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Abstract

The surge in the prevalence of drug-resistant bacteria in poultry is a global concern as it

may pose an extended threat to humans and animal health. The present study aimed to

investigate the colonization proportion of extended-spectrum β-lactamase (ESBL) and car-

bapenemase-producing Enterobacteriaceae (EPE and CPE, respectively) in the gut of

healthy poultry, Gallus gallus domesticus in Kaski district of Western Nepal. Total, 113

pooled rectal swab specimens from 66 private household farms and 47 commercial poultry

farms were collected by systematic random sampling from the Kaski district in western

Nepal. Out of 113 pooled samples, 19 (28.8%) samples from 66 backyard farms, and 15

(31.9%) from 47 commercial broiler farms were positive for EPE. Of the 38 EPE strains iso-

lated from 34 ESBL positive rectal swabs, 31(81.6%) were identified as Escherichia coli, five

as Klebsiella pneumoniae (13.2%), and one each isolate of Enterobacter species and Citro-

bacter species (2.6%). Based on genotyping, 35/38 examined EPE strains (92.1%) were

phylogroup-1 positive, and all these 35 strains (100%) had the CTX-M-15 gene and strains

from phylogroup-2, and 9 were of CTX-M-2 and CTX-M-14, respectively. Among 38 ESBL

positive isolates, 9 (23.7%) were Ambler class C (Amp C) co-producers, predominant were

of DHA, followed by CIT genes. Two (6.5%) E. coli strains of ST131 belonged to clade C,

rest 29/31 (93.5%) were non-ST131 E. coli. None of the isolates produced carbapenemase.

Twenty isolates (52.6%) were in-vitro biofilm producers. Univariate analysis showed that the

odd of ESBL carriage among commercial broilers were 1.160 times (95% CI 0.515, 2.613)

higher than organically fed backyard flocks. This is the first study in Nepal, demonstrating

the EPE colonization proportion, genotypes, and prevalence of high-risk clone E. coli ST131

among gut flora of healthy poultry. Our data indicated that CTX-M-15 was the most preva-

lent ESBL enzyme, mainly associated with E. coli belonging to non-ST131clones and the

absence of carbapenemases.
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Introduction

The family Enterobacteriaceae exhibit antimicrobial resistance mainly due to the production of

extended-spectrum β-lactamases (ESBL), AmpC β-lactamases, and carbapenemases [1]. Super-

bugs that are resistant to multiple classes of antibiotics like tetracycline, fluoroquinolone, trimeth-

oprim owing to the acquisition of ESBL genes have increased rapidly worldwide. Food-producing

animals are considered to be an important reservoir of various multidrug-resistant (MDR)

microbes [2]. Animal-derived Enterobacteriaceae, particularly Escherichia coli, can be pathogenic

to humans and may act as a donor of resistance genes to other pathogens. Among ESBL genes,

CTX-M-15 producing E. coli sequence type 131 (ST131) is a well-established pandemic clone

causing significant extraintestinal infections in humans [3]. Poultry and other food-producing

animals harboring E. coli ST131 clones can spread to humans either directly via consumption or

through environmental pathways. The emergence and rapid spread of ESBLs’ among Enterobac-
teriaceae is a major hurdle in treating severe infections of livestock as well as humans [4].

Gut colonization by extended-spectrum β-lactamase-producing Enterobacteriaceae (EPE)

and carbapenemase-producing Enterobacteriaceae (CPE) is an essential factor for the spread

of ESBL bacteria among poultry and other livestock [1, 2, 4]. During the last decade, EPE from

a different variety of food-producing animals like cattle, poultry, and pigs have been docu-

mented worldwide [5–10]. Several studies have found that poultry meat and poultry products

carried the highest contamination with ESBL-producing bacteria [7]. Inappropriate use of

antibiotics in human and animals have resulted in the global emergence of E. coli clone ST131,

which is resistant to both fluoroquinolones and extended-spectrum cephalosporins due to the

production of the ESBL CTX-M-15 [11]. The plausibility of this clone being able to acquire

plasmids encoding carbapenemases in the future is a matter of significant concern. A few stud-

ies have even reported the presence of carbapenemase-producing bacteria in animals [8]. An

accurate picture of the extent of widespread ESBLs among poultry will be important in deter-

mining the significance of these reservoirs as potential sources of transmission to humans. It

is well-known that endogenous flora of poultry origin can spread via the food chain and tran-

siently colonize the human gut [12, 13]. It is, therefore, crucial to identify and reduce a load of

EPE and CPE colonization in poultry birds.

In Nepal, 3.5% of the national Gross domestic product (GDP Per Capita 1,034.118 USD,

2019) is contributed by poultry farming, and poultry meat is the most common meat source [14].

More than 64 districts in the country are involved in conventional poultry farming, of which

93.29% produce broilers. Around 51.9% of households in Nepal are involved in backyard poultry

production by the scavenging and semi-scavenging system; the most substantial proportion is

found in the Hills (67.8%), followed by Mountain (56.4%) and Terai regions of Nepal [14].

The prevalence of EPE and CPE and their clonal diversity among gut flora of poultry vary

globally. At present, there is no data available from Nepal. The present study aimed to investi-

gate the colonization proportion of EPE and CPE in the gut of healthy poultry, Gallus gallus
domesticus in Kaski district, western Nepal. We also compared the rate and load of EPE isolates

between healthy organically-raised backyard chickens and commercially grown chickens. Fur-

ther, we investigated the distribution of ESBL genes, pandemic E. coli clonal group ST131 and

co-resistance among the EPE isolates.

Material and methods

Study design, the site, and enrollment of farms

During the study period (October 2016 to January 2018), districts in Nepal were divided into

political units called Village Development Committees (VDCs), and the metropolitan regions
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were divided into wards. Nepal was divided into 14 zones. The study area Kaski district is

under the Gandaki zone. The sample size was determined based on prevalence rate, as

reported by the previous study by Hussain et al. [15]. We applied the cluster random sampling

method. All 47 VDCs of Kaski district was numbered based on alphabetic order, 23 (49%)

VDCs were selected by random sample calculation using formula = RANDBETWEEN (1, 47).

The random numbers generated were 1, 2, 4, 15, 40, 27, 16, 33, 31, 5, 22, 17, 37, 26, 45, 34, 23,

9, 41, 39, 8, 13, and 28. A total of 113 rectal swabs specimens from poultry birds were collected

from 113 farms (66 backyard and 47 commercial farms) distributed over the Kaski district in

western Nepal (S1 Fig). On average, two commercial farms and two backyard farms were

selected per VDC. The region is inhabited by rural folk of low socioeconomic backgrounds liv-

ing with poor hygiene. Selection of the farms for our study was based on their geographical

location (rural region), age of the birds (preferably middle-aged), type of the breed (broiler-

type among commercial poultry), preferably with 100 chickens per breeding site in case of

commercial farms and ten birds in case of the backyard farms), adequate husbandry practice

and veterinary intervention information obtained from the regional veterinarians. Backyard

chicken farms that were near (less than a mile) to commercial poultry farms were not included

in this study. Randomly, two birds from the backyard and five from commercial farms were

sampled from each selected farm. The commercial poultry farms were of broiler-type, which

were caged, and fed commercially available poultry feeds. Backyard breeds included local/

indigenous breeds of G. domesticus (Sakini, Ghanti Khuile) and Giriraja, the Indian breed,

which is commonly used for backyard farming. These were raised as free-roaming birds and

were fed with locally available organic food like rice, wheat, and other grains. All the investi-

gated birds were healthy with a residency of at least 15 days among broilers and a month

among backyard chickens. None of the broilers had been treated with any medications, for at

least two weeks before sampling. Backyard chickens were organically-raised and had no his-

tory of direct exposure to antibiotics or any other medication.

Specimen collection and questionnaires

Two birds from each backyard and five from each commercial farm were randomly selected

for sampling. Swabs collected from the individual farm were pooled and processed as one spec-

imen for further microbiological investigation. A sterile cotton swab pre-moistened with ster-

ile normal saline was inserted into the chicken rectum (1–1.5 inches deep) and gently rotated.

The swabs were placed in a sterile tube and transported to the research laboratory, Manipal

Teaching Hospital, Nepal, in specimen transport containers with ice packs. The samples were

processed within 8 hours of collection. Detailed questionnaires, including demographic and

clinical characteristics, were filled up using appropriate pro forma (S1 File).

Sample processing and screening for EPE

The rectal swab was placed in 1 ml of sterile 0.9% saline and vortexed for 30 seconds. For per-

forming viable bacterial count, a serial tenfold dilution (10−1 to 10−4) was first carried out,

following which a small amount of suspension (100μL) was cultured on commercial ESBL-

selective chromogenic medium (HiMedia, India) for screening EPE and that of carbapenem-

resistant Enterobacteriaceae on MacConkey agar with 1 μg/mL imipenem (HiMedia, India).

Plates were incubated at 37˚C under aerobic conditions and assessed after 24 hours of incuba-

tion. For the presumptive identification of EPE isolates, the color of the colonies was recorded

according to the color chart provided by the manufacturer. A single isolated colony of each

color was picked and subcultured on nutrient agar, was used for phenotypic identification and

preservation. Isolates were speciated by standard phenotypic methods [16]. All ESBL positive
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isolates were preserved in brain heart infusion-glycerol broth in stock vials and stored at -20˚C

for further study.

Antibiotic susceptibility testing

The antibiotic susceptibility profiles of the ESBL-screen positive isolates were determined after

testing against a panel of fifteen antibiotics of human and veterinary clinical relevance by Kirby-

Bauer disk diffusion method was performed as per CLSI guidelines and interpreted based on

CLSI 2017 and 2018 breakpoints [17, 18]. Susceptibility to tigecycline was interpreted with FDA

breakpoints (http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021821s016lbl.pdf).

Included were one or two representatives from various classes of antibiotics: cefotaxime and cef-

tazidime (3rd generation cephalosporins), cefoxitin (2nd generation cephalosporins), co-amoxi-

clav (beta-lactam combination agents), tetracycline (tetracyclines), gentamicin, and amikacin

(aminoglycosides), nalidixic acid (synthetic quinolone), norfloxacin, and ciprofloxacin (fluoro-

quinolones), nitrofurantoin (nitrofurans), Co-trimoxazole (folate pathway inhibitors), chloram-

phenicol (amphenicol), tigecycline (glycylcycline), and imipenem, meropenem and ertapenem

(carbapenems). E. coli ATCC 25922 (negative control) and K. pneumoniae ATCC 700603 (posi-

tive control) were used for quality control. Antimicrobial disks used were obtained from Mast

(MASTDISCS™), UK.

ESBL confirmation

Phenotypic methods. The double-disc synergy test. The isolates grown on ESBL HiChrome

agar were retested for ESBL production by the Double Disc Synergy Test (DDST) [18]. Pairs of

discs containing extended-spectrum cephalosporin [cefotaxime (30 μg) and ceftazidime (30μg)

alone and with clavulanic acid (10 μg) were placed 25 mm apart, center to center, on a Mueller

Hinton Agar (MHA) plates inoculated with a bacterial suspension matching with 0.5 McFar-

land turbidity. After overnight incubation at 37˚C, zone diameters were measured. ESBL-pro-

ducing isolates were defined as strains resistant to cefotaxime (zone diameter�27 mm) or

ceftazidime (zone diameter�22mm), and an increase in zone diameter� 5mm with the disks

containing clavulanic acid. S2 Fig.

AmpC detection. All the ESBL positive isolates, which showed resistance to cefoxitin in the

initial screening, were confirmed for the AmpC enzyme co-production by saline disc method

and inhibitor-based tests [19, 20] S2 Fig.

Phenotypic screening of carbapenemases. All ESBL isolates were screened phenotypically for

carbapenemase production by modified Hodge Test [21], and modified carbapenem inactiva-

tion method [22].

In-vitro biofilm formation assay. Biofilm formation was performed following the Xu Z. et al.

[23] with slight modification. The exponential growth phase of bacteria was incubated at 37˚C

for 48 hours in 96-well microtiter plates. Non-adherent cells were removed by washing the bio-

films with phosphate buffer saline (PBS) and stained with crystal violet solution. The absor-

bance was measured at 595nm after de-staining the biofilm with 99.8% ethanol. The assay was

done in duplicates with the known positive and negative control. The biofilm formation was

determined by calculating the cut-off values from the arithmetic mean of the absorbance of

negative controls with three times the addition of standard deviation.

Molecular characterization of β-lactamase encoding genes. Isolates displaying an ESBL phe-

notype were screened for ESBL encoding genes blaCTX-M, including phylogenetic groups 1, 2,

and 9 by multiplex PCR as described by Dallenne C, et al. [24]. The presence of β-lactamase

genes blaTEM/blaSHV/blaOXA was also detected by multiplex PCR assays [24]. The primers

(Sigma-Aldrich) used, and the size of the expected DNA products for each enzyme group are
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shown in S1 Table. DNA extraction was performed by a commercially available DNA purifica-

tion kit (HipurA bacterial genomic DNA purification Kit, Himedia, India). PCR reactions

were carried out in 25 μL volumes. This included 2 X Amplicon Red Taq master mixes consist-

ing of Tris HCl pH 8.5, (NH4)2 SO4, 4 mM MgCl2, 0.2% Tween 20, 0.4 mM dNTPs, and 0.2

units/μL amplicon Taq DNA polymerase. The primers were used between 0.2μM to 0.4 μM

concentrations. The template DNA was used in 1μL volume (S2 Table). Cycling protocol was

as follows: initial denaturation at 94˚C for 10 min; 30 cycles of 94˚C for 40 s, 60˚C for 40 sec-

onds and 72˚C for 1 min; and a final elongation step at 72˚C for 7 min.

Isolates positive for phylogroup-1 were further characterized for blaCTX-M 15 genes by

uniplex PCR assay [25]. Amplification was performed with 2X Amplicon Red Taq master

mixes (10 μL); the 1μL volume of primer (forward and reverse) and 1μL of purified DNA in a

total volume of 25 μL. Amplicons were visualized after running at 100V for one hour on 2%

agarose gel containing ethidium bromide. The ESBL subtypes were further confirmed by

sequencing. Obtained sequences were aligned using Bioedit V.7.2.1 software, and consensus

sequences were compared against the sequences deposited in the Genbank database with the

help of the Basic Local Alignment Search Tool (BLAST) program (http://www.ncbi.nlm.nih.

gov/BLAST).

AmpC genes. The presence of plasmid-mediated AmpC genotypes FOX (FOX-1 to FOX-5,

MOX-1), MOX (MOX-2, CMY-1, CMY-8 to CMY-11 and CMY-19), DHA (DHA-1 and

DHA-2), CIT (LAT-1 to LAT-3, BIL-1, CMY-2 to CMY-7, CMY-12 to CMY-18 and CMY-21

to CMY-23) were determined by multiplex nucleic acid amplification assay. The primers and

PCR conditions were followed, as described by Dallenne C et al. [24]. The amplification prod-

ucts were confirmed by agarose gel electrophoresis.

E. coli ST131 clade PCR assay. All ESBL positive E. coli isolates were screened for sequence

type 131 clonal lineage and ST131 clades (A, B, and C) by multiplex PCR as described by Mat-

sumura Y, et al. [26]. Amplicons were visualized after running at 100 V for one hour on 2%

agarose gel containing ethidium bromide. A 100 bp DNA ladder (Eurofins Scientific, India)

was used as a size marker. Known E. coli ST 131 and non-ST 131 E. coli were used as positive

and negative controls, respectively (S3 Fig). The primers used in this study and the size of the

expected DNA products for each enzyme group is listed in S1 Table.

Statistical analysis

The Epi-info and SPSS software were used to assess the significant differences in the preva-

lence and high degree of antibiotic resistance between the different populations. GraphPad

Prism Version 8.1.2 (227) was used to generate a heat map showing an antibiotic resistance

profile and ESBL genes.

Ethics approval and consent to participate. The research proposal was approved by the

Institutional Ethics Committee, Manipal Teaching Hospital, Pokhara, Nepal. Reference num-

ber: MEMG/IRC/GA30/11/2014.

Result

Rate of ESBL-E in commercial broilers and backyard chickens

Out of 113 pooled rectal samples obtained, 28.8% specimens (19/66) from backyard farms and

31.9% (15/47) from commercial farms grew EPE. None of the isolates was carbapenemase pro-

ducer by phenotypic tests. Of the 38 EPE strains (22 from the backyard farms and 16 from

commercial farms) isolated from 34 specimens, 31(81.57%) were identified as Escherichia coli,
five as Klebsiella pneumoniae (13.1%), and one each isolate as Enterobacter species and Citro-
bacter species (2.6%). Among 38 ESBL positive isolates, 09 (23.6%) were AmpC co-producers.
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Median age (IQR) of ESBL positive chickens were 75.5 days (48.5, 157.5) and ESBL negative

was of 60 days (44, 120). Univariate analysis showed that among the commercial chickens, the

odd of ESBL carriage is 1.160 times (95% CI, 0.515, 2.613) higher compared to backyard birds

(Table 1). Besides, the univariate analysis also showed that there was a 1.1% increase in the

likelihood of EPE colonization rate in backyard birds according to one unit increase in age

[odds ratio 1.011, (1.003, 1.020), p = 0.01]. However, there was a 1.3% decrease in the likeli-

hood of EPE colonization rate in commercial chickens according to one unit increase in age

[odds ratio 0.987, (0.956, 1.020), p = 0.4].

Concentrations of EPE in rectal swabs. The concentrations of EPE among examined

poultry birds ranged between 3×102–8.7×109 CFU/mL with a geometric mean 5×106 CFU/mL

(Table 1). The proportion of ESBL-producing bacteria was slightly higher among commercial

chickens as compared to backyard chickens; colony count (geometric means) was 2.9×107

CFU/mL, and 1.5×106 CFU/mL, respectively. This difference, however, was not statistically

significant (P>0.1).

Diversity among β-lactamase genes

All thirty-eight isolates phenotypically positive for ESBL production was subjected to geno-

typic characterization via multiplex PCR assay. Twenty-one percent (8/38) of the strains co-

harbored multiple β-lactamase genes, with the most common being the combination of

blaCTX-M-15 and blaTEM-1. The blaTEM β-lactamase gene was detected in 8 (21.1%) isolates,

out of which six blaTEM-1 and one blaTEM-2 positive isolates were also carrying the blaCTX-M-15

gene and rest one isolate was carrying blaTEM-29 type alone. blaSHV-1 and blaOXA-1 genes were

detected in 3 (7.9%) isolates each (all six strains were co-harbored blaCTX-M-15 genes), Fig 1,

and S2 Table. Among blaCTX-M type ESBLs, phylogenetic group-1 (variants of CTX-M group

1) was found in 35 (92.1%) EPE isolates, phylogenetic group-9 (variants of CTX-M group 9)

and phylogenetic group-2 (variants of CTX-M group 2) were found in one (2.63%) isolate

each. Further characterization of phylogroups revealed that all 35 (100%) phylogroup-1

Table 1. Details of the commercial and backyard poultry and the organisms isolated in each group.

Total number (%) Backyard chickens Commercial chicken P-value

Total 113 66 (58.4%) 47 (41.6%) -

ESBL negative samples (%) 79 (69.9%) 47 (71.2) 32 (68.1) 0.721

ESBL positive samples (%) 34 (30.1%) 19 (28.8%) 15 (31.9%)

Colony count CFU/mL

Geometric Mean 5×106 1.5×106 2.9×107 - -

Range 3×102–8.7×109 2.8×104–4.9×107 3×102–8.7×109

Carbapenemase 00 (00) 00 (00) 00 (00) - -

ESBL + AmpC positive (%) 9 (7.9%) 5 (7.6) 4 (8.5) - -

Age

Median Age (IQR) days 65 [44,120] 120 [60, 150] 44 [32, 60] - -

Feed

Organic feed - - 66 (58.4%) 0

Commercial feed 0 47 (41.6%) - -

Isolates 38 22 16 - -

E. coli 31 (81.6) 16 (72.7) 15 (93.7) 0.09

Klebsiella pneumoniae 05 (13.1) 04 (18.2) 1 (6.5) 0.28

Enterobacter species 01 (2.6) 01 (4.5) 00 - -

Citrobacter species 01 (2.6) 01 (4.5) 00 - -

https://doi.org/10.1371/journal.pone.0227725.t001
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Fig 1. Antibiotic susceptibility and β-lactamase genes identified in 38 EPE strains isolated from commercial and backyard chickens. blaTEM:

bright red circle = blaTEM-29, black circle = blaTEM-1, Pink circle = blaTEM-2. CIP: ciprofloxacin, TCN: tetracycline, IPM: imipenem, AMC: co-

amoxiclav, NIT: nitrofurantoin, TIG: tigecycline, FOX: cefoxitin, AMK: amikacin, NX: norfloxacin, GEN: gentamicin, NAL: nalidixic acid, CPL:

chloramphenicol, SMX: Co-trimoxazole, MEM: meropenem, ETP: ertapenem.

https://doi.org/10.1371/journal.pone.0227725.g001
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positive EPE strains were of CTX-M-15 types and isolate from phylogroup-2, and 9 were of

CTX-M-2 and CTX-M-14 respectively. There was no significant difference in the distribution

of ESBL genes among commercial and backyard chickens. However, blaCTX-M-15 genes were

detected in 100% (22/22) of EPE strains isolated from backyard chickens and that of 81.3%

(13/16) from commercial chickens.

Among nine phenotypic AmpC positive isolates, four were positive for the DHA gene

(DHA-1 and DHA-2), and two isolates were positive for the CIT gene (LAT-1 to LAT-3, BIL-

1, CMY-2 to CMY-7, CMY-12 to CMY-18 and CMY-21 to CMY-23), the rest of the three iso-

lates were negative.

Antibiotic resistance profile

Antibiotic sensitivity/resistance data obtained after the standard disc diffusion tests are shown

in Fig 1. EPE isolates of broiler chickens showed the highest resistance towards tetracycline

(62.5%) followed by amoxicillin (56.3%) and ciprofloxacin (50%). The isolates of backyard

chickens were relatively lower resistance towards tetracycline (36.4%), ciprofloxacin (31.8%),

but higher resistance against amoxicillin (56.5%) and nitrofurantoin (59.1%). 25% of the iso-

lates of commercial chickens and that of 27.3% of backyard chickens showed resistance to

cefoxitin. Resistance against nalidixic acid was 36.4% among isolates of backyards and 43.8%

among commercial chickens. Each of 18.2% of backyards’ isolates while 12.5% and 37.5% of

broilers were resistant to gentamicin and cotrimoxazole. Both the isolates of commercial and

backyards’ chickens showed lower resistance to amikacin (13.6% and 6.3%, respectively). All

of the ESBL producing strains were susceptible to imipenem, meropenem, ertapenem, and

tigecycline.

Biofilm production. Twenty EPE isolates (20/38, 52.6%) were invitro-biofilm producers.

Out of 20 biofilm-producing phenotypes, 56.5% (9/16) were from commercial, and 50% (11/

22) were of backyard chicken (Fig 1). However, within the 20 isolates, 9 of them were weakly

adherent, 11 were moderately adherent, while none of the EPE isolates exhibited high capabil-

ity for biofilm production.

ST-131 clones among E. coli. Two (6.5%) E. coli strains of ST131 belonged to clade C, 29/

31 (93.5%) were non-ST131 E. coli. Both the E. coli ST 131 clade C strains were found among

commercial chickens (Fig 1 and S3 Fig).

Discussion

Misuse of antibiotics has been proposed as one of the significant factors for the selection and

emergence of resistant strains both in veterinary and clinical medicine [27, 28]. The quantity

of antibiotics used in animal husbandry often exceeds their use in medical practice [29]. Anti-

biotic-mediated selection of resistance not only happens in pathogenic bacteria but also

among the normal bacterial flora of exposed individuals (animals and/or humans) or popula-

tions [28, 30, 31]. There can also be the possibility of continuous feeding of antimicrobial

agents to food animals like broilers in the form of antimicrobial growth promoters/non-thera-

peutic antibiotics or other preventive usages like inovo medication or usage of zinc bacitracin.

Usually, commercially available poultry feed (formulated feed) has low doses of antibiotics

which are taught to be must be needed to promote fast growth and expedite weight gain [32].

Generally, crowding and poor sanitation play an important role in the selection of resis-

tance. Hence, the development of drug resistance among bacteria in broiler chickens due to

high antibiotic selection pressure may constitute a high proportion of resistant bacteria in

their fecal flora [33]. These factors are typical of intensive commercial poultry farming and

explain the high rate of resistance in fecal flora of broilers, as shown in the present study and
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studies carried out previously [34, 35]. Although zoonotic transmission of ESBLs from animals

to humans or vice-versa remains controversial, several studies showed a direct link like trans-

mission through intimate contact with the animals or via undercooked/uncooked meat han-

dling/consumption [35]. Olaitan et al. demonstrated the zoonotic transmission of a colistin-

resistant gene mcr-1 from a pig to its rearer [36].

Global studies reported a wide range of prevalence of EPE among commercially grown

poultry flocks. Previous studies showed a 0.7% prevalence of EPE among broiler chickens in

France, 44% in Germany, 60% in Japan, and that of 81% in the Netherlands [37, 38]. Similarly,

EPE prevalence was 69%, 60%, 20.6%, and 3.2% among commercially grown poultry flocks in

Romania, Ecuador, Lebanese, and Vietnam [39]. A study conducted by A. Shrestha et al. [40]

in the Bharatpur metropolitan, Nepal, had reported 36.9% ESBL positive bacterial contamina-

tion in chicken meat samples. Likewise, M. Subedi et al. [41] reported a high prevalence of

MDR E. coli and high frequency of virulence genes in avian pathogenic E. coli strains isolated

from the colibacillosis suspected broiler chickens in Chitwan, Nepal. In Nepal, the prevalence

of EPE colonization in the gut of poultry birds has not been studied so far. This study is the

first epidemiological study in Nepal quantifying the rate of intestinal carriage of ESBL genes

among Enterobacteriaceae in healthy chicken flocks. This study is unique in having evaluated

local backyard/organic-raised chickens for such colonization, and we found 28.8% and 31.9%

prevalence rate of EPE in the backyard chickens and commercial chickens, respectively.

The local breed of backyard chickens sampled in this study had no direct exposure to anti-

biotics. They are organically fed by homegrown cereal, and often they are naturally resistant to

common infections. These birds were rarely exposed to antibiotic treatment. Interestingly, the

results of this study suggested a high rate of EPE both in commercial broilers and domesticated

backyard chickens.

High rate of EPE was reported previously by JC Stuart and colleagues from Netherland

[42], and A Kola and colleagues from Germany [43], in both conventional and organic poultry

meat with several strains having similar sequence type to those reported from human origin.

The high rate of gut colonization of EPE in organically-raised backyard chickens is surpris-

ing, considering the strict limitation of antibiotic usage. Very few studies in the past noted sim-

ilar findings [44]. In developing countries like Nepal, with inadequate protection of human

and animal excreta and water, contamination of the environment with antibiotic-resistant bac-

teria might appear to play a great role in EPE carriage amongst backyard chickens. Another

possible explanation for the high rate of detection of EPE in backyard chickens may be due to

rampant use of antibiotics in human and/or animal populations, the risk of carrying resistant

organisms caused by household members’ use of antibiotics, interfamilial transmission, or

proximity to an antibiotics source [45]. All the backyard chickens involved in this study were

free-roaming. Being good natural scavengers, these flocks might feed on a variety of insects

and also green foliage, farm, and kitchen waste. Therefore, the possible transmission of resis-

tant bacteria from the above sources cannot be ruled out [46]. The prevalence of ESBL genes

among backyard chickens could also suggest that the antimicrobial resistance could be

acquired by multiple sources like environment, contacts, and not necessarily by the personal

antibiotic consumption alone [47].

In the present study, Escherichia coli were the major bacterial species among EPE, a finding

similar to global reports [48]. Molecular characterization revealed that 92.1% of strains har-

bored blaCTX-M-15 genes. It can be explained by supportive evidence from earlier meta-analysis

suggesting globalization of blaCTX-M type EPE, with a high rate of dissemination of blaCTX-M-15

types in the Asian subcontinent [47, 48]. In this study, Non-β lactam co-resistance in ESBL

and/or AmpC co-producers toward tetracycline and ciprofloxacin was as high as 62.5% and

50% each among broilers while relatively low among backyard chickens (36.4% and 31.8%
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respectively). It is possibly linked to the frequent use of these antibiotics in animal fodder and

veterinary medicine [8, 11, 30].

The study conducted by Nikolay PB et al. [49] in Northwestern Ecuador, found that pro-

duction birds, including broilers and layers, had high levels of antibiotic resistance and a

notably higher proportion of resistant isolates than household birds. They also observed the

prevalence of resistant phenotypes tended to decrease with bird age for drugs like ampicillin,

amoxicillin/clavulanate, cefotaxime, cephalothin, chloramphenicol, ciprofloxacin, gentamicin,

and streptomycin (P< 0.05) except sulfisoxazole, trimethoprim-sulfamethoxazole, and tetra-

cycline. A similar trend we observed in our study, that among broiler, the EPE colonization

rate tends to decrease with the birds’ age (0.987, (0.956, 1.020), p = 0.4). In contrary to that,

among backyard chickens, the EPE colonization rate tends to increase with the birds’ age (OR

1.011, (1.003, 1.020), p = 0.01).

In the present study, more than 50% of EPE isolates of both commercial and backyard

chickens possess a biofilm-producing phenotype. E. coli is one of many bacteria that can switch

between planktonic form and biofilm form. Biofilm cells are about 1000 times more resistant

than their planktonic form [50]. Biofilm producing EPE strains are recalcitrant to immune fac-

tors and antibiotic therapy and are often responsible for chronic infection, which is extremely

resistant to treatment. E. coli ST131 can attain a combination of successful spread, antibiotic

resistance, and virulence. Only a few studies have investigated the presence of E. coli ST131 in

food animals. E. coli ST131 isolates producing CTX-M-9 have occasionally been recovered

from poultry feces. In some of these instances, the animal isolates have presented a certain sim-

ilarity to human ST131 isolates [51, 52]. Concurrent to our study, non-ST131 isolates were

identified by Wu et al. and Randall et al. al among chickens [53, 54] and prevalence rate of 7%

E. coli ST131 was isolated from chicken meat samples [40]. All E. coli ST131 strains in our

study belonged to clade C. Since, E. coli ST131 clade C adapt to environmental changes rapidly

than other extraintestinal pathogenic E. coli, it is an utmost important to stop its continuing

spread to gain next clonal wave of MDR extraintestinal pathogenic E. coli.
The risks to human health posed by EPE from non-human reservoirs are not fully under-

stood. Surveillance for ESBL-producing bacteria in poultry could provide information on the

fecal flora, which may contaminate the products entering the food chain. Especially in devel-

oping countries like Nepal, a multi-disciplinary approach involving public-private partners,

government agencies are needed to limit the risk of AMR and minimize their impact on

human and animal health [55]. The interventions like immunization, public awareness,

upgraded sanitation practices, antibiotic stewardship, reduced use of antibiotics in agriculture,

and livestock need to be implemented. Consequently, we believe that collecting local epidemi-

ological data will help to shape future intervention strategies to reduce the spread of antibiotic-

resistant strains and its negative consequences.

Limitation and recommendation

Though the study is foremost in Nepal, it has few shortcomings. All PCR products were not

subjected to sequencing to further identify the ESBL types. Similarly, carbapenemase genes

were not amplified by genotype-based techniques. Also, this study lacks the detailed investiga-

tion of different sequence types and clonal diversity of organically raised backyard chickens

and commercial broiler chickens. Therefore, further large scale studies, including intense tar-

geted surveillance, molecular typing, and genomics-based analysis such as next-generation

sequencing, would help to understand the spread and association of EPE in human and animal

infections. Recently, Wielders CH and colleagues [56] observed that there is a seasonal varia-

tion of EPE colonization in the Dutch population. Therefore the seasonal colonization rate

PLOS ONE Gut colonization with ESBL producing Enterobacteriaceae in healthy chickens in rural Nepal

PLOS ONE | https://doi.org/10.1371/journal.pone.0227725 May 29, 2020 10 / 15

https://doi.org/10.1371/journal.pone.0227725


detection of EPE and CPE for poultry should be taken into account while designing future

prevalence studies, especially in temperate regions.

Conclusion

This is the first study in Nepal, demonstrating the EPE colonization rate, genotypes, and clonal

prevalence among gut flora of healthy poultry, Gallus gallus domesticus. Our data indicate that

CTX-M-15 was the most prevalent ESBL enzyme, mainly associated with E. coli belonging to

non-ST131clones and the absence of detection of carbapenemases. This study highlighted that

healthy organically raised backyard chickens in rural areas equally serve as potential reservoirs

of ESBL producing Enterobacteriaceae as that of commercial broiler chickens. A further large-

scale study is warranted to identify the significant predisposing factors for gut colonization by

ESBLs and to recognize and monitor the associated risks due to such colonization in poultry

birds.

Supporting information

S1 Fig. Location of Kaski District of Nepal where samples were collected (saffron color).

https://commons.wikimedia.org/wiki/File:Political_Map_of_Kaski_District.jpg.

(TIF)

S2 Fig. A–The double-disc synergy test- Ceftazidime disc (30 μg) with zone diameter�22mm

and an increase in the inhibition zone diameter of>5 mm for ceftazidime + clavulanic acid

(30 μg/10 μg) versus ceftazidime disc (30 μg) alone confirmed ESBL production (Fig 1). B–

Saline disk Test -A positive AmpC test appeared as a flattening or indentation of the cefoxitin

inhibition zone in the vicinity of the test organism. A negative test had an undistorted zone.

(PNG)

S3 Fig. Agarose gel electrophoresis of the CTXM-15 type ESBL genes (A) and E. coli ST-

131 clade (B). A. Lane M, 100-bp DNA ladder; lane 1- Positive control (known CTXM-15 pos-

itive isolate); lane 2–10 test strain positive for CTXM-15 genes (996bp); lane 11- negative con-

trol (normal saline). B. Agarose gel electrophoresis of E. coli ST131 clade PCR: Lane M, 100-bp

DNA ladder; lane 1- negative control (normal saline), lane 2- positive control; lane 3- test

strain non-ST131 E.coli, lane 3- test strain E.coli ST131 clade C (the resultant image is a prod-

uct of time-averaged data).

(PNG)

S1 Table. List of primers.

(DOCX)

S2 Table. Summary of ESBL genes identified in 38 ESBL producing isolates.

(DOCX)

S1 File. Questionnaires.

(DOCX)

Acknowledgments

We extend our special thanks to Manipal Teaching Hospital, Pokhara, Nepal, and Melaka

Manipal Medical College, Manipal Academy of Higher Education, Manipal, India, for provid-

ing the facility to carry out the study. The authors gratefully acknowledge the owners of poultry

farms who granted permission to collect the specimens. The authors are glad to acknowledge

the assistance from Mr. Bharat Prasad Baral, Mr. Nawal Kishor Sharan in sample collection

PLOS ONE Gut colonization with ESBL producing Enterobacteriaceae in healthy chickens in rural Nepal

PLOS ONE | https://doi.org/10.1371/journal.pone.0227725 May 29, 2020 11 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227725.s001
https://commons.wikimedia.org/wiki/File:Political_Map_of_Kaski_District.jpg
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227725.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227725.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227725.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227725.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227725.s006
https://doi.org/10.1371/journal.pone.0227725


and processing and Dr. Krishna Prasad Acharya, veterinary officer, for immense support dur-

ing sample collection. The authors acknowledge Prof. Shishir Gokhale and Dr. Deependra

Hamal, Department of Microbiology, Manipal College of Medical Sciences, Nepal, for an

expert opinion.

Author Contributions

Conceptualization: Supram Hosuru Subramanya, Indira Bairy.

Data curation: Supram Hosuru Subramanya, Yang Metok.

Formal analysis: Supram Hosuru Subramanya, Brijesh Sathian.

Investigation: Supram Hosuru Subramanya, Dharm Raj Bhatta.

Methodology: Supram Hosuru Subramanya, Rajesh Amberpet, Shashiraj Padukone, Yang

Metok, Dharm Raj Bhatta, Brijesh Sathian.

Project administration: Supram Hosuru Subramanya.

Resources: Supram Hosuru Subramanya, Niranjan Nayak.

Software: Supram Hosuru Subramanya, Yang Metok, Brijesh Sathian.

Supervision: Indira Bairy, Niranjan Nayak.

Validation: Supram Hosuru Subramanya, Indira Bairy, Brijesh Sathian.

Writing – original draft: Supram Hosuru Subramanya, Yang Metok.

Writing – review & editing: Supram Hosuru Subramanya, Indira Bairy, Niranjan Nayak.

References
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