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Abstract: Intracellular peptides were shown to derive from proteasomal degradation of proteins
from mammalian and yeast cells, being suggested to play distinctive roles both inside and outside
these cells. Here, the role of intracellular peptides previously identified from skeletal muscle and
adipose tissues of C57BL6/N wild type (WT) and neurolysin knockout mice were investigated. In
differentiated C2C12 mouse skeletal muscle cells, some of these intracellular peptides like insulin
activated the expression of several genes related to muscle contraction and gluconeogenesis. One of
these peptides, LASVSTVLTSKYR (Ric4; 600 µg/kg), administrated either intraperitoneally or orally
in WT mice, decreased glycemia. Neither insulin (10 nM) nor Ric4 (100 µM) induced glucose uptake
in adipose tissue explants obtained from conditional knockout mice depleted of insulin receptor.
Ric4 (100 µM) similarly to insulin (100 nM) induced Glut4 translocation to the plasma membrane of
C2C12 differentiated cells, and increased GLUT4 mRNA levels in epididymal adipose tissue of WT
mice. Ric4 (100 µM) increased both Erk and Akt phosphorylation in C2C12, as well as in epididymal
adipose tissue from WT mice; Erk, but not Akt phosphorylation was activated by Ric4 in tibial skeletal
muscle from WT mice. Ric4 is rapidly degraded in vitro by WT liver and kidney crude extracts,
such a response that is largely reduced by structural modifications such as N-terminal acetylation,
C-terminal amidation, and substitution of Leu8 for DLeu8 (Ac-LASVSTV[DLeu]TSKYR-NH2; Ric4-
16). Ric4-16, among several Ric4 derivatives, efficiently induced glucose uptake in differentiated
C2C12 cells. Among six Ric4-derivatives evaluated in vivo, Ac-LASVSTVLTSKYR-NH2 (Ric4-2;
600 µg/kg) and Ac-LASVSTV[DLeu]TSKYR (Ric4-15; 600 µg/kg) administrated orally efficiently
reduced glycemia in a glucose tolerance test in WT mice. The potential clinical application of Ric4
and Ric4-derivatives deserves further attention.

Keywords: peptide drug discovery; bioactive peptides; glucose uptake; insulin signaling; diabetes

1. Introduction

Evidence gathered over the years strongly supports the involvement of various pro-
teases, peptidases, and peptides in the development of metabolic disorders such as insulin
resistance, obesity, and metabolic syndrome [1–5]. Peptides, due to their remarkable po-
tency, selectivity, and low toxicity, arise as good candidates for therapeutic applications [6,7].
Moreover, the complex structure of peptides, compared to that of small molecules, is no
longer limiting their therapeutic use.

A peptide-capture assay using the catalytically inactive form of Thimet-oligopeptidase
(EC 3.4.24.15; THOP1) allowed the seminal identification of a new class of functional intra-
cellular peptides (InPeps) of therapeutic potential [8]. InPeps were suggested as products
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of proteasomal proteolysis [9–13], distinguishable from major histocompatibility class I
(MHC-I) antigens, neuropeptides, and/or cryptides [9–11]. Different treatments and/or
diseases modify the relative concentration of specific InPeps present in cells or tissues,
suggesting pathophysiological functions [10,14,15]. Pharmacological and commercial ap-
plications of InPeps have been previously suggested [16]. In challenge conditions, cells
accumulate or lose specific InPeps that are biologically functional [17–19]. Possible biologi-
cal functions for InPeps have been suggested to take place either intracellularly, through
modulation of protein interactions [20,21] and microRNA stability [17], or extracellularly
through binding to plasma membrane receptors [20,22–26]. Mice with whole-body deletion
of THOP1 were resistant to diet-induced obesity and insulin resistance after being fed
a high fat diet for 24 weeks [17]. Moreover, the relative levels of at least four InPeps
were increased in C57BL6/N null mice for the endopeptidase neurolysin (EC 3.4.24.16;
Nln−/−) [4], which display improved glucose tolerance and insulin sensitivity. Altogether,
these findings suggest the exciting possibility that InPeps may protect mice from diet
induced obesity and insulin resistance [4]. Two of these relatively increased InPeps were
identified from the gastrocnemius muscle to derive from troponin I (SADAMLKALL-
GSKHK, Ric1; DMEVKVQKSSKELEDMNQKL, Ric2). Another two InPeps that were
relatively increased in Nln−/− were from the epididymal adipose tissue, one being derived
from acyl-CoA binding protein (VEKVDELKKKYGI, Ric3) and the other one derived from
hemoglobin alpha subunit (LASVSTVLTSKYR, Ric4) [4].

Antidiabetic agents such as thiazolidinediones and biguanide metformin enhance
insulin sensitivity, and effectively reduces hyperglycemia [27]. However, these drugs show
several undesired side-effects after long-term administration [28], emphasizing the need
for the development of new compounds to treat these conditions. In this sense, peptides
due to their remarkable potency, selectivity, and low toxicity, arise as good candidates [7].
Indeed, previous studies have indicated that peptides are key regulators of various cellular
and intercellular physiological responses and therefore possess an enormous potential for
the treatment of various diseases including obesity and insulin resistance [7].

Here, we investigated the effects on glucose uptake and homeostasis of the InPeps
Ric1, Ric2, Ric3, and Ric4, which were increased in glucose tolerant and insulin sensitive
Nln−/− mice [4]. Our hypothesis was that Ric1, Ric2, Ric3, and/or Ric4 could function
synergically or similarly to insulin inducing glucose uptake and reducing glycemia.

2. Experimental Procedures
2.1. Animals

In vivo experiments were conducted with male C57BL/6N (WT) mice 12–16 weeks-old
(University of São Paulo Medical School Animal Facility, SP, Brazil). Mice were maintained
in individual ventilated cages (Amresco, SP, Brazil), under standardized conditions with an
artificial 12 h dark–light cycle, with free access to standard chow (Nuvital Nutrientes S.A.,
Colombo, PR, Brazil) and drinking water ad libitum. The number of animals used was
the minimum necessary to obtain statistically significant results and they were maintained
and used in accordance with the guidelines of the National Council for Control of Animal
Experiments (CONCEA), following international norms of animal care and maintenance.
Thus, we hereby state that all experimental protocols were previously approved by Uni-
versity of São Paulo Ethic committee councils from Biomedical Science Institute (approval
number for mice experimentation ICB/USP 22/2017).

2.2. Glucose Tolerance Tests (GTT)

WT mice were fasted for 12 h and blood samples were taken before and at 15, 30, 60, 90,
and 120 min after the intraperitoneal (ip) injection of 2 g/kg glucose [29,30]. Glycemia was
measured using a glucometer (Accu-Check Performa, ROCHE, São Paulo, Brazil). Peptides
were evaluated to affect glucose uptake either after ip or oral (by gavage) administration.
After 20 min glucose was administrated (blood glucose levels reached 400 mg/dL), animals
received ip or oral administration of either saline, insulin (0.75 IU/kg), or peptide (Ric2 or
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Ric4; 600 µg/kg). In addition, a group of animals received oral administration of either
water or Ric2 or Ric4 (600 µg/kg). Glycemia was measured as indicated following vehicle,
insulin, or peptide administration [17].

2.3. Cell Culture

C2C12 cells were used as a well-described model of skeletal muscle to evaluate the
effect of peptides in gene expression, cell signaling, and glucose uptake [29,31–34]. These
cells were kindly provided by Prof. Patricia Brum, School of Physical Education and
Prof. Anselmo Moriscot, Biomedical Science Institute, University of São Paulo, São Paulo,
Brazil. C2C12 cells were cultured and maintained in high glucose Dulbecco’s modified
Eagle’s medium (DMEM; Thermo Fisher Scientific, São Paulo, SP, Brazil) supplemented
with 10% fetal bovine serum (FBS), 100 U/mL penicillin, and 100 mg/mL streptomycin in
a humidified atmosphere of 5% CO2 at 37 ◦C. The cells were used in low pass (between
passages 2 and 4) for all experiments to maintain the potential for differentiation of cultures.
Cells grown to approximately 70% confluence in T75 culture flasks were treated with
trypsin and seeded in various P100 culture dishes. Cells were then cultured in the presence
of 10% FBS until they reach about 90% confluence, at which point the medium was replaced
with DMEM containing 2% horse serum for the induction of differentiation in myotubes.
During this time, the fused myoblasts formed elongated, multi-nucleated myotubes, and
within 7 days more than 95% of the cells already fused into myotubes. Cultures of C2C12
were treated with phosphate buffer saline (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4,
and 1.8 mM KH2PO4, pH 7.4; PBS; control), insulin or InPeps, for the indicated period of
time. From these treatments the cells were processed for molecular analyses.

2.4. Cell Viability

Cell viability tests were performed using 3-(4,5-dimethizzol-zyl)-2-5-diphenyl tetra-
zolium bromide (MTT). The purpose of these tests was to observe whether the peptides
evaluated have an effect on the cellular viability. MTT is a yellow, water-soluble reagent. It
can penetrate the cells through the membrane and, in contact with the superoxide produced
only by the mitochondrial activity of living cells, is oxidized to MTT-formezan (a salt of
purple color and insoluble in water). Thus, only living cells acquire purplish staining [35].
To perform these cell viability tests, C2C12 cells were incubated in the presence of different
peptide concentrations for up to 6 h. After incubation, the medium was replaced with
serum-free and antibiotic-free DMEM plus 10% MTT reagent (5 mg/mL) and incubated
at 37 ◦C for 1 h. Thereafter, the medium was replaced with a solution of isopropyl alco-
hol/0.04 N HCl and stirred vigorously. The supernatant was removed and the absorbance
read at wavelength of 570 nm [35].

2.5. Western Blotting

Western blotting experiments were performed to evaluate the expression levels of spe-
cific proteins. Briefly, cells or tissues as indicated were solubilized by directly adding RIPA
buffer (50 mM Tris HCl, 150 mM NaCl, 1.0% v/v, NP-40, 0.5% w/v, sodium deoxycholate,
1.0 mM ethylenediamine tetraacetic acid, EDTA, 0.1% w/v, sodium dodecyl sulphate,
SDS, and 0.01% w/v sodium azide, pH of 7.4) containing protease (P8340; Sigma Aldrich,
Sao Paulo, Brazil) and phosphatase (P5726, Sigma Aldrich, Sao Paulo, Brazil) inhibitors
cocktails, followed by sonication with a micro-tip for 5 s. After 30 min of incubation on
ice, samples were centrifuged for 30 min at 12,000× g. Proteins from supernatants (50 µg)
were separated by 10% SDS-PAGE and transferred to nitrocellulose membranes for im-
munoblotting with mouse monoclonal anti-phospho extracellular signal-regulated kinase
1/2 (anti-pErk; Erk 1/2 phosphorylation at Thr202-Tyr204; 1:1000; Cell Signaling, Boston,
MA, USA), and rabbit polyclonal anti-total extracellular signal-regulated kinase 1/2 (Erk;
anti-total Erk 1/2, 1:1000; Cell Signaling, Boston, MA, USA) antibodies. Blots were also
treated with rabbit anti-phospho Akt (S473) (anti-pAkt, 1:1000) and mouse polyclonal anti-
total Akt (anti-Akt, 1:1000) (Cell Signaling, Boston, MA, USA) and anti-myogenin (1:1000,
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Abcam, UK). Protein normalization indicated was performed using rabbit polyclonal anti-
glyceraldehyde 3-phosphate dehydrogenase (GAPDH; 1:2000; Proteimax Biotechnology,
São Paulo, Brazil) antibodies or anti-β-actin mouse antiserum (1:2000; Sigma Aldrich, Sao
Paulo, Brazil). Blots were incubated with horseradish peroxidase-conjugated secondary an-
tibodies for 3 h at room temperature. Western blot bands were visualized with Super-Signal
West Pico Chemiluminescent substrate (Thermo Scientific) using the ChemiDoc™ MP
Imaging System (BioRad, Hercules, CA, USA), and quantified using ImageJ 1.49 software.
All results are expressed as the means ± standard error of the mean (SEM). The statistical
comparisons were performed using Student’s t-test or analysis of variance (ANOVA),
followed by ad-hoc Tukey’s test (n = 7). Data were statistically analyzed with GraphPad
Prism software (GraphPad Software Inc, San Diego, CA, USA).

2.6. Peptide Synthesis

Peptides were synthesized using Fmoc (N-(9-fluorenyl) methoxycarbonyl) chemistry
and were further purified by high-performance liquid chromatography (HPLC) to ≥95%
purity (Table 1; Proteimax Biotechnology LTDA, São Paulo, SP, Brazil), similarly to pre-
viously described [20]. For all experiments, peptides stock solutions (10 mg/mL) were
prepared in autoclaved Milli-Q water and kept at −80 ◦C. Additional dilutions were
prepared immediately before the experiments in the appropriate vehicle (i.e., DMEM,
phosphate buffered saline, or autoclaved Milli-Q water).

Table 1. Ric4 derived peptides.

Peptide AA Sequence pI (pH) Net Charge (pH 7.0)

Ric4-1 Ac-LASVSTVLTSKYR 9.81 1.9
Ric4-2 Ac-LASVSTVLTSKYR-NH2 9.81 2
Ric4-3 ASVSTVLTSKYR 10.5 2
Ric4-4 SVSTVLTSKYR 10.41 2
Ric4-5 VSTVLTSKYR 10.46 2
Ric4-6 STVLTSKYR 10.41 2
Ric4-7 TVLTSKYR 10.4 2
Ric4-8 Ac-LASVSTVLTSKY 8.81 0.9
Ric4-9 Ac-LASVSTVLTSKY-NH2 8.82 1
Ric4-10 LASVSTVLTSKY 9.74 1
Ric4-11 LASVSTVLTSK 10.12 1
Ric4-12 LASVSTVLTS 3.72 0
Ric4-13 LASVSTVLT 3.69 0
Ric4-14 LASVSTVL 3.63 0
Ric4-15 Ac-LASVSTV[DLeu]TSKYR 9.81 1.9
Ric4-16 Ac-LASVSTV[DLeu]TSKYR-NH2 9.81 2

2.7. Intracellular Peptide Stability

In order to determine if the peptides investigated herein were substrates of tissue
peptidases, 50 µM of each peptide was individually incubated for 20 min in the presence of
the crude tissue extract (liver, 30 µg; kidney, 3 µg) in a final volume of 250 µL of 0.025 M
Tris-HCl, containing 0.125 M NaCl (TBS). Peptide hydrolyses were analyzed by reverse
phase liquid chromatography (HPLC) using a C18 µBond-pak column (4.6 × 250 mm; Mil-
lipore Corp.) with a linear gradient of 5–65% acetonitrile in 0.1% TFA for 20 min at a flow
rate of 1 mL/min, and absorbance monitored at a wavelength of 214 nm, as previously de-
scribed [8,36,37]. Cleaved peptide bonds were identified by mass spectrometry sequencing
after isolating the cleavage fragments manually after HPLC, as previously described [8,38]
(data not shown). Control enzyme assays were conducted using bradykinin (RPPGFSPFR;
50 µM) as a standard substrate [37].
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2.8. Real-Time PCR

Real-time PCR (qPCR) experiments were performed to evaluate the mRNA expres-
sion levels, at basal and under stimulus, for peroxisome proliferator activator receptor
gamma (PPARγ), peroxisome proliferator activator receptor alpha (PPARa), cAMP re-
sponsive element binding protein 1 (Creb1), aldolase A, fructose-bisphosphate (ALDOA),
cytochrome c oxidase subunit IV isoform 1 (Cox4i1), phosphoglycerate mutase 2 (PGAM2),
troponin I, skeletal, fast 2 (TNNI2), troponin I, skeletal, fast 3 (TNNT3), small muscle
protein X-linked (SMPX), myosin, light chain 1 (MYH1), insulin-growth factor 1 (IGF1),
Glucose transporter 4 (GLUT4), and lipoprotein lipase (LPL). Primers sequences are de-
scribed in Supplementary Materials (Table S1). Cells were homogenized and total RNA
extracted using Trizol according to the manufacturer’s instructions (TRIzol, Life Technolo-
gies, Rockville, MD, USA). After extraction of RNA, all samples were purified and treated
with DNAse using RNeasy Mini Kit (Qiagen, Foster City, CA, USA). The integrity of the
RNA was verified by 1% agarose gel electrophoresis stained with ethidium bromide and
visualized in ultraviolet light. The cDNAs were synthesized from 2 µg of total RNA with
Moloney Murine Leukemia Virus Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA)
using random hexamer nucleotides. The standard curves for all the primers used herein
were previously constructed to determine the efficiency of the amplification of the target
and reference genes. Quantitative PCRs were performed using the Prism 7900 sequence
detection system (Applied Biosystems, Foster City, CA, USA) with 100 nM primer and
20 ng cDNA. The expression of mRNA targets was normalized by expression of gene
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or hipoxantina-guanina fosfori-
bosiltransferase (HPRT) and expressed as relative values using the 2 DDCt method [39].
The expression levels of target genes were normalized with housekeeping genes GAPDH
or HPRT, and alterations were expressed relative to control unstimulated cells.

2.9. Glucose Uptake in Adipose Explants

Glucose uptake was evaluated in adipose tissue explants from mice bearing or not
deletion of insulin receptor in adipocytes essentially as previously described [40]. Briefly,
explants of epididymal adipose tissue (20–25 mg) were incubated in 1 mL of Krebs–Ringer
bicarbonate buffer (in mmol/L): 118 NaCl, 4.8 KCl, 1.25 CaCl2, 1.2 KH2PO4, 1.2 MgSO4, 25
NaHCO3, and 5.5 glucose and 1 µCi/mL of 3H-deoxyglucose (New England Radiochemi-
cals, Boston, MA, USA) supplemented with 2% fatty acid-free BSA (Sigma, Oakville, ON,
Canada), 7.4. Vials were incubated at 37 ◦C for 1 h in the presence or absence of insulin
(100 nM) or Ric4 peptide (100 µM). After 30 min, explants were extensively washed and
processed to evaluate the uptake of 3H deoxyglucose as previously described [40].

2.10. Glucose Uptake Assays

C2C12 myotubes were incubated for 3 h with serum-free, 5 mM glucose-DMEM, then
incubated with Hepes buffer for 30 min and then incubated for further 30 min in glucose-
uptake buffer containing vehicle, Insulin (100 nM), Ric4 or Ric4 derived peptides (100 µM)
in the presence of 3H-glucose (1uCi/mL; New England Radiochemicals, MA, USA)or
2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG/80 µM; (In-
vitrogen, Carlsbad, CA, USA). Plates were incubated at 37 ◦C with 5% CO2 for a period of
30 min. After that, cells were lysed with 50 µL of 0.1 N NaOH and fluorescence or beta
radiation of aliquots from the lysate was measured in spectrophotometer or beta counter,
respectively and normalized by mg of total protein [41].

2.11. GLUT4 Translocation Assays

C2C12 differentiated myotubes were starved with free-FBS low glucose DMEM for
3 h, and then treated with saline or 5 µM of BMS-536924 insulin receptor inhibitor (Sigma-
Aldrich, Sao Paulo, Brazil) for 30 min. Next, C2C12 were incubated in the presence of
either vehicle, insulin (100 nM) or Ric4 (100 µM) for 30 min. As described by Tortorella and
Pilch, 2002, cells were washed three times with PBS, and homogenized with 40 strokes of a
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glass tissue grinder in buffer containing sucrose 255 mM, disodium 4 mM, EDTA 20 mM,
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 10 mM, pH 7.4, leupeptin
10 µM, pepstatin 1µM, aprotinin 1 µM, phenylmethylsulfonyl fluoride (PMSF) 1 mM, and
benzamidine 5 mM (HES buffer). The homogenate was centrifuged at 19,000× g for 20 min.
The pellet was saved (P1). The supernatant was recovered and centrifuged at 40,000× g
for 20 min. The pellet (MF1) was resuspended in HES buffer. The supernatant was further
centrifuged at 180,000× g for 1.5 h and the pellet (MF2) was resuspended in HES buffer.
Both pellets MF1 and MF2, referred to as microsomal fraction (MF) correspond to high-
and low-density microsomes. The pellet from the first centrifugation (P1) was resuspended
in HES buffer, layered onto a 1.12 M sucrose cushion in 20 mM HEPES and 1 mM disodium
EDTA, and centrifuged at 100,000× g for 1 h. The pellet (nuclear/endoplasmic reticulum
fraction -N/ER) was resuspended in a buffer containing 20 mM Tris (pH 7.4), 50 mM
NaCl, 2% Nonidet P-40, 0.5% deoxycholate, 0.2% SDS, and the protease inhibitor cocktail
(#P8340; Sigma Aldrich, SP, Brazil). The interphase of the sucrose cushion was collected
and pelleted at 40,000× g for 20 min. This PM-containing pellet (PM) was resuspended in
PBS plus protease inhibitors. All centrifugations were performed at 4 ◦C with a Beckman
Coulter Ultracentrifuge [42]. Total protein of all samples was determined using Pierce™
BCA Protein Assay Kit (ThermoFisher, Sao Paulo, Brazil). Proteins were submitted to
Western blot analysis as described above, using as primary antibody anti-Glut4 (1:1000,
Cell Signaling, Boston, MA, USA).

2.12. Statistical Analyses

All results were expressed as mean ± SEM. Statistical analyses were conducted by
unpaired t test for independent samples, or analysis of variance (ANOVA) followed by
ad-hoc Tukey’s test and/or Bonferroni test for samples comparing 3 or more groups. Values
of p considered significant: * p < 0.05; ** p < 0.01 or *** p < 0.001.

3. Results

Myotubes from differentiated C2C12 cells were used as a cell model to evaluate the
effects of selected InPeps (Ric1-Ric4) in gene expression, cell signaling, and glucose uptake
(Figure 1).

MTT tests indicate that peptides Ric1-Ric4 (100 µM) were not triggering toxicity in
differentiated C2C12 myotubes (data not shown). Therefore, the possible effects of Ric1-Ric4
(100 µM) on gene expression were evaluated. For all these experiments, insulin was used
as “gold standard”/positive control, and GAPDH expression was used as normalization
control (Table 2, Control “1”/100%). Relative to GAPDH expression, insulin increased the
expression of all genes evaluated (Table 1). Ric1, Ric 2, and Ric4, but not Ric3, increased the
relative expression of only specific genes related to glucose metabolism via glycolysis (i.e.,
aldolase and phosphoglycerate mutase) and skeletal muscle contraction (i.e., troponin I,
small muscle protein X-linked, myosin; Table 2). These results suggested specificity and
therapeutic potential of Ric1, Ric2, and Ric4 peptides to regulate the expression levels of
specific genes.

Next, the effects of Ric1, Ric2, Ric3, and Ric4 on cell signaling were investigated by
Western blotting through phosphorylation of Erk and/or Akt, in differentiated C2C12
cells (Figure 2). Insulin increased the phosphorylation of both Erk (pErk) and Akt (pAkt;
Figure 2A,B). Ric2 and Ric4 activated pErk (Figure 2A), while Ric2, Ric3 and Ric4 activated
pAkt (Figure 2B). These data corroborate previous suggestions that both Erk and Akt
signaling pathways can be activated by insulin [43]. Insulin activation of Akt phosphory-
lation and signaling pathways have been most frequently associated with Glut4-induced
glucose uptake [44]. Therefore, Ric2, Ric3, and Ric4 could have the potential to induce
glucose uptake.
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confluence of 80–90%, C2C12 cells were switched to DMEN containing 2% FBS and incubated for
a period from 5 (5d) to 7 (7d) days, until myotubules could be observed. Morphological changes
observed on C2C12 cells were confirmed at the molecular levels by Western blotting assays using an
anti-myogenin antibody (left lower panel); the presence of myogenin only occurs in differentiated
cells. Constitutive expression of GAPDH protein was used to normalize and quantify the relative
expression of myogenin along the period of differentiation (right lower panel). Scale bars, 10 µM.

Table 2. InPeps Ric1-Ric4 effects on the expression of genes related to gluconeogenesis and skeletal muscle contraction.

InPeps

Gene Name Symbol Control Insulin Ric 1 Ric 2 Ric 3 Ric 4
Peroxisome proliferator

activator receptor gamma PPARγ 1 6.98 ± 1.23 ** 1.76 ± 1.03 2.03 ± 0.98 * 1.12 ± 0.72 1.21 ± 1.02

cAMP responsive element
binding protein 1 Creb1 1 6.48 ± 1.08 ** 1.51 ± 1.01 0.96 ± 0.75 1.25 ± 0.94 1.03 ± 0.85

Aldolase A,
fructose-bisphosphate ALDOA 1 7.65 ± 0.96 ** 3.81 ± 1.51 0.98 ± 1.53 1.01 ± 0.16 4.22 ± 0.74 **

Cytochrome c oxidase subunit
IV isoform 1 Cox4i1 1 6.71 ± 1.24 ** 1.31 ± 0.87 1.42 ± 0.98 1.02 ± 1.21 1.41 ± 1.12

Phosphoglycerate mutase 2 PGAM2 1 8.26 ± 0.99 ** 4.05 ± 1.65* 1.03 ± 1.78 0.95 ± 0.57 2.65 ± 0.87 *
Troponin I, skeletal, fast 2 TNNI2 1 6.36 ± 1.13 ** 1.97 ± 1.16 0.98 ± 0.89 1.12 ± 1.01 3.14 ± 0.65 **
Troponin I, skeletal, fast 3 TNNT3 1 6.22 ± 0.98 ** 1.21 ± 1.17 3.08 ± 0.94 * 1.21 ± 1.11 2.38 ± 0.72 *

Small muscle protein X-linked SMPX 1 5.96 ± 0.98 ** 3.31 ± 1.67 * 1.05 ± 1.52 0.99 ± 0.32 3.21 ± 0.99 *
Myosin, light chain 1 MYL1 1 6.18 ± 1.07 ** 3.76 ± 1.24 * 1.15 ± 0.87 1.06 ± 0.39 3.58 ± 1.07 **

Footnote: * p < 0.05, ** p < 0.01; compared to control.
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Figure 2. C2C12 cell signaling assays by Western blotting. C2C12 cells previously differentiated into
myotubes were treated in the presence or absence of insulin (100 nM), or the indicated intracellular
peptide (Ric1, Ric2, Ric3, or Ric4; 100 µM). Induced phosphorylation of Erk (A) or Akt (B), respectively,
pAkt or pErk, were analyzed by Western blotting as described in Section 2.5. Imaging and band
intensity measurements were performed using the ImageJ 1.49 software, and quantifications were
performed evaluating the relative levels of pErk or pAkt over total Erk or Akt, respectively. The effect
of the indicated peptide on the relative phosphorylation levels were expressed using arbitrary density
units (A,B, lower panels). Data are representative of three independent experiments that produced
similar results. The statistical comparisons were performed using Student’s t-test or analysis of
variance (ANOVA), followed by ad-hoc Tukey’s test using GraphPad Prism software * p < 0.05;
** p < 0.001.
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Next, glucose tolerance test (GTT) was used to investigate in vivo pharmacological
effects of Ric2 and Ric4 on glucose homeostasis [4]; these two peptides were chosen because
they altered both gene expression and Akt phosphorylation. Animals received an ip
administration of either saline, insulin (0.75 IU/kg), Ric2 (600 µg/kg), or Ric4 (600 µg/kg),
20 min after glucose administration. Both Ric2 and Ric4 ip administrated, rapidly induced
a decrease in blood glucose levels in WT mice (Figure 3A,B). Ric4 also decreased blood
glucose levels in the GTT following oral administration by gavage (Figure 3C,D). Therefore,
because Ric4 peptide showed activity both orally and ip, it was chosen for additional
pharmacological characterizations considering its potential therapeutic application in
the future.
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Figure 3. Glucose tolerance tests (GTT) in WT mice administrated ip or orally with peptides Ric2 or Ric4. The animals
were fasted for 12 h before the treatments. Glucose 2 g glucose/kg was injected at time zero and at 20 min with insulin
(0.75 IU/kg) or Ric2 or Ric4 (100 µM). (A,B), ip administration of Ric 2 or Ric4; (C,D), oral administration of Ric 2 or Ric4.
Control animals were administrated with saline (ip) or water (oral). The statistical comparisons were performed using
Student’s t-test or analysis of variance (ANOVA), followed by ad-hoc Tukey’s test using GraphPad Prism software * p < 0.05;
** p < 0.001; *** p < 0.0001.

Similar to insulin, Ric4 was observed to stimulate glucose uptake both in differentiated
C2C12 (Figure 4A; left panel, using 3H-glucose; right panel, using 2-NBDG H-glucose)
and adipose tissue explants obtained from C57BL6N WT mice (Figure 4B). Conversely,
neither insulin nor Ric4 were capable of inducing glucose uptake from adipose tissue ex-
plants obtained from conditional knockout mice depleted from insulin receptor (Figure 4B).
Moreover, Ric4 distinctively from insulin increased the translocation of Glut4 to rough endo-
plasmic reticulum (RER) membranes (Figure 4C), decreasing Glut4 presence in microsomal
membranes (Figure 4D). Similar to insulin, Ric4 induced translocation of Glut4 to plasma
membrane (Figure 4E), suggesting a mechanism of action in stimulating glucose uptake.
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Figure 4. Glucose uptake and GLUT4 translocation induced by Ric4 in C2C12 cells. C2C12 cells were previously incubated
in serum-free and glucose-free DMEM medium, then incubated with HEPES buffer for 30 min and then incubated for a
further 30 min in glucose-uptake buffer containing vehicle, Ric4 (100 µM), or insulin (100 nM) in the presence of 3H-glucose
(1 µCi/mL) or 2-NBDG (80 µM). After incubations cells were lysed with 50 µL of 0.1 N NaOH and fluorescence or radiation of
aliquots from the lysate were measured (A). Epididymal adipose tissue explants (20–25 mg) were incubated in Krebs–Ringer
bicarbonate buffer containing glucose 5.5 mM and 1 µCi/mL of 3H-deoxyglucose supplemented with 2% fatty acid-free for
30 min at 37 ◦C in the presence or absence of insulin (100 nM) or Ric4 (100 µM). The explants were processed to evaluate
the uptake of 3H-deoxyglucose (B). Myotubes were previously incubated in serum-free and glucose-free DMEM medium
and then treated with control vehicle PBS or Ric4 (100 µM) for 30 min. Proteins from subcellular fractions: N/ER (C),
microsomal (D), plasma membrane (E), were isolated and the expression Glut4 was analyzed by Western blot. Images were
quantified using ImageJ 1.49 software. The statistical comparisons were performed using analysis of variance (ANOVA),
followed by ad-hoc Tukey’s test using GraphPad Prism software * p < 0.05; # p < 0.05; **** p < 0.0001.

Ric4 ip administration in WT mice increased Erk and Akt phosphorylation on epi-
didymal adipose tissue (Figure 5A,B). On tibial skeletal muscle, Ric4 increased Erk but not
Akt phosphorylation (Figure 5C,D).

Ric4 (600 µg/kg) ip administration in WT mice stimulated the expression levels
of genes related to energy metabolism in the epididymal adipose tissue (Figure 6A–E),
whereas similar results were not observed in the tibial skeletal muscle tissue (Figure 6F–H).
Together, in vivo results corroborate the pharmacological activity and therapeutic potential
of Ric4.
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Figure 5. Western blotting for ERK and AKT in epididymal adipose and tibial muscle tissues
following ip administration of Ric4 to WT mice. Mice were treated ip with vehicle (Control) or
Ric4 (600 µg/kg). Tissues were collected 30 min after the Ric4 administration and processed for
Western blots as detailed in Section 2.5. The phosphorylation of either ERK or AKT in epididymal
adipose tissue (A,B) and tibial muscle tissue (C,D) were analyzed using antibodies anti-pErk (A,C)
or anti-pAkt (B,D). Anti-total ERK, anti-total AKT, and β-actin were used for normalizing protein
concentration. Imaging and band intensity measurements were performed using ImageJ 1.49 software.
Data are representative of three independent experiments that produced similar results. The statistical
comparisons were performed using Student’s t-test using GraphPad Prism software * p < 0.05.
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Figure 6. Ric4 stimulated mRNA expression levels of genes related to energy metabolism. WT mice were treated with
vehicle (Control) or Ric4 (600 ug/kg, ip) and gene expression was evaluated by qPCR. LPL (A), PPARγ (B), PPARa (C),
GLUT4 (D), and IGF1 (E), in epidydimal adipose tissue. PPARγ (F), GLUT4 (G), and IGF1 (H) in tibial muscle. Data are
presented as mean + SEM. Statistical analyses were performed using Student’s unpaired t-test using GraphPad Prism
software * p < 0.05.

Rapid degradation of Ric4 by WT mice liver or kidney crude extracts suggested that
in vivo an initial enzymatic cleavage occurred on the Leu8-Thr9 peptide bond
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(L1A2S3V4S5T6V7L8T9S10K11Y12R13; data not shown). Structural modifications includ-
ing N-terminal acetylation, C-terminal amidation and substitution of Leu8 for DLeu8
(Ac-LASVSTV[DLeu]TSKYR-NH2; Ric4-16) largely reduced the relative degradation ratio
of Ric4 (Table 2; Supplementary Materials, Figure S1); bradykinin was used a standard pep-
tide. Alone, neither N-terminal acetylation nor C-terminal amidation protected Ric4 from
degradation, either by liver or kidney tissue homogenates; conversely, such modifications
largely increased Ric4 degradation by kidney extracts (Table 2). The relative degradation
ratio of Ric4 was also evaluated by recombinant THOP1 and neurolysin (Nln) [37]. Ric4
was relatively a poor substrate for both THOP1 and Nln, compared to bradykinin (Table 2).
On the other hand, Ric4-16 was a better substrate of both Nln and THOP1 compared to
Ric4 or bradykinin (Table 2).

To gain further insight on Ric4 structure-activity related to glucose uptake, several
Ric4 derived peptides were designed (Table 3). The rationale to design additional peptides
was to identify a minimal Ric4-derived sequence retaining the ability to induce glucose
uptake. Thus, Ric4 original sequence was successively shortened from amino and/or
carboxyl terminal.

Table 3. Evaluation of Ric4 and derived peptides hydrolytic stability.

Peptide. Sequence
Liver

Extract
(30 µg)

Kidney
Extract
(3 µg)

THOP1 Nln

Bradykinin RPPGFSPFR 25.4 17.4 11.93 14.51
RIC4 LASVSTVLTSKYR 62.4 22.6 2.22 4.69

RIC4-16 Ac-LASVSTV[DLeu]TSKYR-NH2 26.0 12.5 40.33 18.26
RIC4-2 Ac-LASVSTVLTSKYR-NH2 70.2 60.0 4.55 1.18

Footnote: All peptides were evaluated at initial concentration of 50 µM. Results shown % of peptide degraded
during considering their 100% initial concentration. Results are the average from three independent determina-
tions that varied less than 5% among each other. THOP1 (0.1 ng) or Nln (0.1 ng) were homogeneous recombinant
enzymes and were prepared as previously described [37].

Using differentiated C2C12 cells, Ric4-derived peptides were evaluated regarding the
ability to induce glucose uptake (Figure 7). Indeed, in C2C12 cells several Ric4-derived
peptides efficiently induced glucose uptake in C2C12 cells (Figure 7).
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Figure 7. Glucose uptake in C2C12 cells. C2C12 cells were previously incubated in serum-free and glucose-free DMEM
medium, and were treated with either insulin, Ric4, or indicated Ric4 derived peptide (100 µM; Table 3), in the presence of
2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG; 80 µM). Insulin was used as the positive control.
Before the assays, the culture medium was removed from each well and replaced with 100 µL of culture medium containing
fluorescent d-glucose analog 2-NBDG (80 µM; for standardization concentrations of 25, 50, 80, and 100 µM were used, data
not shown) in the absence or presence of the indicated compound (insulin, Ric4 or Ric4-1/16 derived peptides). Plates were
incubated at 37 ◦C with 5% CO2 for a period of 30 min, and after that were lysed with 50 µL of 0.1 N NaOH and fluorescence
of aliquots from the lysate was measured. The statistical comparisons were performed using Student’s t-test or analysis of
variance (ANOVA), followed by ad-hoc Tukey’s test using GraphPad Prism software * p < 0.05; ** p < 0.001; *** p <0.0001.
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Next, GTT were conducted to evaluate the in vivo effect of selected Ric4-derived
peptides (Ric4-1, Ric4-2, Ric4-6, Ric4-14, Ric4-15, or Ric4-16) in glucose uptake, following
oral administration to C57BL6N WT mice (Figure 8). Peptides selected for these assays
included both Ric4-1, unable to induce glucose uptake, and derivatives highly active on
inducing glucose uptake in C2C12 cells. Ric4-2 (Ac-LASVSTVLTSKYRNH2) and Ric4-15
(Ac-LASVSTV[DLeu]TSKYR) (600 µg/kg) were the two Ric4-derived peptides to show
ability to reduce blood glucose levels following oral administration (Figure 8B,E). These
results suggested that yet nonidentified structural features of Ric4 were relevant for in vivo
activity on glucose homeostasis. Possibly, more than one single modification (i.e., prevent-
ing Leu8-Thr9 endopeptidases degradation, or amidation of carboxyl terminus to prevent
carboxypeptidases degradation) affected Ric4 pharmacological activity/pharmacokinetics
in vivo.
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were administrated with saline. The statistical comparisons were performed using Student’s t-test or analysis of variance
(ANOVA), followed by ad-hoc Tukey’s test using GraphPad Prism software * p < 0.05; *** p < 0.0001.

4. Discussion

The main results presented herein suggest that Ric4, a natural InPep derived from
hemoglobin alpha chain, has several pharmacological activities similar to insulin. Ric4
activated both Erk and Akt phosphorylation in differentiated C2C12 cells and in adipose
tissue from WT mice. Ric4 was not capable of inducing glucose uptake from adipose
tissue explants obtained from conditional knockout mice depleted from insulin receptor.
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These data suggest that Ric4 needs the insulin receptor to promote glucose uptake. Ric4
was rapidly metabolized in vitro by enzymes present in liver and kidney tissue extracts,
which could be largely reduced after modifying Ric4 original structure. Some of these Ric4
derivatives retain the ability to induce glucose uptake and reduce glycemia following oral
administration to WT mice. The results presented herein successfully suggest that InPeps
such as Ric4 have biological and pharmacological significance. However, possible clinical
applications of Ric4 still deserves further investigation.

Insulin is a potent peptide hormone, essential for the maintenance of glucose home-
ostasis and for cell growth and development [45,46]. This hormone is secreted by β-cells
from the islets of Langerhans of the pancreas in response to increased circulating levels
of glucose and amino acids after meals [47–49]. Insulin regulates glucose metabolism by
reducing hepatic glucose production (through inhibition of glycogenolysis and gluconeo-
genesis) and increasing glucose uptake, primarily in skeletal muscle and adipose tissue.
These insulin actions are mediated via the PI3K/Akt signaling pathway [49,50]. Activation
of the PI3K/Akt pathway begins when insulin receptor substrates (IRS) IRS1 and IRS2
are phosphorylated by the insulin receptor. These specific tyrosine phosphorylated sites
serve as anchoring for the p85 regulatory subunit of the PI3K enzyme, through its SH2
binding domain [51]. Glucose uptake in skeletal muscle and adipose tissue is performed
through the glucose transport protein 4 (Glut4) [52]. Glut4 belongs to a family of transport
facilitators comprising 12 different types, and Glut4 is the only carrier of this family pre-
dominantly located in intracellular compartments [53]. Activation of PI3K-Akt by insulin
induces the translocation of Glut4 to the plasma membrane, consequently increasing the
uptake of glucose [53]. Following oral administration, Ric4 enhanced Glut4 mRNA levels
in the adipose tissue of WT mice. Similar to insulin, Ric4 promoted translocation of Glut4 to
plasma membrane on differentiated C2C12 skeletal muscle cells, which possesses the basic
machinery required for translocation of GLUT4 in response to insulin stimulation [54]. Ric4
also increased Glut4 immunoreactivity on RER membranes and reduced Glut4 immunore-
activity on microsomal membranes, which were not observed for insulin herein. Additional
distinctive activities of Ric4 compared to insulin includes a restricted action preferentially
stimulating the expression of genes related to skeletal muscle contraction over glycolysis.
Therefore, binding to insulin receptor could provide a mechanism of action for Ric4, such
as on gene activation, activation of Erk and Akt signaling pathways, translocation of Glut4
to plasma membrane, increased glucose uptake and reduction of glycemia. Further data
supports that the insulin receptor could be the biological/pharmacological target of Ric4,
which was not able to promote glucose uptake in adipose tissue explants obtained from
mice lacking the insulin receptor. However, Ric4 have some pharmacological distinctions
from insulin such as on gene expression and Glut4 translocation to rough endoplasmic
reticulum and microsomes. Previous reports proposed the existence of bias agonists for
various tyrosine kinase receptors [55–57], including the insulin receptor family [58–60].
Flavonoids and triterpene alisol A-24-acetate (AA-24-a) also seem to bind to insulin recep-
tor to mimic insulin action on glucose uptake and blood glycemia [34,61,62]. The soybean
peptide aglycin regulates glucose homeostasis by enhancing insulin signal at gene levels
of insulin receptor and IRS1, and the number of Glut4 at the cell surface [28]. Therefore,
further investigations should be conducted to characterize the biological/pharmacological
target and the mechanism of action of Ric4.

Ric4 corresponds to the last 13 C-terminal amino acids of mice hemoglobin alpha
chain, and was relatively increased in the adipose tissue of Nln−/− compared to WT
mice [4]. Ric4, similar to previous hemoglobin-derived peptides, could be produced within
erythrocytes from proteasome digestion of hemoglobin [63,64]. Secreted intracellular
peptides correspond to approximately 10% of the total number of peptides identified in
mouse brain tissue cultures [22,65]. These secreted cytosolic bioactive peptides have been
proposed to be “non-classical neuropeptides”, as they can be synthesized in brain and
secreted as bioactive entities, in a regulatory manner [22,65]. Ric4 could be secreted by
erythrocytes to regulate glucose uptake in vivo. Increased levels of Ric4 were observed in



Pharmaceutics 2021, 13, 2175 15 of 18

adipose tissue of Nln−/−, which were animals shown to have increased glucose uptake
and insulin sensitivity compared to WT mice [4]. Therefore, the present data suggest that
Ric4 could contribute to the enhanced glucose uptake and insulin sensitivity observed
in Nln−/−. Peptide Ric4-6 shown here to stimulate glucose uptake in C2C12 cells, was
previously found in mice blood and could be stimulating glucose uptake systemically [66].
Therefore, it is tempting to suggest that Ric4 have biological significance, and together with
some of its derivatives it could be participating of homeostatic control of blood glucose.
However, the exact physiological mechanism still deserves further investigation.

Ric4 has unexpected in vivo ip and oral pharmacological activity, decreasing blood glu-
cose levels in GTT, despite being rapidly degraded in vitro. A number of previous reports
described ip and/or orally active peptides [16], including hemopressin [26], Pep19 [25],
peptides C111/C112 from liver of Katsuwonus pelamis, peptides IPP and VPP and tryp-
tic peptides from casein [67–69]. The mechanism(s) allowing specific peptides to escape
proteolytic degradation, being absorbed by digestive system, remains yet unknown. Ric4
was rapid degraded by WT mice liver or kidney crude extracts, whereas structural mod-
ifications including N-terminal acetylation, C-terminal amidation, and substitution of
Leu8 for DLeu8 (Ac-LASVSTV[DLeu]TSKYR-NH2; Ric4-16) largely reduced the relative
degradation ratio of Ric4. Similar proteolytic stability was not observed for Ric4-2 lacking
[DLeu] modification. Ric4, Ric4-2, and Ric4-15 were pharmacologically active following
oral administration to WT mice. Ric4-16 shows no oral bioavailability, despite being pro-
teolytically more stable than Ric4-2. These data suggest that proteolytical stabilization
alone was not sufficient to allow greater bioavailability to Ric4. Additional experiments are
underway to improve the proteolytic stability of Ric4, as well as to associate it with a new
formulation that could improve its bioavailability.

5. Conclusions

In conclusion, Ric4 was successfully characterized herein as a new pharmacologically
active peptide. The possibility that Ric4 has physiological significance, regulating glucose
homeostasis, cell signaling, and gene expression was also suggested herein. Additional
studies should be conducted to allow a better understanding of Ric4 biological and pharma-
cological mechanisms of actions, focusing on its possible clinical application. Indeed, in the
past 5–6 years the U.S. Food and Drug Administration (FDA) have authorized the clinical
prescription of more than 15 new peptides or peptide-containing molecules [6,70]. These
data suggest that large scale production of peptides in addition to the complex structure of
peptide-based drugs, compared to that of small molecules, have slowly been becoming no
impeditive to the pharmaceutical industry. Therefore, exciting market perspectives exist
for the development of Ric4-based drugs.
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