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Abstract: Proximal hyperspectral sensing tools could complement and perhaps replace destructive
traditional methods for accurate estimation and monitoring of various morpho-physiological
plant indicators. In this study, we assessed the potential of thermal imaging (TI) criteria and
spectral reflectance indices (SRIs) to monitor different vegetative growth traits (biomass fresh weight,
biomass dry weight, and canopy water mass) and seed yield (SY) of soybean exposed to 100%, 75%,
and 50% of estimated crop evapotranspiration (ETc). These different plant traits were evaluated
and related to TI criteria and SRIs at the beginning bloom (R1) and full seed (R6) growth stages.
Results showed that all plant traits, TI criteria, and SRIs presented significant variations (p < 0.05)
among irrigation regimes at both growth stages. The performance of TI criteria and SRIs for assessment
of vegetative growth traits and SY fluctuated when relationships were analyzed for each irrigation
regime or growth stage separately or when the data of both conditions were combined together.
TI criteria and SRIs exhibited a moderate to strong relationship with vegetative growth traits when
data from different irrigation regimes were pooled together at each growth stage or vice versa. The R6
and R1 growth stages are suitable for assessing SY under full (100% ETc) and severe (50% ETc)
irrigation regimes, respectively, using SRIs. The overall results indicate that the usefulness of the
TI and SRIs for assessment of growth, yield, and water status of soybean under arid conditions is
limited to the growth stage, the irrigation level, and the combination between them.

Keywords: canopy water mass; crop phenotyping; 2-D correlograms CWSI; growth stages; NRCT;
visible/near-infrared spectroscopy; water stress

1. Introduction

Irrigated agricultural lands play an important role in stabilizing global food security.
Although these lands cover only 20% of the world’s cultivated land, they are responsible for
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approximately 40% of global food production. Irrigated lands in developing countries account
for one-fifth of the total arable area but produce three-fifths of cereal production and constitute
two-fifths of all crops [1]. At least 80% of cultivated lands in arid and semiarid countries rely on
irrigation. However, moisture stress is one of the widespread abiotic factors limiting plant growth
and productivity of major crops under irrigated agriculture. Additionally, abrupt climate change,
high temperature and evaporation rates, and sparse and highly variable rainfall further exacerbate the
drought-stress problems in irrigated agriculture, which poses a serious threat to future global food
security [2–4]. Consequently, maximizing production per unit of irrigation water applied by shifting
the irrigation strategies of crops from the paradigm of full irrigation to deficit irrigation practices is one
plausible solution for addressing water shortage in irrigated agriculture [5,6].

Soybean (Glycine max (L.) Merr.) is the most important oilseed legume crop worldwide, and it
is the fourth largest in terms of cultivated area in the world. It is considered a good source of edible
oil for humans and protein concentrates for food uses, animal feed, and various industrial products.
It is expected that there will be a need to expand the cultivated area of this crop in the coming years
to face the demand for edible oil and protein. Therefore, this crop is already playing an important
role in the food chain and will continue to do so in the future. However, moisture stress caused by
insufficient water supply is one of the major problems adversely affecting the growth and productivity
of soybean. The seed yield (SY) of soybean is most susceptible to moisture stress during the productive
period, especially during the flowering-pod setting and seed-filling periods. However, long-term,
severe moisture stress during the vegetative period may also be great enough to cause a substantial
reduction in SY [7–9]. Several field studies have reported that exposure of soybean to moisture stress
during the productive period can lead to over 50% reduction in SY [10–13].

Generally, moisture stress directly affects plant water status, which can interfere with normal plant
functions and can cause substantial changes in morphological and physiological traits. These effects
subsequently translate into substantial changes in crop growth and development with significantly
decreased leaf area, biomass accumulation, photosynthesis efficiency, stomatal conductance,
transpiration rate, and chlorophyll content and ultimately significant losses in SY [4,7,14–16].
These reports indicate that the close association between plant water status and available soil water can
be exploited to effectively manage irrigation scheduling that involves deciding how much and when
irrigation water should be applied and how to simultaneously maximize yield and water use efficiency
through accurate estimation and monitoring of the various morpho-physiological indicators [17–21].
Although the monitoring and assessment of common morpho-physiological indicators that reflect crop
water stress or vegetation water status using traditional plant sampling techniques are very accurate
and simple and do not require special expertise, they are generally tedious, destructive, time- and
cost-inefficient, and often inappropriate for multi-scale and real-time monitoring of these indicators on
a large scale.

In recent years, quick, nondestructive, and low-cost phenotyping tools such as thermal imaging
cameras and proximal passive reflectance sensors have been demonstrated to be a powerful alternative to
traditional plant sampling techniques for the integrative assessment of multiple morpho-physiological
indicators that accurately reflect crop water stress. Interestingly, these tools are feasible when crop
water-stress indicators are evaluated under several field treatments and on a large scale.

The earliest response to moderate and severe soil moisture stress is stomatal closure to avoid
excessive water loss through transpiration, which occurs before any change in the root system,
leaf area, leaf water potential, and/or relative water content [22–25]. For example, stomatal conductance
decreased by 60% under drought stress in soybean [26,27]. In another study, the decrease in stomatal
conductance reached 92% under severe drought stress in soybean [28]. A decrease in stomatal
conductance for an extended period leads to a considerable increase in canopy temperature due to
the limited ability of the transpiration process to cool the canopy. Therefore, the infrared thermal
imaging tool can effectively monitor water status based on the whole-canopy temperature. This tool
measures the canopy reflectance of infrared radiation and uses the measurement to calculate the spatial
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distribution of the canopy temperature [25,29,30]. The monitoring of canopy temperature by thermal
imaging is nondestructive and scalable from a single plant to whole-field traits and can be performed
several times over the growing season [31,32]. Additionally, a time series of canopy temperature can
effectively identify the growth stages sensitive to a lack of water in the root zone.

The crop water-stress index (CWSI) is the most commonly used crop index that estimates crop
water stress based on the canopy surface temperature and thermal data [33]. Several previous studies
have reported a strong correlation between CWSI, and crop water stress and yield in different field
crops [15,34,35]. The normalized relative canopy content (NRCT), developed by Elsayed et al. [19,30]
and based on the actual infrared temperature of the canopy, has been recognized as an indicator of
crop water stress in some barley varieties.

Proximal remote sensing has the potential to complement and perhaps replace traditional
methods in estimating and monitoring several phenotypic plant traits and can facilitate robust, quick,
cost effective, and nondestructive estimation. It can track even slight changes induced by moisture
stress that take place in different biophysical and biochemical characteristics of the canopy in the visible
(VIS) 400–700 nm to near-infrared (NIR) 700–1300 nm and shortwave-infrared (SWIR) 1300–2500 nm
ranges of the electromagnetic spectrum. Generally, the changes that take place in the characteristics of
leaf mesophyll, biomass accumulation, leaf pigments and nutrient concentrations, leaf area index (LAI),
photosynthetic efficiency, and leaf water content result in unique changes in the spectral signatures of
the electromagnetic spectrum reflected from the canopy [36–41]. For example, leaf pigments such as
carotenoids, chlorophylls, xanthophylls, and anthocyanins strongly absorb radiation in the VIS region,
especially in the blue and red wavebands, but not in the NIR region of the spectrum. The magnitude of
canopy spectral reflectance in the NIR region of the spectrum is strongly influenced by the scattering and
diffusion of radiation due to leaf dry matter content and different leaf tissues. The absorption features of
leaf water content are primarily located in the NIR and SWIR regions of the spectrum, with the peaks of
water absorption bands located in the SWIR regions near 1450, 1940, 2100, 2250, and 2500 nm, while the
weak absorption bands are identified in the NIR region near 970 and 1200 nm. The absorption peak in
the SWIR region can be attributed to the combinations and overtones of the fundamental vibrational
excitation within the water molecule (O–H) [4,42,43]. However, weak absorption bands, especially at
970 nm, can be attributed to the ability of NIR wavebands to penetrate more deeply into the canopy
than SWIR wavebands and, therefore, provide the ability to estimate water content in the entire canopy
more accurately than SWIR [17,44]. Due to the close relationship between specific wavelengths in these
three parts of the electromagnetic spectrum (VIS, NIR, and SWIR) and the different biophysical and
biochemical characteristics of the canopy, these specific wavelengths have been exploited to calculate
specific spectral reflectance indices (SRIs) using simple mathematical operations (normalized or ratio
formulas). These SIRs have been employed in estimating and monitoring several plant phenotypic
traits such as aboveground dry and fresh biomass, grain yield and its components, pigment contents,
and most plant measurements that reflect the status of plant water [6,37,43,45–48].

Little attention has been given to assessing the combination of thermal and spectroradiometric
measurements in detecting plant growth, crop water status, and yield of soybean under arid climatic
conditions. Therefore, the present study aimed (1) to quantify the response of different vegetative
growth traits and SY of soybean to different irrigation regimes at two growth stages and (2) to examine
the potential of thermal infrared measurements via CWSI and NRCT and of spectroradiometric
measurements using published and newly constructed SRIs to indirectly estimate different soybean
traits under different irrigation regimes and growth stages specifically or at each growth stage across
irrigation regimes or vice versa.
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2. Materials and Methods

2.1. Experimental Site and Conditions

The field experiment on drip-irrigated soybean was conducted at the Experimental Research
Station (30◦2′41.2′′ N, 31◦14′8.2′′ E) during the summer seasons of 2016 and 2017. The experimental
site conditions were an arid climate with a dry summer season and high temperature. The minimum
and maximum temperatures during the summer growing season (June to October) ranged from 28.3 ◦C
to 40.2 ◦C. The soil texture of the experimental site is sandy loam, consisting of 72.8% sand, 19.3%
silt, and 7.9% clay; bulk density 1.45 g cm−3; electrical conductivity 1.12 dS m−1; field capacity 19.2%;
wilting point 10.1%; and available water 9.1%. The quality of water used for irrigation was normal,
with an electrical conductivity of 1.20 dS m−1.

2.2. Experimental Design and Agronomic Practices

A randomized complete block design with four replications and three irrigation regime treatments
was used for each growing season. The replications and irrigation treatments resulted in 12 plots.
The irrigation treatments were randomly assigned to each plot within a replicate. The layout of the
experimental plots is illustrated in Figure 1. The plot areas were 96.0 m2 each, and each plot was
supplied with four polyethylene lateral drip lines 16 mm in diameter and 32 m long, with a 0.30 m
emitter spacing (Chapin Watermatics, Watertown, NY, USA). The lateral drip line was laid out along
each soybean row 0.75 m apart. The drippers had a discharge rate of 4 l h−1. Each lateral line was
equipped with a T-shape valve to control water flow from the sub-mainlines (50 mm in diameter) to
the lateral drip lines.

Figure 1. Schematic diagram of the experimental layout that includes three irrigation regimes and four
replications showing locations of irrigation regimes and replications.



Sensors 2020, 20, 6569 5 of 23

Four seeds of the cultivar Giza 111, belonging to the indeterminate growth type and group
maturity IV of soybean varieties, were sown around each dripper on April 24 in both growing seasons.
At two weeks after sowing, the seedlings were thinned to two plants per dripper to obtain a final plant
population of approximately 88,889 plants ha−1. The entire dose of phosphorus (50 kg P2O5 ha−1) was
applied basally as superphosphate (15.5% P2O5) before sowing. All treatments received 100 kg N ha−1

as ammonium nitrate (33.5% N) applied by fertigation in five equal doses starting from sowing to
the full bloom stage. Additionally, 60 kg K2O ha−1 was applied 35 days after sowing in two equal
doses, with 15-day intervals between doses. All other recommended agronomic practices (control of
weeds, diseases, and pests) were performed in a timely manner. Hand harvesting was performed on
10 August 2016 (108 days after sowing) and 14 August 2017 (112 days after sowing).

All irrigation treatments received the same volume of irrigation water at 4-day intervals
(approximately 60 mm, starting from sowing to three weeks after sowing) to ensure the complete
establishment of seedlings. Thereafter, irrigation water was applied according to the prescribed
irrigation treatments outlined below.

2.3. Irrigation Treatments

In this study, three irrigation treatments were applied, 100%, 75%, and 50% of the estimated crop
evapotranspiration (ETc), with a 4-day irrigation interval. The irrigation water volume (ETc) for the
full irrigation treatment (100% ETc) was estimated using the following equation:

ETc = ETo×Kc (1)

where ETc is the crop evapotranspiration (mm day−1); Kc is the crop coefficient, adjusted based on the
data of relative humidity and wind velocity measured at a 2-m height of the study area; and ETo is
the reference evapotranspiration (mm day−1) that was estimated using FAO CROPWAT software ver.
8. This software uses the modified FAO Penman–Monteith equation to estimate the ETo, as reported
by Allen et al. [49]. The daily climatic parameters collected from the meteorological station closest to
the research site were applied to the modified FAO Penman–Monteith equation to estimate the ETo.
The detailed climatic parameters of two growing seasons are given in Table 1. Based on the above
calculation, the total volumes of irrigation water for 100% ETc treatment were approximately 595.6 and
623.1 mm ha−1 in the first and second growing seasons, respectively. This irrigation water volumes
were reduced to 25% and 50% for the 75% and 50% ETc treatments, respectively.

Table 1. Monthly agro-climatological data in the Sadat city region (30◦2′41.2” N, 31◦14′8.2” E) in the
2016 and 2017 growing seasons.

Year Months
Temperature (◦C) Wind Speed

(m s−1)
Relative

Humidity (%)
Total Solar Radiation

(MJ m−2 day−1)
Net Solar Radiation

(MJ m−2 day−1)Maximum Minimum

2016

April 30.4 16.2 0.74 53.4 23.4 12.51
May 32.1 17.0 0.81 47.2 25.6 14.71
June 34.9 17.1 0.61 53.3 26.1 15.00
July 35.5 22.0 0.53 62.6 22.9 14.31

August 35.9 22.7 0.47 61.8 20.8 12.00

2017

April 32.7 17.0 0.62 51.2 24.5 14.41
May 33.5 16.0 0.74 49.3 26.0 15.47
June 35.9 20.8 0.65 56.4 27.6 17.14
July 36.5 23.2 0.51 59.7 23.8 14.08

August 35.7 23.0 0.42 63.1 22.3 13.43

2.4. Measurements

2.4.1. Thermal Measurements

Using a handheld infrared thermal camera (Ti-32, Fluke Thermography, Glottertal, Germany)
between 10:00 and 13:00 h, infrared thermal images (IR images) of each soybean plot were captured at
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the beginning bloom (R1) and full seed (R6) growth stages. The camera was operated in a wavelength
range of 7.5–14 µm, which is regarded as optimal for imaging applications that use heat signatures [50].
The camera had a ±0.2 ◦C accuracy in the temperature range of −20 to 600 ◦C. It was equipped with a
320 × 240 pixel micro-bolometer and a standard lens field of view of 23◦ × 17◦. The thermal sensitivity
of the camera was ≤0.05 ◦C at 30 ◦C with a spatial resolution of 1.25 mRad and minimum focus distance
of 15 cm. The emissivity for measurements of plant canopy was set to 0.95 for the wet reference and the
target leaves and to 0.96 for the dry reference [51]. The camera was kept at a height of approximately
0.80 m above the plant canopy at both growth stages. The IR image obtained for each plot was analyzed
using the SmartView Fluke IR imaging software (version 3.2, Fluke Corporation, Plymouth, MN, USA)
for data extraction and image visual. For temperature analysis of the individual leaves within the
canopy, a polygon area was fitted around the leaf, and the leaf temperature was calculated as a mean
value for the polygon area by the software. From each image, the average leaf temperature of the
ten leaves was calculated. The data of the infrared thermal images were applied using the following
equations to calculate the CWSI [52] and NRCT [19]:

CWSI =
[(Tc − Ta)c− (Tc − Ta)l]
[(Tc − Ta)u− (Tc − Ta)l]

(2)

where (Tc − Ta) is the difference between canopy (Tc) and air (Ta) temperature (◦C) for the current
condition. The upper boundary temperature (Tc − Ta)u and lower boundary temperature (Tc − Ta)l
represent non-transpiring and full transpiring conditions, respectively. When the crop was fully
watered, the value of CWSI was close to 0, whereas for a crop under high water-stress conditions,
the value of CWSI was close to 1.

NRCT =
T − Tmin

Tmax − Tmin
(3)

where T is the real infrared temperature measured in the canopy, Tmin is the lowest temperature
measured in the whole-field trial, and Tmax is the highest temperature in the whole-field trial.
This method has the advantage of only requiring measurement of infrared temperatures.

2.4.2. Spectral Reflectance Measurements

Spectral reflectance data of soybean canopies were also collected at the R1 and R6 growth stages
under windless and sunny conditions within ±2 h of solar noon. The diffuse reflection characteristics
of canopies were captured using a passive bidirectional reflectance sensor system (Handy Spec Field®,
tec5, Oberursel, Germany). This device has two units of a Zeiss MMS1 silicon diode array spectrometer,
one connected to a diffuser to detect solar radiation as a reference signal, while the second unit
simultaneously captures the spectral signatures reflected from the canopy at a spectral range from
302 to 1148 nm with a spectral resolution of approximately 3.3-nm bandwidth and a field of view of
12◦. The sensor analyses the reflected radiation in 256 spectral channels [45]. The spectral reflectance
from the canopy was taken at the nadir looking angle of 25◦, at approximately 0.80 m above the crop
canopy, to cover a field view with a diameter of approximately 23 cm. A polytetrafluoroethylene (PTFE)
white standard with approximately 100% reflectance was used to calibrate and optimize the canopy
reflectance measurements. The calibrations were done before and after the measurements of canopy
spectral reflectance for each plot. To acquire an accurate value of spectral reflectance, the average of
four sequential measurements and ten scans for each was considered as one spectrum measurement for
each plot. Finally, the spectrometer software program was used for preprocessing spectral reflectance
of each plot at 1-nm intervals prior to calculation of the published or new SRIs.

2.4.3. Plant Trait Measurements

After the spectral reflectance data had been collected, an area of 1.3 m length (1.0 m2 and
approximately 20 plants) in the middle two lateral drip lines from each plot was cut from the ground
level, and its biomass fresh weight (BFW) was immediately recorded. The plant samples were cut into
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small pieces, oven-dried at 80 ◦C to a constant weight, and weighed to record the biomass dry weight
(BDW). The data of BFW and BDW were applied to the following equation to determine the canopy
water mass (CWM) [45]:

CWM =
BFW − BDW

A
(4)

where A is the area of harvested biomass for each treatment.
When the plants reached the maturity stage (R8), an area of 10.0 m length (7.5 m2) in the middle

two lateral drip lines of each plot was harvested by hand, sun-dried for one week, and manually
threshed to separate the seeds. The final SY was then weighed and expressed as Mg ha−1 based on the
harvested area.

2.5. Selection of Published and Newly Constructed Spectral Reflectance Indices

Based on the spectral reflectance data, 11 SRIs (seven published SRIs and four new SRIs constructed
in this study) were selected to examine their efficiency for assessing the different plant traits. These SRIs
are listed with their equations and references in Table 2. Additionally, the SRIs were formulated based
on the VIS and NIR of the electromagnetic spectrum sensitive to changes in photosynthetic efficiency,
leaf cellular structure, leaf chlorophyll and other pigment content, and plant water content.

Table 2. Full name, formula, and references of spectral reflectance indices (SRIs) tested in this study.

Spectral Reflectance Indices Formula References

Photochemical reflectance index (PRI, (531,570)) (R531 − R570)/(R531 + R570) [53]
Simple ratio based on 610 and 550 nm (SRI(610,580)) R610/R580 This work
Simple ratio based on 660 and 560 nm (SRI(660,560)) R660/R560 This work

Simple ratio based on 678 and 1070 nm (SRI(678,1070)) R678/R1070 [54]
Normalized difference vegetation index (NDVI(800,640)) (R800 − R640)/(R800 + R640) [55]

Simple ratio based on 800 and 970 nm (SRI(800,970)) R800/R970 [56]
Simple ratio based on 890 and 715 nm (SRI(890,715)) R890/R715 [45]

Water index (WI(900,970)) R900/R970 [57]
Normalized water index 2 (NWI-2(970,850)) (R970 − R850)/(R970 + R850) [17]
Development of water index (DWI970–670) R970/R670 This work
Development of Water index (DWI1100–670) R1100/R670 This work

The new SRIs were constructed based on 2-D correlogram maps established using the pooled
data of replications, irrigation regimes, and seasons of the spectral reflectance data measured at the
R6 growth stage for each plant trait (Figure 2). These 2-D correlogram maps show the coefficients of
determination (R2) for the relationships between values of plant traits and the SRIs calculated from
all possible combinations of dual wavelengths of binary in the entire spectrum range (302–1148 nm).
The hotspot regions for the best R2 determine the best relationships of SRIs with plant traits. Based on
hotspots of the best R2, the new SRIs were based on the combined information from photosynthetic
activity, leaf pigmentation, and biomass accumulation in the VIS (531, 550, 560, 580, 610, 640, 660,
and 670 nm) and red-edge (715 nm) regions and the weak absorption bands located in the NIR region
(800, 850, 890, 900, 970, 1070, and 1100 nm). The lattice package in R statistics v.3.0.2 (R Foundation
for Statistical Computing 2013) was employed to create the different 2-D correlogram maps from the
spectral reflectance data measured at the R6 growth stage.
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Figure 2. Two-dimensional correlograms show the coefficients of determination (R2) for the relationships
between values of vegetative growth traits (biomass fresh weight (BFW), biomass dry weight (BDW),
canopy water mass (CWM), and seed yield (SY)) and the spectral reflectance indices calculated from all
possible combinations of dual wavelengths of binary in the entire spectrum range (from 302 to 1148 nm)
using the pooled data of replications, irrigation regimes, and seasons at the full seed (R6) growth stage.

2.6. Statistical Analysis

The data obtained for the different measurements (plant traits, infrared thermal criteria, and SRIs)
were subjected to an analysis of variance (ANOVA) appropriate for a randomized complete block
design to assess any significant differences in these measurements between the three irrigations
regimes. Furthermore, the mean differences for the different measurements among the irrigation
regimes were compared using Fisher’s least significant difference (LSD) test at a p ≤ 0.05 significance
level. A combined ANOVA was performed to analyze the differences among irrigation regimes across
the two growing seasons using Bartlett and Shapiro–Wilk tests. The combined analysis indicated
homogenous variances across seasons for the different measurements, and therefore, the data of the
two seasons were combined. Irrigations regimes and seasons were considered a fixed effect, while the
replicate was considered a random effect. The statistical package R software version 3.6.1 (R Core Team
2020) was used for this analysis.

Simple linear regression analysis was performed to establish the relationships of different plant
traits with thermal infrared criteria and SRIs under each irrigation regime across growth stages (n = 24),
at each growth stage across irrigation regimes (n = 16), and under each irrigation regime at specific
growth stages (n = 8). The significance level of R2 values for these relationships was p ≤ 0.05.
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3. Results and Discussion

3.1. Response of Growth Performance and Yield to Irrigation Regimes at Different Growth Stages

Based on ANOVA, the SY in two growing seasons as well as the other plant traits (BFW, BDW,
and CWM), measured at the R1 and R6 growth stages across the two seasons, presented significant
differences (p < 0.05) between the three irrigation regimes (Table 3). Averaged over the two seasons,
applying 25% (75% ETc) and 50% (50% ETc) less water requirement resulted in SY decreases of 21.9%
and 48.9%, respectively, when compared with the 100% ETc treatment. Fisher’s protected LSD test
showed that the differences in BFW, BDW, and CWM between the 100% and 75% ETc treatments
were not significant, with 50% ETc producing the lowest values for these traits at the R1 growth
stage, whereas at the R6 growth stage, these traits for the irrigation regimes were ranked 100% ETc
> 75% ETc > 50% ETc. Generally, the 75% ETc treatment decreased BFW, BDW, and CWM by 16.5%,
7.8%, and 18.8% at the R1 growth stage and by 32.4%, 18.4%, and 38.5% at the R6 growth stage,
respectively, when compared with the 100% ETc treatment. The 50% ETc treatment decreased BFW,
BDW, and CWM by 35.2%, 17.1%, and 61.2% at the R1 growth stage and by 61.2%, 40.2%, and 70.3%
at the R6 growth stage, respectively, when compared with the full irrigation treatment (100% ETc)
(Table 3). These results indicate that the negative effects of moisture stress on growth performance and
yield of soybean depend not only on the intensity of moisture stress but also on the sensitivity of the
phenological growth stage to the intensity of the moisture stress. Several studies have reported that
most soybean phenological growth stages are very sensitive to soil moisture stress but with varying
degrees of response. In general, moisture stress during the vegetative growth stage (emergence to seed
development) had negative effects on growth performance in terms of total dry matter accumulation
(TDM), crop growth rate, leaf area expansion, LAI, internode length, and plant height. This negative
effect of moisture stress during this growth stage resulted in a significant reduction in the elongation
and expansion of plant cells, photosynthetic rate, and nitrogen fixation as well as induced rapid leaf
senescence and early maturity [13,16,58–60]. Board and Kahlon [61] reported that moisture-stress
treatments begin showing diminished TDM and LAI by the late vegetative or early reproductive
growth stages. However, based on the response of the different yield components to soil moisture
stress, the majority of studies have conclusively demonstrated that the growth stages from R1 to R6
have been identified as being the most sensitive growth period to soil moisture deficits in soybean.
Consequently, the soil moisture-stress sensitivity of the R6–R7 period (rapid seed filling) is less than
half that of the R1–R6 period; therefore, SY loss is generally twice as great for the R1–R6 than the R6–R7
period [61,62]. Their report confirms the finding of this study that the irrigation treatments showed
significant differences in BFW, BDW, and CWM at both the R1 and R6 growth stages (Table 3).

Importantly, the results of this study further confirm that these plant traits could serve as
benchmark indicators for soil moisture stress at critical growth stages of soybean because they are
closely associated with several morpho-physiological properties of soybean under drought stress such
as canopy wilt, photosynthesis efficiency, leaf expansion and elongation, flower and pod abortion,
plant water status, and other growth and developmental traits [13,16,58,61,63–67]. For example, Board
and Kahlon [61] mentioned that, if we know the TDM at the R1 and seed-development (R5) growth
stages, we could predict early which potential soil moisture-stress levels cause significant soybean
yield loss. Thus, simultaneous and frequent monitoring and assessment of these plant traits in a
quick, easy, and nondestructive manner could play a vital role in managing deficit irrigation and in
optimizing crop production by planning an optimal irrigation schedule (timing and volume), which is
presented and explained in the following sections.
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Table 3. Comparison of the mean values of vegetative growth traits (biomass fresh weight (BFW),
biomass dry weight (BDW), and canopy water mass (CWM), seed yield (SY)), thermal canopy
temperature-based criteria (crop water stress index (CWSI) and normalized relative canopy temperature
(NRCT)), and eleven spectral reflectance indices among the three irrigation regimes at the beginning
bloom (R1) and full seed (R6) growth stages.

Irrigation Water Regimes

100% ETc 75% ETc 50% ETc 100% ETc 75% ETc 50% ETc

2016 2017

SY (Mg ha−1) 3.18a 2.45b 1.63c 3.25a 2.57b 1.654c

R1 R6

BFW (Mg ha−1) 6.11a 5.10ab 3.96b 13.32a 9.01b 5.17c
BDW (Mg ha−1) 1.29a 1.19ab 1.07b 4.08a 3.33b 2.44c
CWM (Mg ha−1) 4.83a 3.92ab 2.90b 9.24a 5.68b 2.74c

CWSI 0.18c 0.45b 0.62a 0.29c 0.61b 0.78a
NRCT 0.17c 0.42b 0.58a 0.30c 0.60b 0.79a

PRI(531,570) −0.084a −0.100b −0.122c −0.040a −0.065b −0.091c
SRI(610,580) 0.952c 1.00b 1.048a 0.862c 0.934b 0.999a
SRI(660,560) 0.731c 0.878b 1.055a 0.526c 0.712b 0.919a
SRI(678,1070) 0.254c 0.358b 0.501a 0.091c 0.167b 0.208a

NDVI(800,640) 0.800a 0.454b 0.351c 0.819a 0.665b 0.593c
SRI(800,970) 1.071a 1.045b 1.026c 0.991a 0.903b 0.843c
SRI(890,715) 1.726a 1.444b 1.325c 2.556a 2.047b 2.051b
WI(900,970) 1.071a 1.050b 1.029c 1.094a 1.028b 0.985c

NWI-2(970,850) −0.039c −0.026b −0.016a −0.022c 0.018b 0.046a
DWI(970,670) 4.408a 2.908b 2.150c 13.794a 6.905b 5.401b
DWI(1100,670) 3.230a 2.379b 1.658c 7.959a 4.354b 3.552b

Means followed by the same letter are not significantly different from one another based on Fisher’s least significant
difference (LSD) test at p ≤ 0.05.

3.2. Thermal Canopy Temperature-Based Criteria and Performance in Assessment of Vegetative Growth Traits
and Seed Yield

The earliest response to soil moisture stress is stomatal closure, and there is a tendency for
stomata to close with decreasing soil moisture to avoid excessive water loss through transpiration.
However, stomatal closure for an extended period results in a considerable rise in leaf temperature
because of the correlation between transpirational cooling ability and leaf surface temperature in which
the latent heat of vaporization plays a vital role in cooling the leaf surface through the conversion of
water to water vapor [24,25,68,69]. Therefore, thermal canopy temperature-based criteria such as CWSI,
which is based on the divergence between the upper and lower boundaries of canopy-to-ambient
air temperature difference [52], and NRCT, that is based on the actual infrared temperature of the
canopy [30], could serve as quick, easy, and nondestructive guides for understanding and monitoring
the response of plant phenotyping traits to soil moisture stress and can thus be used as irrigation
scheduling tools [17,50,70–73]. This study illustrated significant differences (p < 0.05) in the CWSI and
NRCT among the three irrigation regimes at both the R1 and R6 growth stages. Based on Fisher’s
protected LSD test, the values of CWSI and NRCT for the irrigation regimes were ranked 100% ETc
< 75% ETc < 50% ETc at both growth stages, which is the inverse ranking of the vegetative growth
traits and SY (Table 3). These results indicate that increasing soil moisture stress could lead to an
imbalance between the water absorbed by the plants and that required to cool the canopy through
the transpiration process and thus ultimately to increased CWSI and NRCT values; the opposite was
true for the well-watered conditions. The resulting significant differences in CWSI and NRCT among
the irrigation regimes indicate that both of the thermal canopy temperature-based criteria can be
exploited to determine irrigation thresholds and to avoid yield loss through effective management of
irrigation schedules. Similarly, Irmak et al. [74] found that CWSI is a useful thermal canopy criterion
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to monitor and quantify water stress in maize under Mediterranean semiarid climatic conditions,
in which the value of CWSI should remain below 0.22 to avoid yield loss. Steele et al. [75] also reported
no significant reduction in maize yield when irrigation scheduling was based on the CWSI threshold
of 0.2; a CWSI value of above 0.6 has been reported to reduce grain yield. Using the CWSI as a
guide tool for irrigation scheduling, O’Shaughnessy et al. [76] successfully identified an area within a
field where a decrease in soil moisture resulted in a significant reduction in water use and yield of
soybean and cotton under various irrigation regimes using empirical CWSI. The NRCT also showed a
significant negative relationship with grain yield of different barley cultivars subjected to mild and
severe water stress [19]. The findings of these studies and our results confirm that thermal canopy
temperature-based criteria could provide important insights for the effective management of deficit
irrigation. Additionally, they can be used as a rapid and nondestructive tool to track the changes in
several plant phenotyping traits for the early detection of water stress to avoid yield loss.

Table 4 shows the best models of the regressions and coefficients of determination (R2) for the
relationships between both criteria of thermal canopy temperature (CWSI and NRCT) and the vegetative
growth traits and SY at each growth stage across three irrigation regimes, for each irrigation regime
across two growth stages, as well as for each irrigation regime at each growth stage. Both thermal
canopy temperature criteria showed strongest relationships with the three plant traits and SY (R2 ranged
from 0.67 to 0.94) when the data derived from different irrigation regimes were pooled at each growth
stage (n = 24), and the linear equation best modeled these relationships. When the data derived from
different growth stages were pooled for each irrigation regime (n = 16), both thermal temperature
criteria still exhibited moderate to strong relationships with the three plant traits (R2 ranged from 0.54
to 0.84), but they failed to exhibit any relationship with SY. The linear equation best modeled these
relationships with a few quadratic polynomial relationships (Table 4). When the relationships of both
thermal temperature criteria with plant traits and SY were analyzed for each irrigation regime at each
growth stage (n = 8), the relationship of CWSI with plant traits and SY were weak or insignificant except
for SY under 50% ETc at R6, which showed the strongest linear relationship with CWSI (R2 = 0.80).

Table 4. The best models of regression and determination coefficients (R2) for the relationship between
thermal canopy temperature-based criteria (crop water stress index (CWSI) and normalized relative
canopy temperature (NRCT)) and vegetative growth traits (biomass fresh weight (BFW), biomass dry
weight (BDW), canopy water mass (CWM), and seed yield (SY)) at each growth stage across three
irrigation regimes (n = 24), for each irrigation regime across two growth stages (n = 16), and for each
irrigation regime at each growth stage (n = 8): R1 and R6 indicate the beginning bloom and full seed
growth stages, respectively, while L and Q indicate linear and quadratic fitting models, respectively.

Treatments
BFW BDW CWM SY

CWSI NRCT CWSI NRCT CWSI NRCT CWSI NRCT

Growth stages R1 0.89 L* 0.90 L* 0.67 L* 0.75 L* 0.88 L* 0.87 L* 0.82 L* 0.82 L*
R6 0.94 L* 0.90 L* 0.88 L* 0.90 L* 0.93 L* 0.83 L* 0.90 L* 0.84 L*

Irrigation water regimes
100%ETc 0.63 L* 0.79 L* 0.65 L* 0.71 L* 0.62 Q* 0.82 L* 0.002 L 0.20 Q

75% ETc 0.72 L* 0.78 L* 0.72 L* 0.77 L* 0.84 Q* 0.74 L* 0.003 L 0.14 Q

50% ETc 0.78 L* 0.78 L* 0.72 L* 0.69 L* 0.54 Q* 0.61 Q* 0.16 Q 0.21 Q

R1
100%ETc 0.39 L* 0.30 Q* 0.05 Q 0.14 Q 0.50 L* 0.52 Q* 0.01 L 0.35 Q*
75%ETc 0.02 L 0.36 Q* 0.20 Q 0.02 Q 0.03 L 0.27 Q* 0.02 L 0.53 Q*
50%ETc 0.55 L* 0.38 L* 0.42 Q* 0.90 Q* 0.13 Q 0.35 Q* 0.17 Q 0.80 Q*

R6
100%ETc 0.003 L 0.85 Q* 0.01 L 0.19 Q 0.001 L 0.83 Q* 0.48 Q* 0.42 Q*
75% ETc 0.12 Q 0.30 Q* 0.20 Q 0.09 L 0.21 L 0.43 Q* 0.43 Q* 0.41 Q*
50% ETc 0.05 L 0.32 Q* 0.49 L* 0.96 L* 0.52 Q* 0.58 Q* 0.80 L* 0.61 L*

* Numbers indicate statistical significance at p ≤ 0.05.

Additionally, the CWSI failed to exhibit a relationship with any traits under 75% ETc at both
growth stages whereas the NRCT exhibited a weak to strong relationships with BFW (R2 = 0.30–0.85),
CWM (R2 = 0.27–0.83), and SY (R2 = 0.35–0.80) when the data were analyzed under each irrigation
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regime at each specific growth stage. The NRCT had a strong relationship with BDW at both the R1
(R2 = 0.90) and R6 (R2 = 0.96) growth stages only under 50% ETc (Table 4). In accordance with these
findings, we can indicate that the thermal canopy temperature-based criteria could be effectively used
to assess and track the changes in plant water status, biomass production, and SY of soybean at the early
reproductive growth stages (between R1 and R6). Very similar results have been obtained by Kumar
et al. [77]; they also found that canopy temperature depression measured at the early reproductive
stage (approximately 21 and 35 days after 50% flowering) explained a major proportion of the variation
in SY of soybean genotypes under both full and limited irrigation regimes.

A similar association was also found at the anthesis growth stage and closely after in bread wheat
grown under dry land conditions [78]. Additionally, the results of this study reveal that the thermal
canopy temperature-based criteria also efficiently explained the variability in plant water status in
terms of BFW, CWM, and BDW. However, they failed to explain the variability in SY under each
irrigation regime separately when the data of the two growth stages were combined for each irrigation
regime. This failure of thermal canopy temperature-based criteria to detect the variability in SY could
be attributed to the differences in canopy development, environmental conditions, canopy coverage of
the ground, green leaf area, and transpiration efficiency between the two growth stages that may be
sufficient to blur the effectiveness of thermal criteria in detecting SY variability when the data of both
growth stages were combined for each irrigation regime. This finding indicates that the suitability
of thermal canopy temperature-based criteria for early detection of SY variability under different
irrigation regimes must be separately identified based on the different growth stages. Han et al. [73]
also reported that the theoretical CWSI, which takes climatic variables into account, provides a better
explanation of the variability in maize grain yield between growth stages and irrigation regimes than
the empirical CWSI. The results of the relationships between thermal criteria and SY at each growth
stage separately also confirmed this statement and found that the NRCT at the R1 growth stage and
both thermal criteria at the R6 growth stage showed moderate to strong relationships with SY under
each irrigation regime (R2 ranged from 0.35 to 0.80) (Table 4). Additionally, the quadratic polynomial
regression was the best model fit to these relationships (Table 4). This indicates that the efficiency of
different thermal canopy temperature-based criteria in detecting SY might depend on the degree of
change in transpirational cooling of the canopy and water uptake under different irrigation regimes
and climatic variables at each growth stage.

3.3. Canopy Spectral Reflectance and Performance for Assessment of Vegetative Growth Traits and Seed Yield

Fortunately, when plants are subjected to soil moisture stress, there can be substantial variations
in several internal biochemical and biophysical plant characteristics, such as internal structural
characteristics of the leaf mesophyll, leaf dry matter content, leaf pigment contents, and leaf water
content, which eventually induce substantial changes in the spectral signatures that are reflected from
the plant canopy in the VIS, NIR, and SWIR regions of the electromagnetic spectrum [6,8,36,38,79–81].
Consequently, these changes in the spectral reflectance of the canopy have been exploited for indirect
assessment of different plant phenotyping traits that are eventually directly related to changes in soil
water content. Therefore, to exploit the spectral reflectance data for indirect assessment of plant traits of
interest, the spectral reflectance values at specific and effective wavelengths between the VIS and SWIR
domains were used to create specific SRIs. Ultimately, these SRIs have been used to assess different
plant traits indirectly. In this study, the sensitive wavelengths that are used to choose the published
SRIs or to construct the new ones were identified through 2-D correlogram maps that show the hotspot
regions of the best R2 and to determine the best relationships between the values of soybean plant traits
and all possible dual wavelength combinations of binary in the spectral range 302–1148 nm as ratio
SRIs (Figure 2). In general, depending on the plant traits and SY, the hotspot regions of the best R2 were
located at the VIS region on the horizontal axis with VIS or NIR regions on the vertical axis and at the
NIR region on the horizontal axis with VIS or NIR regions on the vertical axis (Figure 2). These results
indicate that the SRIs that incorporate wavelengths from both VIS and NIR could be effectively used
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for the indirect assessment of plant water status, biomass production, and SY of soybean under a wide
range of irrigation regimes. Because the water bands in the NIR region can penetrate deeper into the
canopy and are more sensitive to changes in the internal leaf structure, the SRIs incorporating the NIR
wavelengths were informative in assessing the variability in growth, water status, and production of
various field crops under different irrigation treatments [17,20,30,44,45,82,83]. Because the wavelengths
in the VIS region are dependent on pigment content and photosynthetic capacity, the SRIs incorporating
the VIS wavelengths were found to be effective in reflecting the status of growth and production of crops
under different environmental conditions [8,46,84–86]. Although no wavelengths in the VIS region are
directly related to plant water status, some SRIs incorporating the VIS wavelengths were found to
be sensitive to plant water status [20,21,82,87]. This is likely because the loss of cell turgor under soil
moisture stress leads to a decrease in cell volume, which eventually results in chlorophyll degradation,
pigment photo-oxidation, and insufficient synthesis of chlorophyll [88], thereby influencing the spectral
reflectance not only in the NIR but also in the VIS regions. Additionally, the wavelengths in the
red-edge region (700–780 nm) carry important information on biomass quantity, and thus, the SRIs
incorporating the red-edge wavelengths were found to be effective for tracking changes in biomass
and SY under different environmental conditions [20,41]. These findings indicate that the SRIs based
on combined information from the VIS, red-edge, and NIR regions could be used to assess and
predict several plant phenotypic traits related to growth, water status, and crop production under a
wide range of irrigation regimes. For example, the normalized difference vegetation index (NDVI),
which incorporates wavelengths from the red (620–690 nm) and NIR (760–900 nm) regions, has been
shown to correlate well with different plant phenotypic traits such as leaf water content, leaf water
potential, aboveground biomass, LAI, ground cover, and final yield in different field crops under
either normal or stress conditions [8,19–21,36,38,46,47]. The photochemical reflectance index (PRI) that
incorporates the major green wavelengths (531 and 570 nm) has also been found to be important in
estimating several plant phenotypic traits in various environments [46,89]. The water index (WI) and
different normalized water indices (NWIs) that focus on the weak water absorption bands within the
NIR region (near 970 nm) are appropriate to detect crop production as well as the plant phenotypic
traits that are associated with plant water status under soil moisture-stress conditions [17,19,36,90,91].

In this study, all tested SRIs that are based on green, red, red-edge, and NIR spectra showed
significant variation (p < 0.05) between the three irrigation regimes at the R1 and R6 growth stages
across two seasons (Table 3). Additionally, the values of PRI(531,570), SRI(610,580), and SRI(660,560),
which are based on red and green wavelengths, as well as the values of SRI(678,1070) and SRI(800,970),
which are based on red and NIR wavelengths, decreased from the R1 to the R6 growth stage and
showed a continuous increase from the 100% ETc to the 50% ETc treatments. Contrarily, the values
of NDVI(800,640), SRI(890,715), DWI(970,670), DWI(1100,670), and NWI-2(970,850), which are based on red,
red-edge, and NIR wavelengths, increased from the R1 to the R6 growth stages, but they showed a
continuous decrease from the 100% ETc to the 50% ETc treatments except for NWI-2, which increased
from the 100% ETc to the 50% ETc treatment (Table 3). These findings indicate a substantial increase
in the canopy spectral reflectance of soybean in the VIS region of the spectrum, especially in the red
region, due to soil moisture stress. Wijewardana et al. [8] similarly found that the soil moisture stress
at 60%, 40%, and 20% ETc led to a substantial increase in soybean canopy spectral reflectance in the
VIS region as compared to 80% and 100% ETc. Additionally, the reduction in the SRIs based on green
and red wavelengths from the R1 to the R6 growth stages indicates a lower pigment content and
progressive senescence of photosynthetic organs as the growth stage progressed from R1 to R6 and
therefore, increased spectral reflectance in the VIS region. Furthermore, because the NIR-based SRIs
are based on spectral reflectance at the weak water absorption bands (near 970 and 1200 nm) and on
spectral reflectance at 850 nm and 900 nm caused by the multiple scattering and reflection of radiation
by different leaf tissues, the values of these SRIs showed a continuous decrease from the 100% ETc to
the 50% ETc treatment due to a greater decrease in the canopy spectral reflectance in the NIR region for
the soil moisture-stress treatments. Additionally, because the canopy contains a higher total quantity
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of biomass at the R6 stage that is expressed in this study as BDW (Table 3), the values of the NIR-based
SRIs showed a continuous increase from the R1 to the R6 growth stages due to a greater increase in
the canopy spectral reflectance in the NIR region of the spectrum at the R6 than the R1 growth stage
(Table 3). Prasad et al. [90] also found a similar trend of increasing values of NIR-based SRIs such as
WI and NWI with the advancement of growth stages in winter wheat under rainfed conditions.

Previous studies have reported that specific growth stages and conditions at the time of measuring
the canopy spectral reflectance can influence the performance of SRIs in the assessment of plant
phenotypic traits [6,81,90,92]. For example, some studies report the early stage of durum wheat
(anthesis stage) as the best growth stage for assessing several plant phenotypic traits for both
rainfed and supplemental irrigation treatments using SRIs. However, in other studies, the late-stage
(grain-filling stage) showed the strongest relationship between SRIs and plant phenotypic traits under
well-watered conditions. Additionally, based on specific growth stages, some SRIs performed best for
assessing plant phenotypic traits under limited irrigation regimes but failed to assess these traits under
full irrigation regimes and vice versa. Furthermore, various SRIs failed to assess plant phenotypic
traits within each water regime, whereas they successfully assessed them across different irrigation
regimes. All of this evidence reveals that growth stage and crop growth conditions may play a vital
role in the efficiency of assessment and monitoring of different plant phenotyping traits using SRIs,
especially when the canopy spectral reflectance is captured with a wide range in both variables.

Regarding the relationships between SRIs and plant traits, and SY within each growth stage across
irrigation regimes (n = 24) and across two growth stages and irrigation regimes (n = 48), the results
of this study showed that the majority of the SRIs examined showed strong relationships with BFW
(R2 = 0.78–0.84) and CWM (R2 = 0.78–0.85) and moderate relationships with BDW (R2 = 0.51–0.63) and
SY (R2 = 0.59–0.67) at the R1 stage whereas these SRIs showed moderate to strong relationships with
the four traits (R2 = 0.54–0.85) at the R6 stage (Figure 3). Furthermore, the water-based NIR indices
(WI(900,970), SRI(800,970), and NWI-2(970,850)) exhibited a weak relationship with the four traits at the
R1 stage (R2 = 0.29–0.45) and a moderate relationship at the R6 stage (R2 = 0.52–0.60) whereas they
failed to assess the four traits when the SRI data of the growth stages and irrigation regimes were
combined (Figure 3). Although most SRIs exhibited moderate to strong relationships with the four
traits within each growth stage, these SRIs showed a weak relationship with SY (R2 = 0.16–0.47) and
showed moderate to strong relationships with BFW, CWM, and BDW (R2 = 0.55–0.89) when the SRI
data of the growth stages and irrigation regimes were combined (Figure 3). These results indicate
that, in using SRIs, the specific growth stages must be taken into account when assessing the plant
phenotyping traits, especially the aboveground biomass and SY. In this study, the SRIs, especially the
water-based NIR indices, were more effective in estimating the BDW and SY of soybean at the R6 stage
than at the R1 growth stage (Figure 3). The primary reason for this may be that the biomass saturation
and high LAI at the R1 stage could make the SRIs less efficient in assessing BDW and SY than at the R6
stage. Generally, the commonly used SRIs are usually saturated at LAI > 3 and become effective for
assessing plant phenotyping traits when the values of LAI decrease to approximately 2 [81,90,92,93].
Additionally, lowered pigment content and progressive senescence of photosynthetic organs as growth
progresses toward the reproductive stage may explain why the relationship of SRIs with BDW and SY
becomes stronger at the R6 than the R1 growth stage. However, the greater sensitivity of BFW and
CWM to plant water content than to LAI may explain why the relationships between both traits and
most SRIs were strong and similar for each growth stage and across all data.
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Figure 3. Coefficients of determination (R2) for the relationship between different spectral reflectance
indices (SRIs) and vegetative growth traits (biomass fresh weight (BFW), biomass dry weight (BDW),
canopy water mass (CWM), and seed yield (SY)) at each growth stage across three irrigation regimes
(n = 24) and for pooled data of replications, growth stages, irrigation regimes, and seasons (n = 48): R1 and
R6 indicate the beginning bloom and full seed growth stages, respectively.

Figure 4 shows that all the SRIs examined failed to assess SY when the data of two growth
stages were combined for each irrigation regime (n = 16). All the SRIs examined except WI(900,970),
SRI(800,970), and NWI-2(970,850) showed strong relationships with BFW, CWM, and BDW under 100%
ETc (R2 = 0.70–0.96) and moderate to strong relationships with these three traits under 75% ETc
(R2 = 0.55–0.88). Under 50% ETc, these SRIs still showed moderate to strong relationships with BFW
(R2 = 0.60–0.89) and BDW (R2 = 0.56–0.85) but showed weak relationships with CWM (R2 = 0.32–0.48).
The three excluded SRIs (WI(900,970), SRI(800,970), and NWI-2(970,850)) exhibited a weak relationship
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(R2 = 0.26–0.35) and weak to moderate relationships (R2 = 0.42–0.61) with the three traits under the 100%
ETc and 75% ETc treatments, respectively, whereas, they exhibited moderate to strong relationships
(R2 = 0.55–0.87) with BFW and BDW under 50% ETc (Figure 4). Interestingly, although all SRIs
failed to assess SY within each irrigation regime across two growth stages, they exhibited moderate
relationships with SY under 100% ETc at the R6 stage (R2 = 0.34–0.53), weak relationships under 50%
ETc at the R1 stage (R2 = 0.31–0.47), and moderate to strong relationships under 75% ETc at the R1
stage (R2 = 0.46–0.71) (Table 5). Additionally, the R2 values of the relationships between SRIs and BFW,
BDW, and CWM were dramatically decreased when the relationships were analyzed for each irrigation
rate at specific growth stages (Table 5).

Figure 4. Coefficients of determination (R2) for the relationship between different spectral reflectance
indices (SRIs) and vegetative growth traits (biomass fresh weight (BFW), biomass dry weight (BDW),
canopy water mass (CWM), and seed yield (SY)) for each irrigation regimes across two growth stages
(n = 16).
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Table 5. Determination coefficients (R2) for the relationship between different spectral reflectance
indices (SRIs) and vegetative growth traits (biomass fresh weight (BFW), biomass dry weight (BDW),
canopy water mass (CWM), and seed yield (SY)) for each irrigation regime at each growth stage (n = 8):
R1 and R6 indicate the beginning bloom and full seed growth stages, respectively.

SRIs
R1 R6

BFW CWM BDW SY BFW CWM BDW SY

100% ETc

PRI(531,570) 0 0.05 0.23 0.05 0.10 0.21 0.46 0.19
SRI(610,580) 0.03 0.13 0.13 0.12 0.49 0.65 0.26 0.34
SRI(660,560) 0.03 0.12 0.12 0.10 0.48 0.64 0.25 0.35
SRI(678,1070) 0.03 0.18 0.30 0.11 0.67 0.72 0.04 0.34

NDVI(800,640) 0 0.10 0.32 0.05 0.59 0.70 0.12 0.39
SRI(800,970) 0.17 0.49 0.27 0.14 0.45 0.56 0.15 0.45
SRI(890,715) 0 0.09 0.42 0.03 0.54 0.48 0.02 0.35
WI(900,970) 0.14 0.41 0.25 0.14 0.44 0.54 0.14 0.47

NWI-2(970,850) 0.16 0.46 0.27 0.12 0.46 0.56 0.14 0.46
DWI(970,670) 0.05 0.22 0.27 0.08 0.54 0.68 0.20 0.40
DWI(1100,670) 0.06 0.25 0.25 0.09 0.60 0.66 0.05 0.53

75% ETc

PRI(531,570) 0 0 0 0.70 0.14 0.14 0.02 0.05
SRI(610,580) 0 0 0.01 0.48 0.25 0.30 0 0.01
SRI(660,560) 0.01 0 0.00 0.50 0.28 0.27 0.03 0
SRI(678,1070) 0.01 0 0.08 0.62 0.35 0.29 0.07 0.17

NDVI(800,640) 0 0.03 0.08 0.71 0.18 0.22 0 0
SRI(800,970) 0.02 0.01 0 0.46 0.01 0.02 0 0.16
SRI(890,715) 0.03 0.08 0.12 0.71 0.15 0.13 0.02 0.05
WI(900,970) 0 0 0 0.63 0.01 0.01 0 0.20

NWI-2(970,850) 0 0 0 0.54 0.02 0.02 0 0.17
DWI(970,670) 0.01 0 0.07 0.59 0.38 0.36 0.05 0.10
DWI(1100,670) 0.03 0 0.06 0.54 0.35 0.30 0.06 0.19

50% ETc

PRI(531,570) 0.12 0.47 0.15 0.35 0.11 0.03 0 0
SRI(610,580) 0.28 0.31 0.27 0.37 0.08 0.03 0.01 0
SRI(660,560) 0.22 0.33 0.20 0.35 0.06 0.02 0.01 0
SRI(678,1070) 0.28 0.39 0.20 0.31 0.13 0.03 0 0

NDVI(800,640) 0.29 0.42 0.26 0.39 0.11 0.03 0 0
SRI(800,970) 0.05 0.38 0.08 0.36 0.13 0 0.23 0.02
SRI(890,715) 0.33 0.44 0.29 0.40 0.17 0.04 0 0.00
WI(900,970) 0.09 0.44 0.12 0.32 0.03 0 0.15 0.01

NWI-2(970,850) 0.07 0.41 0.11 0.36 0.07 0 0.20 0.02
DWI(970,670) 0.34 0.35 0.27 0.35 0.10 0.03 0 0.00
DWI(1100,670) 0.19 0.49 0.09 0.47 0.11 0.03 0 0

These findings indicate that, when the relationships between SRIs and plant phenotyping traits
are obtained across different growth stages for each irrigation regime separately or for each irrigation
regime at a specific growth stage, they must be used cautiously. This precaution is due to random
changes in the relative performance of each plant phenotyping trait from one growth stage to another
and one irrigation regime to another, which eventually influences the canopy spectral reflectance
patterns and its effectiveness for the indirect assessment of these traits. This study found that the
SRIs were much more effective for indirectly estimating vegetative growth traits such as BFW, BDW,
and CWM when the data of the SRIs were combined across different growth stages for each irrigation
regime separately or vice versa. However, rather than combining SRIs across different growth stages
for each irrigation regime, the SY should be assessed for each irrigation regime separately at specific
growth stages. The primary reason for this may be that the spectral reflectance measurements of the
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combined full irrigation regime (100% ETc) and the early growth stage (R1) may create problems related
to saturation of SRIs due to the increase of LAI and high canopy densities, at which most SRIs are
usually saturated when the LAI is larger than 3, whereas when the spectral reflectance measurements
of severe moisture stress (50% ETc) and late growth stage (R6) are combined, it may create problems
related to soil background reflectance due to the decrease in LAI and to the exposure of bare soil.
Consequently, once the problems related to saturation or soil background reflectance were removed,
the assessment of SY using SRIs was improved. The results presented in Table 5 also fully confirm this
observation and show that, under 100% ETc, the SRIs were much more effective for estimating SY at
R6 than at R1; the opposite was true under 75% ETc and 50% ETc. Similarly, previous studies have
reported that most SRIs measured at the early growth stage performed best for estimating grain yield
under severe moisture stress (with a LAI of approximately 2) but failed to assess grain yield under
well-watered conditions whereas the relationship between SRIs and grain yield under well-watered
conditions became stronger as the growth stage progressed toward grain filling [90,92–94]. Christenson
et al. [46] also reported that no trends were observed for the accurate estimation of SY using wavebands
and SRI models across different irrigation regimes in soybean.

Contrary to SY, rather than estimating the vegetative growth traits (BFW, BDW, and CWM) based
on the SRIs of each irrigation regime at specific growth stages, these traits should be assessed for each
irrigation regime across two growth stages or vice versa (compare R2 values for Figure 3, Figure 4 and
Table 5). The reason may be that, because these traits provide direct information on plant water status,
pigment content, and biomass accumulation, the SRIs could be limited in accurately estimating these
traits unless the treatments cause noticeable alterations in the internal plant water status, leaf structure,
and pigment content. This observation indicates that the efficiency of SRIs for estimating vegetative
growth traits (BFW, BDW, and CWM) may depend on a combination of the magnitude of the effects of
irrigation regimes and growth stages. Previous studies have also reported that several SRIs did not
exhibit relationships with several physiological traits until the data of different irrigation regimes were
combined [6,20,36,47,90].

4. Conclusions

In this study, we investigated the potential use of thermal imaging criteria and SRIs for assessing
the growth performance and production of drip-irrigated soybean exposed to different irrigation
regimes for two years at two growth stages. The results indicated that there were significant differences
(p < 0.05) among different vegetative growth traits, thermal imaging criteria, and SRIs between
three irrigation regimes at two growth stages. The values of both thermal imaging criteria and
SRIs based on red, red-edge, and NIR wavelengths increased from the R1 to the R6 growth stage.
Additionally, the thermal imaging criteria showed a continuous increase from the 100% ETc to the 50%
ETc treatment; the opposite was true for SRIs. The values of SRIs based on red and green wavelengths
or red and NIR wavelengths decreased from the R1 to the R6 growth stages and showed a continuous
increase from the 100% ETc to the 50% ETc treatments. The efficiency of thermal imaging criteria and
SRIs in estimating the different vegetative growth traits and SY depend on the analyses of data for
each irrigation regime and growth stage specifically or the combined data of growth stages for each
irrigation regime or vice versa. Finally, this study demonstrated that thermal imaging criteria and SRIs
could be used as rapid, easy, cost effective, and nondestructive tools for assisting soybean growers in
making informed field management decisions regarding irrigation to reduce the negative effects of
deficit irrigation on the growth and production of soybean.
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