 
compared with HC (both p < 0.01). No obvious difference 
was observed between PCH and PCB (Figure 2B). For 
further stratification analysis of PCH, alpha diversity 
index decreased in both PCH-O and PCH-unO versus HC 
(both p < 0.05), whereas there was no statistical difference 
between PCH-O and PCH-unO (Figure 2C). It was 
verified by Chao 1 and Simpson indices (Supplementary 
Figure 1B and 1C). 

Gut microbial profile is unique in PC

To illustrate similarity of different samples in 
bacterial communities, the principal coordinate analysis 
(PCoA) based on OTUs distribution was conducted. On 
the unweighted Unifrac plot, fecal microbial communities 
separated between PC and HC from principal component 
(PC) 1 and PC2 (17.4% and 6.3% of explained variance, 
respectively, p < 0.001), suggesting an unique gut 
microbiota in PC, while no obvious separation was 
observed between PCH and PCB (Figure 3A). Notably, 
alpha diversity, measured by Shannon index, could be 
identified as one of the main factors contributing to the 
separation and difference of gut microbiota between PC 
and HC along PC1 (Figure 3B).

The subgroup analysis of PC based on PCoA 
demonstrated that microbial community presented no 
significant difference between PCH and PCB in the 
unweighted Unifrac plot from PC1 and PC2 (18.5% and 
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6.7%) and weighted Unifrac plot from PC1 and PC2 
(41.7% and 10.6%) (Supplementary Figure 2A and 2B). 
Furthermore, the stratification analysis of PCH based 

on PCoA indicated that microbial community in PCH-O 
were clustered together and significantly separated from 
PCH-unO in the unweighted Unifrac plot from PC1 and 

Table 1: Matched clinical information in PC patients and healthy controls
PC 

(N = 85)
HC 

(N = 57)
P 

value
PCH 

(N = 54)
PCB

(N = 31)
P 

value
PCH-O (N = 22) PCH-unO  

(N = 32)
P value

*Age, 
median 
years (min-
max)

56 (33–78) 52 (43–67) 0.08 56 (33–78) 56 (38–68) 0.23 59.5 (45–78) 54.5 (33–70) 0.22

# Gender, 
male (%)

47 (55.3) 36 (63.2) 0.39 28 (51.9) 19 (61.3)  0.50 15 (0.68) 13 (40.6) 0.06

BMI, 
median kg/
m2 (min-
max)

22.7 (19.5–26.0) 23.2 (18.5–27.1) 0.06 22.8 (20.4–24.6) 22.5 (19.5–26.0) 0.08 22.9 (20.7–24.6) 22.6 (20.4–24.2) 0.23

ALT, U/L 
median 
(min-max)

20 (5–525) 21 (8–41) 0.36 33.5 (7–525) 15 (5–57) < 0.01 67 (14–525) 19.5 (7–55) < 0.01

AST, U/L 
median 
(min-max)

23 (10–292) 22 (12–40) 0.08 32.5 (14–292) 18 (10–77) < 0.01 56 (22–292) 21.5 (14–80) < 0.01

Clinical 
TNM 
staging

I: 54
II: 31

I: 32
II: 22

I: 22
II: 9

I: 0
II: 22

I: 32
II: 0

Albumin, 
g/L, 
median 
(min-max)

40.6 (27.6–406) 48.6 (21–53.4) < 0.01 40.5 (27.6–48) 41.4 (30.6–406) 0.07 39.7 (27.6–48) 41 (31.1–46.2) 0.27

Globulin, 
g/L, 
median 
(min-max)

26.7 (16.9–37) 26 (20.3–33.3) 0.75 27.0 (17.9–37) 25.3 (16.9–36.6) 0.44 27.2 (17.9–37) 27.0 (18.1–36) 0.69

Total 
bilirubin, 
μmol/L, 
median 
(min-max)

14 (4–389) 12 (6–26) 0.11 16.5 (4–389) 10.5 (6–36) < 0.01 143.5 (17–389) 11 (4–17) < 0.01

Direct 
bilirubin, 
μmol/L, 
median 
(min-max)

5 (2–277) 4 (2–10) < 0.01 6 (2–277) 4 (2–7) < 0.01 99 (16–277) 4.5 (2–7) < 0.01

CEA 
ng/mL, 
median 
(min-max)

2.7 (0.8–178) 1.8 (0.5–24) < 0.01 2.8 (0.8–178) 2 (0.8–26.3) 0.23 3.9 (1.6–14.4) 2.0 (0.8–178.1) 0.03

CA 199, 
U/mL, 
median 
(min-max)

34.8 (2–12000) 8.35 (2–50.3) < 0.01 35.5 (2–8130) 14 (2–12000) 0.12 35.5 (3.8–2372) 35.4 (2–8130.4) 0.57

CA 125, 
U/mL, 
median 
(min-max)

17.2 (4.3–362.7) 8.8 (3.2–30.5) < 0.01 17.5 (4.3–362.7) 15.1 (4.7–185.5) 0.84 22.5 (7.5–362.7) 14.1 (4.3–96.6) 0.15

BMI, body mass index; ALT, alanine transaminase; AST, aspartate aminotransferase; CEA, carcinoembryonic antigen; CA 199, carbohydrate antigen 199; 
CA 125, carbohydrate antigen 125; PC, pancreatic carcinoma; HC, healthy controls; PCH, pancreatic head cancer; PCB, pancreatic body and tail cancer; 
PCH-O, PCH with obstruction of bile duct; PCH-unO, PCH with unobstruction of bile duct. *Continuous variables was compared by Wilcoxon rank sum 
test; #Categorical variables was compared by Fisher’s exact test. 
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PC2 (25.7% and 20.7%, p < 0.001) and weighted Unifrac 
plot from PC1 and PC2 (59.5% and 12.4%, p < 0.001) 
(Supplementary Figure 2C and 2D). 

Phylogenetic profiles of gut microbiota in PC 

The bacterial taxonomic composition and alterations 
in PC was analyzed. Phylum abundance and composition 

were shown in Supplementary Figure 3A. Bacteroidetes, 
Firmicutes and Proteobacteria were the dominant bacterial 
phyla in PC and HC (Figure 4A). Compared with HC, 
Bacteroidetes significantly increased (p < 0.001), while 
Firmicutes and Proteobacteria decreased in PC (both  
p < 0.05) (Figure 4B). Correspondingly, genus abundance 
and composition were listed the top 19 genera in 
both groups (Supplementary Figure 3B). The linear 

Figure 1: Study design and flow diagram. A total of 167 fecal samples from 102 patients with pancreatic neoplasm and 65 healthy 
controls were collected. After a strict pathologic diagnosis and exclusion process, the remained samples were used for DNA extraction, 16S 
rRNA sequencing and data quality control. Finally, 85 patients with PC and 57 healthy controls were utilized for bioinformatics analysis. 
Meanwhile, subgroup analysis and stratification analysis for PC were performed. BMI, body mass index; QC, quality control; POD, 
probability of disease; HC, healthy controls; PC, pancreatic carcinoma; PCH, PC (head); PCB, PC (body and tail); PCH-O, PCH with 
obstruction of common bile duct; PCH-unO, PCH with unobstruction of common bile duct.
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discriminant analysis (LDA) effect size (LEfSe) method 
was utilized to select the greatest differences in taxa 
between PC and HC. A representative cladogram of fecal 
microbial structure indicated a significant gut microbial 
imbalance in PC (Supplementary Figure 4). At the genus 
level, 15 taxa mainly including Prevotella, Veillonella, 
Klebsiella, Selenomonas, Hallella, Enterobacter and 

Cronobacter were significantly enriched, while 25 
taxa mainly including Gemmiger, Bifidobacterium, 
Coprococcus, Clostridium IV, Blautia, Flavonifractor, 
Anaerostipes, Butyricicoccus and Dorea were remarkably 
reduced in PC versus HC based on LDA selection (Figure 
4C). These results suggest that gut microbial alterations 
in PC present significant increase of some potential 

Figure 2: Microbial alpha diversity decreased in PC patients shown by Shannon diversity index. (A) The comparison of 
Shannon diversity index between PC patients (n = 85) and HC (n = 57). (B) The subgroup comparison of Shannon diversity index among 
HC (n = 57), PCH (n = 54) and PCB (n = 31). (C) The stratification analysis of Shannon diversity index among HC (n = 57), PCH-O  
(n = 22) and PCH-unO (n = 32). The box presents the interquartile range; the line inside denotes the median, and the symbol “+” denotes 
the mean value. HC, healthy controls; PC, pancreatic carcinoma; PCH, PC (head); PCB, PC (body and tail); PCH-O, PCH with obstruction 
of common bile duct; PCH-unO, PCH with unobstruction of common bile duct. *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 3: Principal coordinate analysis (PCoA) based on the unweighted Unifrac metric of fecal microbiota among 
all samples. (A) Gut microbial profile in patients with PC was significantly distinct from HC (p < 0.001), but no remarkable separation 
was observed between PCH and PCB patients, shown by PCoA analysis. (B) The same PCoA plot as in (A), but the samples were colored 
according to their Shannon diversity indices, suggesting alpha diversity as an important factor along PC 1. PC, principal component; H, 
healthy controls; PCH, pancreatic carcinoma (head); PCB, pancreatic carcinoma (body and tail). 
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pathogens and lipopolysaccharides (LPS)-producing 
bacteria, and obvious decrease of some probiotics and 
butyrate-producing bacteria.

Crucial bacteria associated with the bile in PC

The obstruction of common bile duct in PC led to 
bile deficiency in the gut, and the bile was an important 
factor affecting gut microbial status. Gut microbial 
community in PCH-O was significantly different 
from PCH-unO. LEfSe method was used to display 
the greatest difference of microbial structure between 
PCH-O and PCH-unO (Figure 5A). At the genus level, 
8 taxa mainly including Parasporobacterium and 
Streptococcus enriched, whereas Escherichia Shigella 

and Anaerorhabdus reduced in PCH-O versus PCH-
unO based on LDA selection (Figure 5B). To some 
extent, abundances of Streptococcus and Escherichia 
Shigella might distinguish PCH-O from PCH-unO, and 
their area under the curve (AUC) values were 0.664 
(95% confidence interval (CI): 0.519–0.809) and 0.658 
(95% CI: 0.514–0.802), respectively (Figure 5C). Thus, 
Streptococcus and Escherichia Shigella may be associated 
with the bile in PC.

Gut microbial difference between PCH and PCB 
was mainly derived from the part of PCH-O. Then, 
microbial taxonomic difference between PCH and PCB 
was compared (Supplementary Figure 5). Notably, 
Streptococcus abundance significantly increased in PCH 
versus PCB (p < 0.001, Figure 5D). Meanwhile, the 

Figure 4: Composition and difference of fecal microbial communities between PC patients (n = 85) and healthy controls 
(n = 57). (A) Composition of fecal microbiota at the phylum level between the two groups. (B) Phylum Bacteroidetes was significantly 
increased, while Firmicutes and Proteobacteria were decreased in PC patients versus healthy controls. The box presents the interquartile 
range; the line inside denotes the median, and the symbol “+” denotes the mean value. (C) The 40 genera were significantly different 
between PC patients and healthy controls, shown by LDA score (log 10). The 15 genera were increased, whereas 25 were decreased in PC 
patients versus healthy controls. LDA, linear discriminant analysis; HC, healthy controls; PC, pancreatic carcinoma.
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abundance of Streptococcus might distinguish PCH from 
PCB, achieving an AUC of 0.734 (95% CI: 0.616–0.852) 
(Figure 5E). These results were consistent with the 
difference between PCH-O and PCH-unO, suggesting that 
Streptococcus is closely associated with the bile in PC.

According to international TNM stage of PC, a 
total of 50 PC patients were assigned to Stage I and 25 
PC patients were assigned to Stage II. To further illustrate 
gut microbial changes along PC progression, we analyzed 
microbial difference between Stage I and Stage II. The 
results indicated that genera Lactobacillus, Haemophilus 
and Streptococcus were significantly enriched in Stage 
II versus Stage I PC patients (Figure 5F), which might 
provide novel therapeutic targets to prevent PC progression. 

Functional prediction of microbial gene 
associated with PC 

Phylogeny and function of gut microbial community 
are linked. The phylogenetic investigation of communities 
by reconstruction of unobserved states (PICRUSt) version 
1.0.0 pipeline [29] and human version 0.99 [30] were used 
to construct KEGG pathway/module profile and predict 
functional capacity of microbial communities using 16S 
rRNA marker gene sequences (Supplementary Data File 4). 
Based on LDA selection, compared with HC, 23 predicted 
microbial functions including Leucine biosynthesis, 
Isoprenoid biosynthesis non mevalonate pathway and 
LPS biosynthesis enriched, while 13 functions including 

Figure 5: Identification of crucial bacteria associated with the bile in the gut for PC. (A) Phylogenetic profiles of the specific 
bacterial taxa and predominant bacteria associated with PCH-O using the LEfSe method. (B) The greatest differences at the genus level 
between PCH-O and PCH-unO, shown by LDA score (log 10). LDA, linear discriminant analysis. (C) Abundance of genus Streptococcus 
was significantly increased in PCH (N = 54) versus PCB (N = 31) patients. (D) Abundance of genus Streptococcus was elevated in PCH-O 
(N = 22) versus PCH-unO (N = 32) patients. PC, pancreatic carcinoma; PCH, PC (head); PCB, PC (body and tail); PCH-O, PCH with 
obstruction of common bile duct; PCH-unO, PCH with unobstruction of common bile duct. (E) The abundance of Streptococcus might 
distinguish PCH from PCB, achieving an AUC of 0.734 (95% CI: 0.616–0.852). (F) Genera Lactobacillus, Haemophilus and Streptococcus 
were significantly enriched in Stage II versus Stage I PC patients.
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Type V ATPase in prokaryotes, Spermidine putrescine 
transport system and Histidine biosynthesis reduced in 
PC (Supplementary Data File 5, Figure 6A). Moreover, 
compared to PCH-O, 6 functions including Inosine 
monophosphate biosynthesis, C5 isoprenoid biosynthesis 
non mevalonate pathway and Tyrosine biosynthesis 
increased, whereas 5 functions including Threonine 
biosynthesis, Sorbitol mannitol transport system and 
Shikimate pathway of phosphoenolpyruvate decreased 
in PCH-unO (Supplementary Data File 6, Figure 6B), 
suggesting that these microbial gene functions are closely 
associated with the bile in the gut.

Classification power of microbial markers 
associated with PC

To explore classification potential of gut microbial 
markers in PC, area under the receiver operating 
characteristics curve (AUROC) was performed using the 
abundance of the bacteria with biggest difference between 
PC and HC. The abundance of Gemmiger only gave an 
AUC of 0.663 (95% CI: 0.57–0.756) (Figure 7A), while 
Prevotella abundance only achieved an AUC of 0.713 
(95% CI: 0.624–0.802) (Figure 7B) between PC and HC. 

Furthermore, the 10-fold cross validation model 
was set up by using R package “randomForest” [31] to 
calculate probability of disease (POD). Based on the 40 
genera associated with PC using LDA selection, the AUC 
increased to 0.842 (95% CI: 0.777–0.907) between PC and 
HC (Figure 7C), achieving a high classification power for 
PC. When we performed 1000 permutations, randomly 
assigning samples to the training cohort, the AUC of the 
40 genera still achieved similar results (Supplementary 
Figure 6A). 

In addition, the same method to calculate POD 
between PCH-O and PCH-unO was conducted by using 
the combination of 10 genera associated with PCH-O 
based on LDA selection. The AUC reached 0.786 (95% 
CI: 0.661–0.91) between PCH-O and PCH-unO (Figure 
7D), presenting a significant increase of classification 
power for PCH-O. The random assignment of 1000 
permutations based on the 10 genera also showed similar 
results (Supplementary Figure 6B).

DISCUSSION

Understanding the etiology of PC lead to new 
prevention or treatment [32]. Some high risk factors 
including obesity, non-alcoholic fatty liver disease and 
T2D, have already been found close association with PC 
development [7, 8], and gut microbiota is proven involved 
in these diseases [20–23] or promote carcinogenesis 
e.g. HCC [24] and colorectal cancer [25]. However, 
gut microbial characterization in human PC have not 
been reported. This study, for the first time, illustrates 
gut microbial profile in PC cohorts in China by Miseq 

sequencing. Gut microbial diversity is significantly 
decreased and microbial profile is unique in PC, partly 
attributed to the decrease of alpha diversity. Microbial 
alterations in PC present an increase of some potential 
pathogens and LPS-producing bacteria, and a decrease 
of some probiotics and butyrate-producing bacteria. 
Moreover, microbial community in PCH-O is separated 
from PCH-unO, and Streptococcus is closely associated 
with the bile in the gut. Importantly, based on the 40 
genera associated with PC, microbial markers achieve a 
high classification power between PC and HC, providing 
non-invasive bio-markers for PC diagnosis.

Gut microbial imbalance in chronic diseases 
including T2D [33], inflammatory bowel diseases [34] and 
liver cirrhosis [35] are unique for each disease. Different 
diseases display a relatively unique profile, even if some 
markers are shared [36]. In T2D, gut microbiota presented 
a moderate degree of imbalance, characterized by the 
decrease of some universal butyrate-producing bacteria 
and the increase of various opportunistic pathogens, 
as well as the enrichment of other microbial functions 
conferring sulphate reduction and oxidative stress 
resistance [33]. In liver cirrhosis, potentially pathogenic 
bacteria including families Enterobacteriaceae, 
Veillonellaceae and Streptococcaceae were prevalent, 
with the reduction of beneficial populations such 
as Lachnospiraceae [35]. In PC of our study, some 
potential pathogens including Veillonella, Klebsiella 
and Selenomonas and LPS-producing bacteria including 
Prevotella, Hallella and Enterobacter were enriched, 
whereas probiotics including Bifidobacterium and some 
butyrate-producing bacteria, such as Coprococcus, 
Clostridium IV, Blautia, Flavonifractor and Anaerostipes 
were reduced. Importantly, the 40 genera associated with 
PC achieved an excellent classification capacity with AUC 
of 0.842 between PC and HC, suggesting that the specific 
alterations of gut microbiota might become non-invasive 
bio-markers for PC diagnosis. A successful bio-marker 
for cancer diagnosis should possess abilities of achieving 
high accuracy, easily operable and non-invasive specimen, 
and cost-effectiveness benefit. Fecal sample satisfied the 
non-invasive and easily operable features. Our study 
indicated that based on crucial genera associated with PC, 
gut microbial markers might achieve a high classification 
power for PC (AUC: 0.842, 95% CI: 0.777–0.907), which 
indicated the high accuracy feature of gut microbial 
marker. Also, the cost of microbial Miseq sequencing will 
be significantly decreased along with the development of 
high-throughput sequencing. Thus, gut microbiota could 
be a successful biomarker for cancer diagnosis.

Phylogeny and function of gut microbiota are linked 
[29]. Different microbial communities determine different 
microbial functions and productions, thereby contributing 
to the pathogenesis and development of different diseases 
[37–39]. Based on LDA selection, gut microbial functions 
involved in Leucine and LPS biosynthesis enriched, while 
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Figure 6: Functional prediction of microbial genes associated with PC using PICRUSt. (A) The 23 predicted microbial 
functions including Leucine biosynthesis, Isoprenoid biosynthesis non mevalonate pathway and LPS biosynthesis were significantly 
enriched, while 13 functions including Type V ATPase in prokaryotes, Spermidine putrescine transport system and Histidine biosynthesis 
were remarkably reduced in PC patients versus HC, shown by LDA score (log 10). (B) The 6 predicted microbial functions including Inosine 
monophosphate biosynthesis, C5 isoprenoid biosynthesis non mevalonate pathway and Tyrosine biosynthesis were significantly increased, 
whereas 5 functions including Threonine biosynthesis, Sorbitol mannitol transport system and Shikimate pathway of phosphoenolpyruvate 
were decreased in PCH-unO versus PCH-O patients, shown by LDA score (log 10). PICRUSt: Phylogenetic Investigation of Communities 
by Reconstruction of Unobserved States; LDA, linear discriminant analysis; HC, healthy controls; PC, pancreatic carcinoma; PCH, PC 
(head); PCH-O, PCH with obstruction of common bile duct; PCH-unO, PCH with unobstruction of common bile duct.
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Spermidine putrescine transport system and Histidine 
biosynthesis reduced in PC. These microbial functional 
alterations were consistent with microbial taxonomic 
changes in PC. Notably, the decrease of LPS biosynthesis 
function was corresponding to the reduction of LPS-

producing bacteria. As a pathogen-associated molecular 
pattern, LPS might possess the pro-inflammatory pro-
tumor capacity, and could provoke an inflammatory 
response and thus aggravated inflammation-related chronic 
conditions. High levels of LPS activated the NF-kB 

Figure 7: Classification power of microbial markers associated with PC by AUROC analysis. (A) The abundance of 
Gemmiger was used to distinguish PC patients from healthy controls (AUC = 0.663, 95% CI: 0.57–0.756, sensitivity: 0.812, specificity: 
0.509). (B) The abundance of Prevotella was utilized to distinguish PC patients from healthy controls (AUC = 0.713, 95% CI: 0.624–0.802, 
sensitivity: 0.788, specificity: 0.579). (C) All 40 PC associated genera were transformed as probability of disease (POD) using R package 
“randomForest”, and then were used to distinguish PC patients from healthy controls shown by AUROC analysis (AUC = 0.842, 95% 
CI: 0.777–0.907, sensitivity: 0.859, specificity: 0.667). (D) All 10 PCH-O associated genera were transformed as POD using R package 
“randomForest”, and then were used to distinguish PCH-O from PCH-unO patients (AUC = 0.786, 95% CI: 0.661–0.91, sensitivity: 0.818, 
specificity: 0.688). AUC, area under the curve; AUROC, area under the receiver operating characteristics curve; CI: confidence intervals; 
PC, pancreatic carcinoma; HC, healthy controls; PCH, PC (head); PCH-O, PCH with obstruction of common bile duct; PCH-unO, PCH 
with unobstruction of common bile duct.
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pathway, produced pro-inflammatory cytokines (TNF-a, 
IL-6 and IL-1) and led to chronic inflammation and 
oxidative damage [40]. Long-term chronic inflammation 
and oxidative damage further led to the development of 
cancer. These findings of microbial functions may provide 
useful insights into the etiology of PC.

Bile acids are physiological detergents that generate 
bile flow and facilitate intestinal absorption and transport 
of lipids, nutrients, and vitamins. The gut-liver circulation 
of bile acids exerts important physiological functions 
in feedback inhibition of bile acid synthesis and in 
control of whole-body lipid homeostasis [41]. Thus, it is 
essential to explore interactions between bile acids and 
gut microbiota in digestive diseases. Many PC patients 
always accompanied with obstruction of common bile 
duct, thereby leading to bile deficiency in the gut. The 
stratification analysis of PCH indicated that gut microbial 
community in PCH-O were significantly different 
from PCH-unO. The abundances of Streptococcus 
and Escherichia Shigella might distinguish PCH-O 
from PCH-unO to some extent. Also, the abundance of 
Streptococcus significantly increased in PCH versus 
PCB, and might distinguish PCH from PCB with an 
AUC of 0.734. These results suggested that Streptococcus 
was closely associated with the bile in the gut for PC. 
Metabolism and biosynthesis of bile acids and lipid 
were disordered in liver diseases. Previous studies 
indicated that genus Streptococcus was enriched [36], 
and family Streptococaceae was positively correlated 
with the increasing Child-Turcotte-Pugh score [35] in 
liver cirrhosis. For PC patients in our study, under bile 
deficiency in the gut, microbial functions associated 
with bile acid synthesis and lipid homeostasis presented 
significant changes, such as the decrease of Inosine 
monophosphate biosynthesis, C5 isoprenoid biosynthesis 
non mevalonate pathway and Tyrosine biosynthesis, 
and the increase of Threonine biosynthesis, Sorbitol 
mannitol transport system and Shikimate pathway of 
phosphoenolpyruvate. These findings hinted that genus 
Streptococcus was associated with bile acid and lipid 
homeostasis in the gut. 

Gut microbiota has been linked with various chronic 
diseases such as obesity [42], T2D [33] and liver cirrhosis 
[35]. Using an approach of conventionality of germ-free 
mice, the seminal paper that indicated a putative causality 
between gut microbiota and obesity [43] demonstrated 
that conventionalization of previously lean and insulin-
sensitive germ-free mice increased their adiposity by 60% 
while also increasing their insulin resistance, despite the 
mice having a reduced food intake [20]. Subsequently, 
conventionalization of germ-free mice with gut microbiota 
from obese mice led to substantially higher adiposity than 
conventionalization with the microbiota from lean mice 
[44, 45]. Nevertheless, most of studies on gut microbiota 
just showed a correlated relationship between gut 
microbiota and the specific disease. Our study is the first 

time to illustrate the characteristics in clinical PC patients, 
and indicates gut microbial alterations in PC, which is 
the advantage of this study. In contrast, this study cannot 
illustrate whether these gut microbial changes are a cause 
or effect for clinical PC, which is the limitation of this 
study. Thus, an approach of conventionalization of germ-
free mice or fecal microbial transplantation to disease 
animal model is essential to validate the possible causative 
relationship between gut microbiota and PC development. 
Also, an independent validation of clinical PC samples is 
important to further illustrate gut microbial alteration.

MATERIALS AND METHODS

Ethics statement

This study was approved by the Institutional 
Review Board of the First Affiliated Hospital, School of 
Medicine, Zhejiang University (reference number 2014–
336), and the study was performed in accordance with the 
Helsinki Declaration and Rules of Good Clinical Practice. 
All participants approved and signed written informed 
consents upon enrollment.

Participants information

Pancreatic tumor was initially diagnosed 
according to international guidelines by comprehensive 
consideration of clinical symptoms, physical signs, 
contrast-enhanced abdominal tomography and magnetic 
resonance imaging, laboratory tests and medical history. 
According to current standard staging procedure for 
pancreatic tumor, the patients underwent laparoscopic 
or laparotomic examination, endoscopic retrograde 
cholangiopancreatography (ERCP) or endoscopic 
ultrasonography (EUS) with fine needle aspiration or 
bile duct brushing, and then biopsies were obtained for 
histology diagnosis of the primary tumor. Exclusion 
criteria for patients was as follows: (a) patients with 
severe complications; (b) patients with previous 
history of chemotherapy or abdominal irradiation 
were considered ineligible; (c) patients suffered from 
other diseases including hepatic diseases, intestinal 
diseases, hypertension and metabolic diseases. Further 
inclusive criteria was: age of 30–70 years, histological 
adenocarcinoma, presence of measurable or evaluable 
lesion, no contraindications for FDG-PET-CT imaging, 
adequate bone marrow reserve, normal renal function, 
BMI > 20. Correspondingly, HC with matched age, 
gender and BMI were screened and enrolled. Inclusion 
and exclusion criteria for HC referred to our previous 
study [36]. All participants who received antibiotics and/
or probiotics within 8 weeks before enrollment were also 
excluded. Patients information on diet data, drug use, 
drinking and so on were collected (the details in Patient 
information collection).
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Sample collection and DNA extraction 

Stool samples of patients with pancreatic tumor 
were collected at 6:30–8:30 am when they were admitted 
to hospital. Each participant provided a fresh stool sample 
that was delivered immediately from our hospital to the 
laboratory in an ice bag using insulating polystyrene foam 
containers. The sample was divided into five aliquots of 
200 mg and immediately stored at −80 °C. The sample 
that stayed in room temperature more than 2 hours 
was discarded. A frozen aliquot (200 mg) of each fecal 
sample was processed by phenol trichloromethane DNA 
extraction using a bead beater to mechanically disrupt 
cells, followed by phenol–chloroform extraction [36, 45]. 
DNA was further purified using the Quick gel extraction 
kit (Qiagen, Germany) according to the manufacturer’s 
instructions. DNA concentration was measured by 
NanoDrop (Thermo Scientific), and its molecular size was 
estimated by agarose gel electrophoresis.

PCR amplification and MiSeq sequencing

The extracted DNA samples were amplified with 
a set of primers targeting the hyper-variable V3-V5 
region (338F/806R) of the 16S rRNA gene. The forward 
primer is 5′-ACTCCTACGGGAGGCAGCA-3′ and the 
reverse primer is 5′-GGACTACHVGGGTWTCTAAT-3′. 
The PCR amplification was performed according to 
our previous description [36, 46]. DNA libraries were 
constructed according to the manufacturer’s instructions, 
and the sequencing was performed on the Illumina MiSeq 
platform at the Majorbio Bio-Pharm Technology Co., 
Ltd. The raw Illumina read data for all samples have 
been deposited in the European Bioinformatics Institute 
European Nucleotide Archive database under accession 
number PRJEB13286 (Secondary study accession 
number: ERP014841).

Sequence data process

The amplified reads were processed with following 
steps: (a) pair end sequenced reads of each library 
were overlapped by FLASH version 1.2.10 [47] with 
default parameters. (b) a custom per program was used 
to perform more specific quality control of overlapped 
reads generated by FLASH: 1) No ambiguous bases (N) 
were allowed in reads; 2) No more than 5 mismatches 
were allowed in overlap region; 3) No mismatches were 
allowed in barcode/primer region. (c) reads were de-
multiplexed and assigned into different samples according 
to barcodes; (d) chimeric sequences were detected and 
removed with UCHIME version 4.2.40 [48] with 16S 
“golden standard” database provided by Broad Institute 
as reference (version microbiome util-r20110519, http://
drive5.com/uchime/gold.fa).

OTUs clustering and taxonomy annotation

Random reads were chosen from all samples with 
equal number, and then OTUs were binned by UPARSE 
pipeline [49] with following steps: (a) abundant sequences 
and singletons were firstly removed; (b) unique sequences 
were binned into OTUs with command “usearch-cluster_
otus”; (c) randomly chosen sequences were aligned against 
OTU sequences with command “usearch-usearch_global-id 
0.97”, the identity threshold was set as 0.97, and then OTU 
composition table was created. We annotated sequences by 
using RDP classifier version 2.6 [50], confident level was 
set as 0.5 according to the developer’s documents (http://
rdp.cme.msu.edu/classifier/class_help.jsp#conf). 

Bacterial diversity and principal coordinate 
analysis (PCoA)

Bacterial diversity was determined by sampling-
based analysis of OTUs, and shown by Shannon, Chao1 
and Simpson indices estimated at a distance of 3% that 
were calculated using R program package “vegan” [51]. 
PCoA based on OTUs distribution was conducted by 
the R package (http://www.R-project.org/) to visualize 
interactions among bacterial communities. The weighted 
and unweighted unifrac distances were calculated with 
phyloseq package [52]. Bacterial differences at the 
taxonomic level including phylum, class, order, family and 
genus, were compared.

The specific characterization of fecal microbiota 
to distinguish taxonomic types was analyzed by linear 
discriminant analysis (LDA) effect size (LEfSe) method 
(http://huttenhower.sph.harvard.edu/lefse/) [53]. Using a 
normalized relative abundance matrix, LEfSe performs the 
Kruskal-Wallis rank sum test to determine the features with 
significantly different abundances between assigned taxa 
and uses LDA to assess the effect size of each feature [54].

Functional annotation of 16S rRNA gene based 
on KEGG profile

The PICRUSt version 1.0.0 pipeline [29] and human 
version 0.99 [30] were used to construct KEGG orthology 
(KO) and KEGG pathway/module profile, predicting 
functional profiling of microbial communities using 16S 
rRNA marker gene sequences. PICRUSt uses an extended 
ancestral-state reconstruction algorithm to recaptures 
key findings from the Human Microbiome Project and 
accurately predicts gene families abundance in host-
associated communities, with quantifiable uncertainty. 

Probability of disease (POD) calculation 

First we built 10-fold cross validation model by 
using R package “randomForest” [31]. For a validation 
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sample, models were trained by using unrelated train 
samples. POD is calculated as follows:

POD D
M

=

M is the number of all trees (this was set as 1000 
in our study), and tree D is the number of trees that will 
classify validation sample as “disease” status. For HC 
versus PC, we term PC as disease. For PCH-O versus 
PCH-unO, we term PCH_O as disease.

Statistical analysis

Continuous variables were compared using 
Wilcoxon rank sum test between both groups. One-way 
ANOVA was utilized to evaluate difference among three 
groups. Fisher’s exact test was used to compare categorical 
variables. Receiver operating characteristics (ROC) curves 
were conducted and AUC was used to designate ROC 
effect. Statistical analyses were performed using SPSS 
version 19.0 for Windows (SPSS Inc., Chicago, IL).

CONCLUSIONS

To our knowledge, this is the first report to illustrate 
gut microbial characteristics in PC through a large-cohort 
Miseq sequencing. The patients with PC presented a 
decreased diversity of gut microbiota, and an unique 
microbial profile distinguishing from HC, partly attributed 
to the decrease of alpha diversity. Gut microbial alterations 
in PC showed an increase of some potential pathogens and 
LPS-producing bacteria, and a decrease of some probiotics 
and butyrate-producing bacteria. The alterations of 
microbial gene functions were consistent with taxonomic 
changes in PC. Streptococcus was associated with the 
bile in the gut. Based on crucial genera associated with 
PC, microbial markers might achieve a high classification 
power for PC. These findings may provide non-invasive 
bio-markers for PC diagnosis.

Availability of data and materials

The raw Illumina read data for all samples have 
been deposited in the European Bioinformatics Institute 
European Nucleotide Archive database under accession 
number PRJEB13286 (Secondary study accession number: 
ERP014841).

Consent for publication 

Consent was not required as data are anonymized.
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