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Abstract: Although the underlying mechanisms driving human immunodeficiency virus (HIV)-
mediated cardiovascular diseases (CVD) onset and progression remain unclear, the role of chronic
immune activation as a significant mediator is increasingly being highlighted. Chronic inflammation
is a characteristic feature of CVD and considered a contributor to diastolic dysfunction, heart failure,
and sudden cardiac death. This can trigger downstream effects that result in the increased release
of pro-coagulant, pro-fibrotic, and pro-inflammatory cytokines. Subsequently, this can lead to an
enhanced thrombotic state (by platelet activation), endothelial dysfunction, and myocardial fibrosis.
Of note, recent studies have revealed that myocardial fibrosis is emerging as a mediator of HIV-
related CVD. Together, such factors can eventually result in systolic and diastolic dysfunction, and an
increased risk for CVD. In light of this, the current review article will focus on (a) the contributions
of a chronic inflammatory state and persistent immune activation, and (b) the role of immune cells
(mainly platelets) and cardiac fibrosis in terms of HIV-related CVD onset/progression. It is our
opinion that such a focus may lead to the development of promising therapeutic targets for the
treatment and management of CVD in HIV-positive patients.

Keywords: HIV; myocardial fibrosis; platelets; chronic inflammation; sudden cardiac death; heart
failure; cardiovascular diseases

1. Introduction

There are currently ~38.4 million human immunodeficiency virus (HIV)-infected indi-
viduals globally, with ~28.7 million receiving combination antiretroviral therapy (cART) [1].
Increased access to cART has significantly improved the lifespan of people living with HIV
(PLHIV). It has also attenuated viral replication and ensured a relatively well-maintained
immune system, together with lowered opportunistic infections and associated mortal-
ities [2]. The main cause of death in PLHIV has therefore shifted from acquired im-
munodeficiency disease (AIDS)-related immunocompromised states to non-AIDS age-
related complications, such as cardiovascular diseases (CVD). In support, the proportion
of global deaths due to CVD in PLHIV has increased from 2.5% to 4.6% during the past
decade [3,4]. Although HIV-positive patients present with a variety of heart and vascular
co-morbidities, certain cardiac disorders manifest with a greater frequency and display
geographic variations. For example, in developed countries, PLHIV usually present with
metabolic syndrome, hypertension, coronary artery disease, and atherosclerosis [4–6]. In
contrast, complications such as hypotension, heart failure (HF)/sudden cardiac death (due
to HIV-associated cardiomyopathy), and tuberculosis-associated pericarditis are far more
prevalent in the sub-Saharan African region [7–10].

Despite this burgeoning health threat, the underlying mechanisms driving HIV-
mediated CVD onset are still being elucidated. Of note, the role of chronic immune
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activation (despite cART) as a significant mediator in HIV-mediated CVD onset and pro-
gression is increasingly being highlighted [11,12]. In agreement, our laboratory recently
found a strong interplay between immune activation, coagulation, and lipid subclass alter-
ations in South African HIV-positive patients [9]. This data also revealed a robust negative
correlation between either immune activation or coagulation, and diastolic blood pres-
sure [9]. Chronic inflammation is a characteristic feature of various CVD and is regarded
as a key contributor to diastolic dysfunction, HF, and sudden cardiac death [13]. HIV-
mediated immune dysregulation can trigger downstream effects that lead to an enhanced
release of pro-coagulant, pro-fibrotic, and pro-inflammatory cytokines [14]. This can subse-
quently result in an increased thrombotic state, endothelial dysfunction, and myocardial
fibrosis [15,16]. The culmination of the interplay of such mediators can eventually lead to
systolic and diastolic dysfunction and an increased risk for CVD.

While the pathogenesis of HIV-mediated CVD onset and progression is multi-factorial
in nature, myocardial fibrosis is emerging as a key mediator underlying the manifestation
of systolic and diastolic dysfunction [17]. In support, research findings have revealed prog-
nostic associations between diffuse myocardial fibrosis and left ventricular (LV) remodeling
in PLHIV [18,19]. Here, they found the manifestation of HIV-related myocardial fibrosis,
especially in African women [19]. Such data support the development of more personalized
approaches to screening and earlier interventions, to thereby help lower the burden of HF
in PLHIV, especially in the sub-Saharan African region [20]. Furthermore, understanding
the pathogenesis may help identify promising therapeutic targets. Considering this, the
current review article will focus on (a) the contributions of a chronic inflammatory state
and persistent immune activation, and (b) the role of immune cells (mainly platelets) and
cardiac fibrosis, in terms of HIV-related CVD onset/progression, with an emphasis on HF
and sudden cardiac death.

2. HIV Treatment and Cardiovascular Complications

Prior to cART, CVD manifestations of HIV infection included myocardial and pe-
ripheral disease, due to the direct effects of HIV, coinfections, and concomitant chronic
inflammation [21]. The introduction of cART improved lifespans by viral load reduction
and immune system restoration, but also came with side-effects, due to drug-toxicity and
metabolic changes (e.g., dyslipidemia, altered glucose handling) [22–24]. Furthermore,
there are variations between different antiretroviral classes and divergent responses within
drug class types [23]. Older generation protein inhibitors, such as lopinavir/ritonavir, and
nucleoside reverse transcription inhibitors, such as abacavir, stavudine and zidovudine,
can induce dyslipidemia to increase CVD risk [24–27]. Moreover, body fat distribution
changes are still evident years after cessation of antiretroviral use [28,29]. Earlier work,
therefore, reported the occurrence of early-onset and aggressive coronary artery disease in
PLHIV compared to uninfected individuals [30]. Currently, integrase inhibitors and C-C
chemokine receptor 5 antagonists have replaced protease inhibitors as the first line therapy
and appear to elicit negligible CVD toxicity, although there are concerns regarding the
weight gain associated with their use and hence the need to assess their long-term effects
in this context [31].

cART-treated HIV is associated with an increased incidence of myocardial fibrosis [32],
as well as both systolic and diastolic LV dysfunction [33], and an up to two-times higher
risk of HF [34]. Results from the Veterans Aging Cohort Study [35] showed that this
manifests in various forms, such as HF with preserved ejection fraction, borderline HF with
preserved ejection fraction, and those with a reduced ejection fraction. Furthermore, the
occurrence of such HF subtypes occurs at an earlier stage in the PLHIV population versus
uninfected individuals. However, the direct relationship between myocardial inflammation
and fibrosis in HIV has been less well studied [13]. For PLHIV who are virally suppressed
on cART, the risk of sudden cardiac death levels out to the risk observed in the general
population [36]. Moreover, a Taiwanese study found that no specific cART class was
associated with increased HF risk [37]. Meanwhile, a relatively small US study on virally
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suppressed women living with HIV (on integrase strand transfer inhibitors and nucleoside
reverse transcription inhibitors) showed increased myocardial fibrosis and lowered diastolic
function compared to HIV-negative women [38].

3. Immune Activation and Chronic Inflammation

HIV infection activates the innate and adaptive immune systems, which can result
in a state of chronic infection that forms the basis of ongoing immune activation and
immunodeficiency [14]. Inflammation is crucial in resolving infections, tissue damage, and
maintaining a state of hemostasis [39]. While some degree of immune cell activation is
essential to promote suitable responses to injury and activation of tissue repair processes,
uncontrolled activation may lead to excess fibrosis and offset its beneficial effects [40].

The innate immune system consists of granulocytes (neutrophils, basophils, eosinophils),
mast cells, and antigen presenting cells (macrophages and dendritic cells) [41]. Pathogen-
associated molecular patterns and damage-associated molecular patterns can bind to cell
surface toll-like receptors, which subsequently results in their activation [14,42]. The activated
cells of the innate immune response produce pro-inflammatory cytokines, to further amplify
the inflammatory response [39]. The acute inflammatory response starts rapidly, becomes
more severe over short periods of time, and usually lasts for a few days [39].

However, if the pathogen-induced stimulation persists, the inflammatory process
then acquires new characteristics that are more typically associated with chronic inflamma-
tion [39]. This is a slow, long-term state of inflammation that can last for prolonged periods
and is induced by cytokines such as interferon-gamma (IFN-γ) that can promote activation
of the adaptive immune system [42]. Here, T-cells play a significant role and differentiate
into either CD4 (helping to orchestrate immune responses) or CD8 (destroying infected
cells) cells [14,42]. Such cells, together with macrophages and natural killer cells, are key
players for cell-mediated immunity, while B-cells produce antibodies and are responsible
for humoral immunity [41]. Thus, the inflammatory response is the result of a complex
interplay between multiple immune cells in the body.

Persistent immune activation and chronic inflammation occur during HIV-infection,
despite cART adherence and suppressed viremia [42]. Chronic and persistent CD8+ T-cell
activation (the marker of immune activation) rests on three important factors: (1) the per-
sistent detection of HIV-specific effector cytotoxic T cells, (2) the presence of cell surface
protein receptors that differentiate naïve T cells into differentiated effector phenotypes [43],
and (3) an acute/active cytokine profile detected in serum. Ongoing immune activation
and resulting inflammation can lead to immune-related perturbations [44]. Moreover,
circulating monocytes and tissue macrophages are both susceptible targets of HIV-1 infec-
tion, and the early host response determines whether the infection becomes pathogenic or
not. For example, monocytes and macrophages can contribute to the HIV reservoir (and
viral persistence) and influence the initiation/extension of immune activation and chronic
inflammation, despite cART [45]. Here, the inflammatory response is attenuated (when
not required) and becomes chronic if there is a persistent source of activation and/or due
to defective control mechanisms [46]. The harmful consequences of persistent immune
activation and inflammation during HIV-infection have been extensively reviewed in the
previously published literature [13,46,47].

4. Persistent Immune Activation, Chronic Inflammation, and Cardiac Fibrosis

Chronic inflammation and immune dysfunction increase the risk of cardiovascular
morbidities and mortalities through endothelial dysfunction, hypercoagulation, and my-
ocardial fibrosis [42,48–51]. The persistent activation of the innate and adaptive immune
systems (monocytes/macrophages and T cells, respectively) results in increased circulat-
ing pro-inflammatory and pro-fibrotic cytokines (Figure 1) [12,49,52–55]. Higher circulating
cytokine levels can contribute to hypercoagulation, endothelial dysfunction, and fibrotic
remodeling, which increase the risk of CVD onset in PLHIV [32,50,56–59]. Fibrotic remodeling
due to immune dysfunction is an important area of research, due to its detrimental effects
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on cardiac function, and its links to HF and sudden cardiac death in PLHIV [60]. Myocardial
fibrosis is a contributor to sudden cardiac deaths especially in PLHIV that are receiving
cART [13,61]. More recently, studies have shown that persistent activation of the innate and
adaptive immune responses leads to myocardial fibrosis in PLHIV (Figure 1) [32,59]. Some
studies explored subclinical cardiovascular imaging changes using cardiac magnetic resonance
and found that HIV-infected patients displayed changes in myocardial function and higher
rates of subclinical myocardial inflammation and fibrosis, which worsened with increased
severity of the disease [37].
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Figure 1. The role of myocardial fibrosis in CVD pathogenesis. The inflammatory hypothesis is
considered a main driver of CVD complications in HIV-positive individuals. Persistent immune
activation leads to a chronic inflammatory state that includes relatively high levels of inflammatory
and pro-fibrotic cytokines (IL-10, TGF-β), together with RAAS activation. This subsequently en-
hances pro-fibrotic pathways (increased collagen I and III deposition), while also lowering collagen
degradation. The increased collagen leads to LV stiffness and diastolic dysfunction (early sign of
myocardial fibrosis). Myocardial fibrosis is a contributor to diastolic and systolic dysfunction, HF,
and sudden cardiac death. LV: left ventricle, RAAS: renin-angiotensin aldosterone system, ROS:
reactive oxygen species, IL: interleukin, and TGF: transforming growth factor.

5. Myocardial Fibrosis: Role in the Pathogenesis of Heart Failure and
Sudden Cardiac Death

The modification of the cardiac microenvironment after injury results from the crosstalk
between a variety of players such as fibroblasts, endothelial cells, inflammatory and im-
mune cells, soluble factors, and components of the extracellular matrix (ECM) [62]. It is
established that cardiac fibrosis is associated with inflammation, exemplified by continuous
innate and adaptive immune responses. Myocardial fibrosis is characterized by ECM
remodeling, resulting in abnormal matrix composition and leading to impairments in
cardiac contractility and function. At first, ECM deposition is defensive and important for
wound healing, but unnecessary or prolonged deposition can lead to impairments in tissue
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function. Fibrosis leads to a stiffer and less compliant heart, eventually contributing to the
progression of HF and sudden cardiac death [32].

Of concern, myocardial fibrosis is emerging as a growing cardiac complication in PL-
HIV. For example, HIV infection (±cART) is linked to an increased incidence of myocardial
fibrosis, together with systolic and diastolic LV dysfunction [61,63,64]. Some researchers
found that HIV-positive patients exhibited greater evidence of myocardial fibrosis than
their negative counterparts, despite relatively normal ejection fractions [32], while others
showed a significantly higher prevalence of myocardial fibrosis in PLHIV who suffered
mortality due to sudden cardiac deaths [65,66]. Furthermore, a study on HIV-positive
patients on cART versus uninfected controls (no CVD history) found that HIV-positive
patients displayed a six-fold higher rate of patchy myocardial fibrosis after controlling for
age, gender, and coronary artery [61]. In addition, others evaluated associations between
HIV serostatus and cardiovascular magnetic resonance imaging and demonstrated that
HIV seropositivity was independently associated with greater diffuse non-ischemic fibrosis
and a larger left atrial volume [67].

In terms of mechanistic insights, there is some evidence that chronic inflammation
can trigger fibrosis, ECM formation, proliferation, and activation of myofibroblasts [13,62].
Activated fibroblasts and myofibroblasts are central effectors in cardiac fibrosis, by func-
tioning as the main source of matrix proteins. Furthermore, the activation of myofibroblasts
require the co-operation of growth factors and specialized matrix proteins, which signal
through cell surface receptors to activate intracellular signaling pathways that can lead to
the synthesis of contractile proteins and the transcription of matrix macromolecules [68].
Several cell types, such as macrophages, mast cells, and lymphocytes (infiltrating the re-
modeled heart), play an important role in fibroblast activation by secreting a wide range of
bioactive mediators, including cytokines such as transforming growth factor (TGF)-β1 and
IL-10, and matricellular proteins [62]. Furthermore, the activation of the renin-angiotensin
aldosterone system stimulates fibroblast proliferation and ECM protein synthesis in the
infarcted and remodeled myocardium, by activation of the angiotensin type 1 receptor
or through mineralocorticoid receptor signaling [69]. Although cardiomyocyte death is
usually the cause of activation of fibrogenic signals, certain stimuli such as inflammation or
pressure overload may activate pro-fibrotic remodeling of the heart [62]. However, despite
some progress regarding identification of the underlying mechanisms responsible for the
development of myocardial fibrosis during HIV-infection, the associated risk factors and
clinical consequences of such pathology still require further elucidation.

Ventricular myocytes are tightly arranged and coupled together, with adjacent layers
separated by clefts [62,70,71]. Advanced proteomic methods have revealed that ~90% of
the cardiac ECM comprises 10 different proteins, with serum albumin, collagens (collagens
I, III, and IV), non-collagenous glycoproteins (fibronectin and laminin), proteoglycans,
glucosaminoglycans, and elastins being the most common [72]. The fibrillar collagenous
matrix is essentially comprised of type I (>80%) and type III (>10%) collagens [62,71,73].
Fibroblasts regulate collagen turnover by controlling the synthesis and degradation of
matrix proteins [74]. As the ECM forms a link between intracellular cytoskeletal pro-
teins and intercellular ones, this allows for the transmission of biochemical signals by
mechanosensation [75]. The latter also plays a significant role in activating and differentiat-
ing myofibroblasts [75].

There are two types of myocardial fibrosis, namely reactive and replacement. Re-
active fibrosis is characterized by excessive extracellular matrix deposition in interstitial
or perivascular spaces and is associated with pathological conditions [62]. For example,
cardiac structural abnormalities (e.g., HF, arrhythmia, and coronary artery disease) can
occur due to the dysregulation of collagen metabolism (synthesis and degradation) [76].
Such structural abnormalities can cause the disruption of myocardial excitation and con-
traction, thereby leading to impaired systolic and diastolic function (Figure 1) [62,76].
Ventricular dysfunction is the most common cause of HF, including left-sided HF with
preserved ejection fraction and reduced ejection fraction with HIV infection [77]. Excessive
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fibrosis can also cause mechanical stiffness, which may result in the impairment of electric
conduction (forming a physical barrier between cardiomyocytes) and lead to impaired
cardiac systolic function [62]. Fibrosis can also cause sliding displacement of cardiomy-
ocytes and decrease the number of muscular layers in the ventricular wall, leading to
left ventricular dilation [78]. In contrast, replacement fibrosis occurs when there is acute
myocardial injury/infarction in the setting of accelerated atherosclerosis associated with
HIV. This occurs due to the loss of viable myocardium and results in scar formation and LV
remodeling [62,79]. Thus, a balance between replacement and reactive fibrosis is required
to prevent cardiac dysfunction [78,79]. As myocardial fibrosis can elicit profound effects on
myocardial function and potentially lead to HF and sudden cardiac death, understanding
its pathogenesis may help identify promising targets for therapeutic interventions. For
example, a recent postmortem study revealed increased rates of sudden cardiac death
and myocardial fibrosis in HIV-positive persons versus non-infected individuals [65]. The
contribution of myofibroblasts, monocytes/macrophages, mast cells, and lymphocytes in
this context will, therefore, now be briefly discussed, although our focus is on the role of
platelets in HIV-mediated cardiac fibrosis.

6. Monocytes/Macrophages

Macrophages consist of two subsets (M1 and M2) that are implicated in cardiac re-
modeling [80]. M1 macrophages are pro-inflammatory and secrete inflammatory cytokines,
such as IL-1 and tumor necrosis factor alpha (TNFα), whereas M2 macrophages can trig-
ger an anti-inflammatory response. M2 macrophages play a crucial role in fibrosis by
releasing pro-fibrotic mediators, such as IL-10, TGF-β, platelet-derived growth factor, and
chemokines, which can recruit fibroblasts (Figure 2) [81].

Some studies found that HIV-positive women on cART displayed myocardial fibrosis
(diffuse) with diastolic dysfunction [38]. Such women also exhibited increased systemic
immune activation and higher sCD163 (monocyte activation marker) levels that correlated
with myocardial fibrosis [38,81]. This demonstrates that monocytes can be recruited to
the myocardium, propagating both myocardial inflammation and fibrosis [38,81]. Such
monocytes can differentiate into macrophages, with the M2 subpopulation able to secrete
anti-inflammatory cytokines and triggering collagen production by neighboring fibrob-
lasts [38,81]. While the differentiation of M2 macrophages is associated with the progression
of myocardial fibrosis [82], they can also inhibit fibrosis by phagocytosing apoptotic my-
ofibroblasts and regulating the balance of matrix metalloproteinases and tissue inhibitors
of metalloproteinases [75,81]. However, the contribution of monocytes/macrophages to
the fibrotic response depends on various factors. For example, abnormal function and
phenotypic changes such as the uncontrolled production of inflammatory cytokines and
growth factors, an inefficient anti-inflammatory response, and/or poor communication
between macrophages, fibroblasts, epithelial, and endothelial cells, can lead to aberrant
repair, persistent injury, and HF [83]. Furthermore, some researchers [84] directly blocked
monocyte/macrophage traffic to the heart in an SIV model of AIDS, using an anti-alpha-4
integrin antibody (natalizumab; in two groups, i.e., early and late treatment). They found
decreased SIV-associated cardiac pathology in late natalizumab-treated animals compared
to untreated controls. Early and late treatment resulted in significant reductions in CD163+
and CD68+ macrophages in cardiac tissues compared to untreated controls. The decreased
macrophage numbers correlated with lowered fibrosis. Early and late treatment also re-
sulted in decreased cardiomyocyte damage [84]. These data also demonstrate a role for
macrophages in the development of cardiac inflammation and fibrosis, and suggest that
blocking monocyte/macrophage traffic to the heart may improve HIV- and SIV-associated
myocarditis and fibrosis.
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Figure 2. HIV infection causes the persistent activation and immune dysfunction. Effective healing is
usually characterized by a dominant T helper 1 response, whereas a shift of the balance towards T
helper 2 cells leads to chronic inflammation, which can eventually result in fibrosis. There are two
types of macrophage activation, i.e., M1 based on the T helper 1-type response, and M2 that is based
on the T helper 2-type response. The shift to T helper 2 cells, M2 responses, and platelet activation
with HIV is involved in fibrotic pathway activation. HIV: human immunodeficiency virus, IFN-γ:
interferon-γ, IL: interleukin, PDGF: platelet-derived growth factor, Th: T helper, TGF-β: transforming
growth factor-β, TF: tissue factor.

7. Mast Cells

Mast cells are crucial participants in terms of fibrosis [75]. In support of this, increased
accumulation of mast cells can contribute to cardiac remodeling and myocardial fibrosis
through the release of pro-fibrotic cytokines, histamine, tryptase, and chymase [85,86].
Histamine can stimulate the proliferation of fibroblasts and collagen synthesis [62,87], e.g.,
the administration of a histamine H2 receptor inhibitor improved ventricular remodeling
in HF patients, reflecting the pro-fibrotic effects of histamine [88]. Chymase is a protease
that can enhance fibrogenic activity by elevating tissue concentrations of angiotensin II
and TGF-β, both significant contributors to fibrotic signaling pathways [75]. Moreover,
activated mast cells also release a wide variety of granule-stored cytokines and growth
factors, such as TNFα, TGF-β, and platelet-derived growth factor, which can stimulate
cardiac fibroblast proliferation and collagen synthesis [89]. However, the exact contribution
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of mast cells to cardiac fibrosis is still relatively unknown, as such cytokines and growth
factors are also released by various other immune cells (such as macrophages and platelets).

8. Lymphocytes

T helper 1 cells mediate tissue damage and suppress the development of fibrosis through
the release of IFN-γ and IL-12 [90]. In contrast, T helper 2 cells are pro-fibrotic through the
release of IL-4 and IL-13, which are both potent stimulators of fibroblast-derived collagen
synthesis. T helper 2 cells also drive macrophage differentiation towards an M2 phenotype,
which further enhances the fibrotic response [62] (Figure 2). While increased expression of IL-4
and IL-13 is associated with myocardial fibrosis, the precise role of T helper 2 cells in cardiac
fibrotic remodeling remains unknown [90,91]. Other T cell subpopulations are also involved
in myocardial fibrosis and associated with persistent T cell-mediated inflammation [62]. For
example, a large body of evidence has implicated regulatory T cells in fibrotic remodeling,
especially by increased TGF-β expression and IL-10 secretion (both potent regulators of
fibrosis) [92]. Moreover, T helper 17 through IL-17 generation stimulates collagen production
and thereby contributes to myocardial fibrosis [75]. While the mechanisms remain to be fully
elucidated, inflammatory cells appear to play an important role in myocardial fibrosis and
downstream outcomes such as sudden cardiac death in PLHIV and have been reviewed
elsewhere [62,65,82].

9. HIV-Related Myocardial Fibrosis: Role of Platelets

The contribution of platelets to myocardial fibrosis in the context of HIV remains less
well understood. However, it is well established that activated platelets are an essential
source of pro-fibrotic cytokines and growth factors that directly, or indirectly, stimulate a
fibrotic response [93]. This can occur through the activation of fibroblasts or by promoting
a fibrotic phenotype in M2 macrophages and/or lymphocytes [63]. Although persistent
platelet activation is well documented in the HIV/cART setting, its contribution to myocar-
dial fibrosis has been less emphasized [94,95]. In a systematic review and meta-analysis of
30 studies comprising 2325 participants, Nkambule et al. [96] assessed platelet activation in
HIV-infected patients on cART and showed that the levels of platelet activation were ele-
vated in treatment-naïve HIV-infected patients, persisting during treatment. While platelets
contain a wide variety of pro-fibrotic cytokines and growth factors that can stimulate a
fibrotic response as discussed, recent studies highlight a role for platelet-derived TGF-β in
terms of myocardial fibrosis (Figure 2) [94,95].

Transforming growth factor-β is a fibrogenic growth factor that is persistently activated
in animal models of cardiac remodeling and fibrosis [97,98], and that stimulates ECM
protein production in different organ systems. Several preclinical studies implicate TGF-β
in myocardial fibrosis: for example, Dobaczewski et al. [97] found that TGF-β1-deficient
mice exhibited attenuated age-associated fibrosis [97]. In agreement, the inhibition of
TGF-β prevented myocardial fibrosis in a rat model of cardiac pressure overload [99], while
the genetic deletion of the TGF-β receptors in fibroblasts reduced myocardial fibrosis in an
animal model of ventricular pressure overload [99]. Together, such animal-based studies
highlight the role of TGF-β in cardiac fibrotic remodeling [97].

There are three known isoforms of TGF-β (TGF-β1, TGF-β2, and TGF-β3) expressed
in mammalian tissues and that are encoded by distinct genes. Of note, TGF-β1 is often
chronically over-expressed in fibrosis and inflammation [100]. Upon TGF-β1 release into
the extracellular space it may bind to two serine-threonine kinase receptors, namely TGF-
β1 receptor 1 (TβRI) and 2 (TβRII) [97]. The binding of TGF-β1 to TβRI results in the
phosphorylation of Smad transcriptional modulators and the formation of a heteromeric
complex that regulates DNA transcription. In the heart, the effects of TGF-β1 are mediated
through Smad2 phosphorylation [101], whereafter, a complex is formed with Smad3 and
Smad4. This complex translocates to the nucleus where it can bind to the regulatory re-
gions of specific genes [101]. This complex regulates the expression of genes involved in
fibrogenesis [101], including ECM proteins, such as connective tissue growth factor and
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periostin [101]. The increased transcription of such gene targets and others results in the
production of pro-fibrotic matricellular proteins and its secretion into the ECM. This modu-
lates intercellular and cell–matrix interactions that enhances ECM protein synthesis [102].
The TGF-β1-Smad pathways can also activate collagen-gene promoter sites, to enhance
the transcription of collagen type I. An alternative pathway for TGF-β1-induced fibrosis
exists and involves the TGF-β1 activated kinase (TAK1) pathway, which is activated when
TGF-β1 binds to TβRII [101]. TGF-β1 activated kinase is a major downstream modula-
tor of the TGF-β1 superfamily and is a member of the mitogen-activated protein kinase
family [102]. Accordingly, the administration of TGF-β1 to cardiac fibroblasts resulted in
a robust increase in TAK1 activity together with enhanced cardiac mass and significantly
decreased systolic and diastolic cardiac functioning [102]. Together these studies show
that targeting TGF-β signaling pathways in animal models or in clinical studies could be a
novel therapeutic strategy to treat a variety of fibrotic disorders [103].

Platelets can influence plasma TGF-β levels and further enhance myocardial fibrosis.
For example, plasma TGF-β levels were significantly decreased in thrombocytopenic mice
with a megakaryocyte-specific deletion of the TGF-β1 gene (Tgfb1flox) following constriction
of the transverse aorta. Such mice did not develop cardiac hypertrophy, fibrosis, and
systolic dysfunction in response to the aortic constriction procedure [95]. The mice also
survived into adulthood without abnormalities, unlike other studies where non-specific
targeted deletion of the TGF-β1 gene resulted in early morbidities [95]. Moreover, the
platelet counts, mean platelet volume, and function were similar to the control mice [95].
This study also suggests possible therapeutic interventions to explore, especially within the
clinical context.

Others found that fibrosis can be linked to platelet activation and TGF-β1 release [93].
For example, investigators treated mice with daily, pharmacological doses of ritonavir
(potent HIV protease inhibitor) for 8 weeks [93]. Here, mice with a targeted TGF-β deletion
in megakaryocytes were partially protected from ritonavir-induced cardiac dysfunction
and fibrosis versus the controls [93]. The fibrosis correlated with plasma TGF-β levels
and the activation of the Smad2/3 and TAK1/MKK3/p38 pathways in the heart [93]. The
significant contribution of platelet-derived TGF-β to myocardial fibrosis may be due to its
relatively high expression in platelets (40–100× more than other cells) and its rapid release
upon activation [104].

With HIV-infection there are three mechanisms of platelet activation that can re-
sult in TGF-β release, i.e., (a) binding of the HIV viral envelope to dendritic cell-specific
intercellular adhesion molecule-grabbing non-integrin (pathogen receptor expressed on
platelets) [63,105], (b) stimulation by inflammatory cytokines (IL-6, IL-8, and IL-1β) [63,105],
and (c) thrombin generation mediated via monocyte-derived tissue factor, which is sig-
nificantly increased in HIV-positive patients (both in its soluble state and expression on
monocytes) [106]. Furthermore, certain cART types (i.e., HIV protease inhibitors) can
also promote platelet activation [107]. Thus, platelet activation can persist and induce the
secretion of platelet-derived TGF-β [63], to thereby result in myocardial fibrosis.

While platelets contribute to ~80% of TGF-β, in terms of the development of cardiac
fibrosis [63], HIV-related fibrosis is multi-factorial and other inflammatory cells can further
exacerbate such a pathology. For example, endothelial cell injury, together with activated
monocytes/macrophages and platelets, can lead to the production of reactive oxygen
species and oxidative stress [94]. Reactive oxygen species is a potent activator of TGF-
β, and its generation occurs relatively early-on during HIV infection, despite effective
cART [94]. This creates a positive feedback loop with platelet activation and the transition
of latent TGF-β to its active, pro-fibrotic form [94]. Moreover, HIV protease inhibitors
(e.g., ritonavir) can further exacerbate platelet activation and pro-fibrotic signaling. Such
deleterious effects may be directly mediated and/or may occur indirectly through the
induction of oxidative stress [63,93,107,108].
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10. Conclusions

Fibrosis is a physiologic response to the physical, chemical, and biologic injuries that
are associated with inflammation. However, HIV-related persistent immune activation
exhibits relatively high levels of inflammatory and pro-fibrotic cytokines, the generation
of reactive oxygen species, the activation of latent TGF -β1, as well as polarization of
macrophages and T helper cell shifts. Here, pathologic tissue fibrosis can result in perma-
nent scarring and cardiac dysfunction in HIV-positive patients, leading to HF and sudden
cardiac death (Figure 3). The current diagnosis of cardiac fibrosis is hampered by the inva-
sive and expensive nature of gold standard techniques, such as endomyocardial biopsies
and cardiac magnetic resonance imaging, respectively. Surrogate markers of fibrosis include
biomarkers and histochemical staining, which are inadequate to fully characterize such
pathology. Hence, future studies should investigate more comprehensive, non-invasive,
and cost-effective techniques, which can be routinely used for health checks, especially in
the developing world context. As HIV-mediated CVD is a major global burden of disease
(especially in resource-poor regions), additional studies focusing on anti-inflammatory,
as well as anti-fibrotic, therapeutic interventions may help to improve and/or counter
this growing clinical problem. Furthermore, preventive cardiovascular care should not be
neglected in preference to the control of viremia in PLHIV, to ensure optimal management
of the CVD burden in such individuals.
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