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Memory impairments are associated with many brain disorders such as autism,
Alzheimer’s disease, and depression. Forming memories involves modifications of
synaptic transmission and spine morphology. The Rho family small GTPases are key
regulators of synaptic plasticity by affecting various downstream molecules to remodel
the actin cytoskeleton. In this paper, we will review recent studies on the roles of
Rho proteins in the regulation of hippocampal long-term potentiation (LTP) and long-
term depression (LTD), the most extensively studied forms of synaptic plasticity widely
regarded as cellular mechanisms for learning and memory. We will also discuss the
involvement of Rho signaling in spine morphology, the structural basis of synaptic
plasticity and memory formation. Finally, we will review the association between brain
disorders and abnormalities of Rho function. It is expected that studying Rho signaling at
the synapse will contribute to the understanding of how memory is formed and disrupted
in diseases.
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INTRODUCTION

The synapse is a highly specialized structure connecting two cells and it serves as the main site where
neurons communicate and transmit signals between each other. Synaptic connections allow the
formation and function of neuronal circuits that underlie our emotions, behaviors and memories.
Synaptic structure was firstly described by Gray (1959), and it consists of vesicle-bearing pre-
synaptic terminals that originate from axons and the post-synaptic component found on the cell
body, dendrites or a dendritic spines. Many synaptic proteins such as neuroligins and neurexins
were identified to maintain the connectivity and precise alignment of pre- and post-synaptic
membrane that shapes the amplitude and reliability of neurotransmission (Missler et al., 2012; Tang
et al., 2016; Hass et al., 2018). In the mammalian central nervous system, dendritic spines are the
primary sites of excitatory inputs (Bourne and Harris, 2008). Morphological changes of dendritic
spines in the pre-existing synapses, as well as the de novo growth or retraction of dendritic spines,
are closely linked to the functional and structural plasticity of the synapse, which is widely believed
to be the basis of memory and cognition (Yuste and Bonhoeffer, 2001; Yang et al., 2008; Holtmaat
and Svoboda, 2009; Kasai et al., 2010; Chidambaram et al., 2019).

Dendritic spines are small protrusions that emerge on dendritic processes, and they occur
at a density of 1–10 spines/µm (Sorra and Harris, 2000). Dendritic spines are heterogenous
in size and shape and can be classified into several categories based on their morphological
differences. Typically, a dendritic spine consists of three basic compartments: (1) a delta-shaped
base which contains branched actin filaments residing on the microtubule network in the
dendrites, (2) a constricted neck in the middle which contains branched and linear longitudinal
actin filaments, and (3) a bulbous head contacting the axon, which usually contains a dense
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network of short cross-linked branched actin filament
(Hotulainen and Hoogenraad, 2010). Based on the size of
spine heads and the length of spine necks, dendritic spines can
be subdivided into mushroom, thin, branched, and stubby spines
(Peters and Kaiserman-Abramof, 1970; Harris et al., 1992).
A mushroom spine contains a narrow neck with a large head.
Since the synaptic connections formed on the mushroom spine
can usually last for a long time, it is also considered to be a
mature “memory spine,” where the long-term memory is stored
(Bourne and Harris, 2007). Thin spines have a similar structure
as mushroom spines, except that the spine head is smaller. Thin
spines are more dynamic in their structure, having the capacity to
transform into mushroom spines and therefore, are considered
to be “learning spines” (Bourne and Harris, 2007). Stubby spines
typically have an indiscernible neck and mainly exist during the
early stage of postnatal development (Fiala et al., 1998). Branched
or cup-shaped spines have multiple heads that originate from
a single neck. It is important to note that this classification of
spines may underrate the morphological heterogeneity of spines
because there is a continuum of spine sizes and shapes that
are also highly dynamic (Fiala et al., 1998; Parnass et al., 2000;
Alvarez and Sabatini, 2007; Pchitskaya and Bezprozvanny, 2020).

A complex actin network that is associated with various
actin regulators, including the Arp2/3 complex and other
actin-binding proteins, constitutes the main component of
spine cytoskeletal architecture, and therefore, the formation,
maturation and plasticity of the spine are highly dependent on
the remodeling of the actin cytoskeleton (Cingolani and Goda,
2008; Hotulainen and Hoogenraad, 2010; Korobova and Svitkina,
2010). The Rho family small GTPases are the central mediators
of actin reorganization in many cell types, including neurons.
They are molecular switches cycling between the active GTP-
bound and inactive GDP-bound form, and their activities are
tightly regulated by guanine nucleotide-exchange factors (GEFs)
and GTPase-activating proteins (GAPs) (Govek et al., 2005; Vega
and Ridley, 2007). Among Rho family members, RhoA, Rac1,
and Cdc42 are the most extensively studied in the brain and are
the focus of this review. RhoA, Rac1, and Cdc42 were initially
found to be required in the growth factor-induced formation
of focal adhesions and actin stress fibers (contractile actin and
myosin filaments), membrane ruffles/lamellipodia (meshwork of
newly polymerized actin filaments), and filopodia (actin-rich and
finger-like membrane extension structures) in fibroblast cells
(Ridley et al., 1992; Ridley and Hall, 1992; Nobes and Hall,
1995). Subsequent studies have shown that these Rho GTPases
are crucial in the regulation of various aspects of cell morphology
such as cell polarity and shape as well as several cellular processes
such as exocytosis, endocytosis and proliferation, in a wide variety
of mammalian cell types, including neurons (Etienne-Manneville
and Hall, 2002; Govek et al., 2005).

RHO GTPases IN SPINE FORMATION

Ample studies indicate that altering the activity of Rho
GTPases can affect spinogenesis in developing neurons
(Tashiro et al., 2000; Scott et al., 2003; Tashiro and Yuste, 2004;

Zhang and Macara, 2006; Kang et al., 2008; Impey et al., 2010;
Um et al., 2014; Orefice et al., 2016; Valdez et al., 2016; Moutin
et al., 2017; Figure 1). Overaction of Rho GTPases in cultured
primary neurons by cytotoxic necrotizing factor 1 (CNF-1)
treatment resulted in enrichment in the actin cytoskeleton and
dendritic processes (Diana et al., 2007). Suppression of Rac1
activity in vitro through the manipulations of dominant negative
Rac1, the Rac1-GAP breakpoint cluster region protein (Bcr), or
the Rac-GEF beta p21-activated protein kinase exchange factor
(betaPIX), in cultured hippocampal neurons, decreased dendritic
spine density (Nakayama et al., 2000; Penzes et al., 2003; Tashiro
and Yuste, 2004; Zhang and Macara, 2006; Impey et al., 2010;
Fiuza et al., 2013; Um et al., 2014). Genetic knockout (KO) of
Rac1 in excitatory neurons in mice resulted in decreased spine
and synapse numbers accompanied by increased postsynaptic
density (PSD) (Haditsch et al., 2009). In contrast, elevating Rac1
activity in vitro through constitutively active Rac1 in cultured
hippocampal slices leads to increased spine density but reduced
spine size (Nakayama et al., 2000; Tashiro et al., 2000). In CA1
pyramidal neurons of Bcr KO mice, the spine density was
higher compared to WT mice (Um et al., 2014). Similar to Rac1,
conditional KO of Cdc42 in the hippocampus also resulted in
decreased spine density and impaired spine size enlargement in
response to glutamate uncaging (Kim et al., 2014). The expression
of constitutively active Cdc42 increased spine density in cultured
hippocampal neurons (Kang et al., 2008) and rescued the spine
density deficit in LgDel mice, a model for 22q11.2 deletion
syndrome with altered Cdc42 signaling (Moutin et al., 2017).
The expression of loss-of-function Cdc42 mutants in Drosophila
vertical system neurons led to similar deficits in spine density
observed in mammals (Scott et al., 2003). In contrast to the
effects of Rac1 and Cdc42, the expression of constitutively active
RhoA in hippocampal neurons or slice cultures consistently
resulted in simplified dendritic trees and reduced spine density
(Nakayama et al., 2000; Tashiro et al., 2000; Impey et al., 2010).
Inhibition of RhoA with C3 transferase, dominant negative
RhoA, shRNA knockdown or other strategies, all resulted in
increased spine density and impaired activity-dependent spine
pruning (Tashiro et al., 2000; Kang et al., 2009; Impey et al., 2010;
Orefice et al., 2016). It is important to note that the increased
spines caused by RhoA inhibition or Rac1 activation appeared
to be immature spines with filopodia-like or lamellipodia-like
morphology (Nakayama et al., 2000; Tashiro et al., 2000). These
results suggest that Rac1 and Cdc42 are involved in the induction
and maintenance of spines, whereas RhoA plays a role in the
elimination or pruning of immature spines. Therefore, the
balance of Rac1/Cdc42 and RhoA activity may be critical for
establishing and maintaining the homeostasis of dendritic spine
density in the brain.

RHO GTPases IN SPINE MORPHOLOGY

Rho GTPases are critically involved in the regulation of spine
morphology. For example, while spine density was found to
decrease by blocking Rac1 activity, reduced spine head was also
observed (Tashiro and Yuste, 2004), suggesting that Rac1 is
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FIGURE 1 | Role of Rho GTPases in modulating dendritic spine density and morphology. The activation of Rac1 and Cdc42 leads to increased immature spines,
some of which will undergo morphological changes to obtain mature morphology through Rac1-dependent mechanisms, whereas others will be eliminated by
RhoA-dependent processes.

essential for the enlargement or maturation of spines. The role
of Rac1 in spine morphology was also shown in many other
studies by increasing Rac1 activity via knockdown of upstream
negative regulators (e.g., Bcr, alpha-chimaerin and p250GAP),
expression of constitutively active Rac1, or neurotrophic factor
BDNF treatment (Tashiro and Yuste, 2004; Wiens et al., 2005;
Impey et al., 2010; Um et al., 2014; Orefice et al., 2016;
Valdez et al., 2016). Interestingly, as mentioned earlier, Rac1
activation has also been shown to decrease spine size during early
development, suggesting that the effect of Rac1 is age -dependent.
In contrast to Rac1, the effect of RhoA on spine size is less clear
(Tashiro and Yuste, 2004; Impey et al., 2010; Orefice et al., 2016).

Other than affecting basal spine morphology, Rho GTPases
also participate in the activity-dependent remodeling of spine
morphology. For example, during structural LTP (sLTP)
induced by the glutamate uncaging at single spines of
cultured hippocampal neurons, RhoA and Cdc42 activity was
transiently increased and then decayed to a slight but stable
elevation, coinciding with spine volume enlargement during
sLTP (Murakoshi et al., 2011). Inhibition of RhoA activity via
shRNA or C3 transferase, decreased both transient and sustained
spine enlargement, while the inhibition of Cdc42 only impaired
the sustained spine enlargement (Murakoshi et al., 2011). In
this study, the investigators created novel sensors to measure
RhoA and Cdc42 activity using the fluorescence resonance energy
transfer (FRET) technique, allowing live imaging of the activity
of these GTPases in live neurons. In a later study, similar sensors
were made to image Rac1 activity during sLTP in hippocampal
neurons, and it was found that Rac1 was also required for the
transient and sustained spine enlargement (Hedrick et al., 2016).
Interestingly, it was found that the active Rac1, Cdc42, and RhoA
not only affected the morphological plasticity of activated spines,
but also could diffuse to nearby spines and lower the threshold of
sLTP induction in these spines, a phenomenon typically referred
to as heterosynaptic plasticity or synaptic crosstalk. To explore
the mechanism behind this crosstalk, the researchers examined
the diffusivity of Rho GTPases during sLTP and showed that
RhoA and Rac1 had a higher diffusion distance than Cdc42,
that is, the active RhoA, and Rac1 diffused to the nearby spines

whereas the active Cdc42 remained locally in the activated
spine. Preventing the diffusion of active RhoA and Rac1 by an
inhibitor protein that was fused with the microtubule binding
domain of microtubule-associated protein 2 (MAP2) abolished
the effect on heterosynaptic plasticity (Hedrick et al., 2016).
Therefore, although Rac1, Cdc42, and RhoA all are involved in
spine plasticity, they play differential roles, with spine-specific
Cdc42 plus RhoA and Rac1 being all important for spine-specific
homosynaptic sLTP, and the diffusion of the active RhoA and
Rac1 being important for heterosynaptic sLTP.

RHO GTPases IN SYNAPTIC PLASTICITY

In addition to affecting spine properties, many studies have
shown that Rho GTPases are potent regulators of synaptic
transmission and plasticity (Figure 2). Long-term potentiation
(LTP) and long-term depression (LTD) are the two most
extensively studied forms of long-lasting synaptic plasticity
considered to be the basis for learning and memory (Bliss and
Collingridge, 1993; Malenka and Bear, 2004; Citri and Malenka,
2008; Collingridge et al., 2010; Kandel et al., 2014). In the
CA1 region of the hippocampus, the development of LTP and
LTD depends on glutamatergic receptors in the postsynaptic
density: α-amino-3-hydroxy-5-methyl-4-isoxazole-proponic
acid receptors (AMPARs), and N-methyl-D-aspartate receptors
(NMDARs) (Bliss and Collingridge, 1993; Kennedy, 2000; Bredt
and Nicoll, 2003; Malenka and Bear, 2004; Huganir and Nicoll,
2013). Under resting membrane potential, AMPARs mediate the
majority of synaptic transmission because NMDARs are inhibited
by a voltage-dependent extracellular magnesium blockade.
However, during intense neuronal activities and learning
experience, activation of AMPARs causes sufficient postsynaptic
depolarization that leads to the release of magnesium blockade
of NMDARs and the influx of calcium through these receptors.
Depending on the concentration and kinetics of calcium in
the neurons, it can initiate two distinct signaling pathways
via low-calcium-affinity kinase, CaMKII, or high-calcium-
affinity phosphatase, calcineurin (Malenka and Bear, 2004;
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FIGURE 2 | Rho GTPases in AMPAR expression, LTP and LTD. RhoA, Cdc42, and Rac1 can participate in the regulation of the synaptic insertion, internalization and
membrane stability of AMPARs during LTP and LTD. These GPTases are activated by NMDARs or other surface proteins through various GAPs and GEFs.

Collingridge et al., 2010; Huganir and Nicoll, 2013). These
signaling molecules can then modulate many downstream
effectors through various mechanisms to alter synaptic strength.
For example, AMPAR can be directly phosphorylated by
CaMKII to increase the channel conductance of AMPARs,
thus potentiating synaptic transmission (Derkach et al., 1999;
Kristensen et al., 2011; Huganir and Nicoll, 2013; Diering and
Huganir, 2018). The regulation of AMPAR numbers at the
postsynaptic membrane represents another key mechanism
to modify synaptic strength during LTP and LTD. While the
number of AMPARs at the synapse is maintained through
constitutive recycling of the receptors for the stable basal
synaptic transmission, the number can be drastically altered by
activity-dependent endocytosis and exocytosis during LTD and
LTP, respectively (Malinow and Malenka, 2002; Collingridge
et al., 2004; Derkach et al., 2007; Anggono and Huganir, 2012).
Rho GTPases may affect AMPARs at the postsynaptic membrane
in several ways, including anchoring, clustering and trafficking of
these receptors (Allison et al., 1998; Matsuzaki et al., 2001; Zhou
et al., 2001; Wiens et al., 2005; Derkach et al., 2007; Zhou et al.,
2011). For example, TC10, a member of Rho GTPases, was found
to be involved in ADP-ribosylation factor 6 (Arf6)-mediated,
clathrin-independent AMPAR constitutive translocation (Zheng
et al., 2015). In this study, it was shown that TC10 existed in the
Arf6-containing endosomes, and the expression of a dominant
negative TC10 in the hippocampal neuron culture resulted in
decreased surface/total AMPAR ratio, whereas constitutively
active TC10 increased the ratio (Zheng et al., 2015). Cdc42
can also modulate AMPARs on the postsynaptic membrane.

It was shown that Cdc42 participated in a signaling pathway
that phosphorylates the AMPAR subunit, GluA1, at a novel
phosphorylation site S863, which then facilitates the AMPAR
expression on the postsynaptic surface (Hussain et al., 2015).
In another study, it was found that LTP induction triggered
cholesterol redistribution in the intracellular membrane, which
was associated with the postsynaptic insertion of AMPARs
and the activation of Cdc42 (Brachet et al., 2015). Cdc42
was required for the increased synaptic transmission induced
by the cholesterol removal, and the expression of dominant
negative Cdc42 abolished the increased AMPAR currents
(Brachet et al., 2015). The effects of Rac1 on AMPAR trafficking
appear to be complex. For example, in the hippocampal
neurons of microtubule associated protein 1B (MAP1B) KO
mice, endocytosis of AMPARs during LTD was impaired and
this impairment was rescued by the overexpression of Rac1
(Benoist et al., 2013). Since MAP1B was known to facilitate
the translocation of the Rac1-GEF protein, T-cell lymphoma
invasion and metastasis protein 1 (Tiam1), to the synapses,
the impaired endocytosis in MAP1B KO mice could be due to
decreased Tiam1 expression at the synapse and hence reduced
Rac1 activity. The role of Rac1 in AMPAR endocytosis during
LTD is also supported by results from KO mice lacking the
Rac1-GEF protein, phosphatidylinositol 3, 4, 5-trisphosphate-
dependent Rac exchanger 1 (P-Rex1). It was reported that in
hippocampal neurons of P-Rex1 KO mice, NMDA-induced
reduction in surface AMPARs was impaired and overexpression
of Rac1 rescued this impairment (Li et al., 2015). Furthermore,
the pharmacological inhibition of Rac1 via NSC23766 in cultured
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hippocampal neurons increased AMPARs in the postsynaptic
surface and decreased AMPARs in the cytoplasm (Glebov et al.,
2015). In terms of LTP and AMPAR insertion, several studies
have documented the essential role of Rac1 signaling through
investigations of several Rac1-GEFs [e.g., Kalirin-7, dedicator of
cytokinesis protein 4 (DOCK4), and triple functional domain
protein (Trio)] where increased AMPAR expression at the
synapse was shown with increased Rac1 activation (Xie et al.,
2007; Sadybekov et al., 2017; Guo et al., 2021). Like Rac1 and
Cdc42, RhoA also plays a role in the regulation of AMPAR
trafficking. The activation of RhoA via knocking down its
negative regulator was reported to be associated with decreased
surface AMPARs (Shen et al., 2020), and impaired LTP was
observed in the RhoA-GAP, oligophrenin-1 (OPHN1) KO
mice (Kasri et al., 2009). The loss of OPHN1 also impaired
activity-dependent AMPAR endocytosis, which was reversed
by pharmacological inhibition of RhoA-ROCK signaling
(Khelfaoui et al., 2009).

The results obtained from electrophysiological studies support
the roles of Rho GTPases in synaptic transmission and
plasticity. For example, increased Rac1 activity, either through
KO/knockdown of Rac1 upstream GAP proteins such as alpha-
chimaerin and BCR/ABR, or the expression of constitutively
active Rac1 mutants, led to unstable theta-burst stimulation
(TBS)-induced LTP that gradually decayed to the baseline
response at the CA1 synapse (Oh et al., 2010; Liu et al., 2016,
2018; Lv et al., 2019). On the other hand, decreased Rac1
activity, either through the expression of dominant negative
Rac1 mutants or the upstream GAP protein alpha-chimaerin,
or through genetic deletion of MAP1B, resulted in more stable
LTP (Glebov et al., 2015; Liu et al., 2016, 2018; Lv et al., 2019).
One study, however, did observe impaired hippocampal LTP in
Rac1 KO mice (Haditsch et al., 2009) although in this study,
high-frequency stimulation (HFS) rather than TBS was used
to induce LTP. LTD is also affected by manipulations of Rac1
activity. In MAP1B KO mice, low-frequency stimulation (LFS)-
induced LTD was impaired (Benoist et al., 2013), suggesting that
Rac1 is necessary for LTD. However, increased Rac1 activity by
knocking out/down Rac1 GAP proteins (e.g., alpha-chimaerin
and BCR/ABR) or overexpressing Rac1 had no effects on LFS-
induced LTD (Oh et al., 2010; Benoist et al., 2013; Valdez et al.,
2016), although in KO mice lacking kinesin family member
21B (Kif21B), a microtubule-dependent molecular motor that
regulates the engulfment of the Rac1-GEF, ELMO1/DOCK
complex and enhances Rac1 activity, was found to have unstable
LFS-induced LTD without alterations in HFS-induced LTP at
CA1 synapses (Morikawa et al., 2018). Although no clear role has
emerged for Cdc42 in LTD, its involvement appeared to be critical
for LTP, since HFS-induced LTP was absent in the hippocampus
of Cdc42 KO mice (Kim et al., 2014). The role of RhoA in LTP
was shown in hippocampal slices using RhoA shRNA or ROCK
inhibitors, which affected the maintenance, but not induction, of
TBS-induced LTP (Rex et al., 2009; Briz et al., 2015). Although
the expression of RhoA dominant negative mutants had no effect
on LFS-induced LTD (Benoist et al., 2013), overactivation of
RhoA in OPHN1 KO mice impaired LTD (Khelfaoui et al., 2009),
suggesting a role for RhoA in LTD.

In summary, despite that Rac1, Cdc42, and Rac1 are all
involved in both insertion and internalization of AMPARs at
the synapses, they appear to play distinct roles in LTP and LTD
(Figure 2). While Cdc42 is required for LTP induction, RhoA
is more important for LTP maintenance. Rac1 participates in
destabilizing LTP and is also required for LTD expression. Clearly
more studies are necessary to link specific roles of Rho GTPases
in LTP and LTD with AMPAR trafficking and spine plasticity.

RHO SIGNALING PATHWAYS

As discussed earlier, the activity of Rho GTPases is tightly
regulated by various GEF and GAP proteins (Govek et al., 2005).
Many GEFs and GAPs have been identified and most of these
proteins are expressed in the brain with unique spatial and
temporal expression patterns (Moon and Zheng, 2003; Rossman
et al., 2005). These GEFs and GAPs relay signals from various
surface receptors, including NMDARs. Since each Rho GTPase
can be modulated by multiple GEFs and GAPs, the spatial pattern
of GAPs and GEFs determines the diversity and specificity of
signals received by Rho GTPases. The importance of these GEFs
and GAPs in the brain is evident from alterations in single GEF
or GAP protein that can affect neuronal structure and function.
For example, GEF-H1, a GEF for RhoA, negatively affects spine
density and spine length of hippocampal neurons (Xie et al.,
2007). Deletion of Kalirin-7 in mice resulted in schizophrenia-
like phenotypes (Cahill et al., 2009). Changes in GAPs such as
OPHN1 and SYNGAP1 were also found to result in cognitive
deficits and autistic-like phenotypes that were accompanied by
disrupted spine structure and function in both human and animal
models (Newey et al., 2005; Kasri et al., 2009; Clement et al., 2012;
Berryer et al., 2013; Ba and Nadif Kasri, 2017).

Downstream of Rho-GTPases are a chain of effector proteins
that are involved in the regulation of the actin cytoskeleton
(Figure 3). P21-activated kinase (PAKs) and the Rho-associated
coiled-coil kinase (ROCK) are the two well-studied families of
protein kinases activated by Rac1/Cdc42 and RhoA, respectively
(Edwards et al., 1999; Maekawa et al., 1999). Both PAKs and
ROCKs are potent regulators of spine morphogenesis and
synaptic plasticity. For example, KO mice for PAK1/3 and
ROCK2 displayed altered spine morphology, impaired LTP
and LTD (Meng et al., 2005; Asrar et al., 2009; Zhou et al.,
2009; Huang et al., 2011). PAK2 heterozygous mice exhibited
reduced spine density and impaired LTP (Wang et al., 2018).
Further downstream of ROCKs and PAKs are LIM-domain
kinases (LIMKs), which directly phosphorylate and inhibit the
activity of the actin depolymerization factor cofilin (Arber et al.,
1998; Meng et al., 2002, 2003, 2004; Ben Zablah et al., 2020).
Cofilin is an actin-binding protein that primarily functions
to sever and depolymerize actin filaments (Bamburg, 1999;
Andrianantoandro and Pollard, 2006; Bamburg and Bernstein,
2008; Ben Zablah et al., 2020). Similar to PAK1/3 and ROCK2
KO mice, LIMK1 KO mice displayed reduced spine size and
impaired LTP (Meng et al., 2002, 2004). PAKs and ROCKs
can also regulate the activity of cofilin through phosphorylating
and inactivating the cofilin phosphatase, Slingshot homolog 1
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FIGURE 3 | Rho GTPase signaling pathways in actin dynamics and synaptic
function. Rac1, Cdc42, and RhoA regulate actin dynamics either through
cofilin or Arp2/3 complex pathways. Rac1/Cdc42 and RhoA activate PAKs
and ROCKs, respectively, which phosphorylate and activate cofilin kinase
LIMKs and inhibit cofilin phosphatase SSH, both leading to inactivation of
cofilin thus reduced actin disassembly. Rac1 and Cdc42 promote actin
assembly through the Arp2/3 complex and the formin-related protein (Dia) via
WAVE and WASP, respectively.

(SSH1), which dephosphorylates and enhances cofilin function
(Niwa et al., 2002; Soosairajah et al., 2005; Quassollo et al.,
2015). SSH1 can directly interact with, dephosphorylate and
inhibit LIMK1 (Soosairajah et al., 2005). Therefore, cofilin is an
important converging point by which Rho GTPase regulate actin
dynamics. Consistent with this, cofilin KO mice showed altered
spine morphology and synaptic plasticity (Rust et al., 2010; Rust,
2015). In addition to affecting cofilin, both Rac1 and Cdc42 can
control actin polymerization by regulating the Arp2/3 complex.
The Arp2/3 complex is an actin nucleation factor to mediate the
formation of branched actin network (Goley and Welch, 2006),
which is thought to be essential for spine remodeling during
spine growth (Hotulainen et al., 2009). The recruitment of the
Arp2/3 complex to the actin filament is through the association
with Wiskott-Aldrich syndrome protein (WASP) and WASP-
family verprolin-homologous protein (WAVE) (Takenawa and
Suetsugu, 2007). The neuronal (N)-WASP is activated by
interaction with Cdc42, which relieves N-WASP from its
intramolecular autoinhibition (Kim et al., 2000). Downregulation
of N-WASP or deletion of its Arp2/3 binding region in
hippocampal neurons resulted in decreased spine and synapse
density (Wegner et al., 2008). Similar to WASP, loss of WAVE
protein or manipulations of its phosphorylation status by
cyclin-dependent kinase 5 (Cdk5) also caused deficits in spine
formation and maintenance in mice (Soderling et al., 2003, 2007;
Kim et al., 2006). WAVE is functionally similar to N-WASP,

except that it lacks the binding domain for Rho-GTPases (Miki
et al., 1998). Unlike Cdc42, Rac1 binds and activates WAVE
through an adaptor protein, IRSp53, a substrate for the insulin
receptor. The binding of WAVE protein to the SH3 domain of
IRSp53 leads to the release of intramolecular inhibition of IRSp53
(Miki et al., 2000; Miki and Takenawa, 2002), and this results
in the formation of a trimeric complex. Although Rac1/WAVE
and Cdc42/N-WASP pathways converge on the Arp2/3 complex
to modulate actin dynamics, they may play distinct roles in
regulating memory. In a recent study on active forgetting of
cold shock-sensitive or anesthesia-sensitive memory (ASM) and
cold shock-insensitive or anesthesia-resistant memory (ARM)
in Drosophila, it was found that the Arp2/3 complex was
only required for Cdc42/WASP mediated ARM forgetting but
not for Rac1/WAVE mediated ASM forgetting, and instead,
Rac1/WAVE might function through another protein called Dia
(Gao et al., 2019).

RHO GTPases IN MEMORY

Ample studies have indicated that Rho GTPases are involved
in learning and memory. O’Kane et al. (2003) first reported
that stimulation of the hippocampal CA1 region resulted in
a noticeable increase in the activity of Rho GTPases. In a
subsequent study using the protein toxin CNF-1 to increase
the activity of Rho proteins, it was found that CNF-1 treated
mice had an elevated level of actin filaments and enhanced
freezing during a fear memory test and better performance
in the Morris water maze test (Diana et al., 2007). However,
this observed memory improvement may not be entirely
attributable to the increased Rho GTPase activity because
CNF-1 is not specific to the activation of the Rho proteins.
For example, CNF-1 was reported to induce inflammatory
responses and produce chemokines such as interleukin 8 (IL-8),
monocyte chemoattractant protein-1 (MCP-1), and macrophage
inflammatory protein 3 (MIP-3) (Munro et al., 2004). Similar
to the effects on synaptic plasticity, different Rho GTPases play
differential roles in memory. For example, RhoA signaling has
been shown to be required for memory formation. Perturbations
of the RhoA-ROCK signaling by intracerebral infusion of the
ROCK inhibitor, Y27632, impaired conditioned place aversion
(CPA) memory in rats, whereas the infusion of the Rac1 inhibitor,
NSC23766, had no effect (Wang et al., 2013). Similar results were
obtained in a conditioned place preference (CPP) memory test
(Fakira et al., 2016) where it was found that RhoA signaling
cascade was enhanced during morphine-induced CPP and that
bilateral intracranial infusion of the ROCK inhibitor, H1152,
completely prevented the formation of CPP. The suppression
of RhoA activity through manipulations of p27 protein in
cyclin-dependent kinase (CK) KO mice was also reported to
be associated with deficits in hippocampus-dependent learning
and memory (Kukalev et al., 2017). Although increased RhoA
activity was shown to be crucial for synaptic plasticity and
memory formation in adult animals, its role in early development
seems to be different. It was reported that the exposure to the
anesthetic drug, sevoflurane, in the early development could lead
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to persistent impairment of learning and memory in rodents (Lee
et al., 2014), and that this effect was related to the activation of
RhoA signaling pathway as the sevoflurane induced shortening
of the dendritic protrusion length was blocked by the treatment
of the ROCK inhibitor, Y27632 (Zimering et al., 2016). Bisphenol
A (BPA), a chemical substance shown to impair the growth
and development of the nervous system, was also reported to
elevate the RhoA activity in hippocampal neurons and this
was accompanied by decreased spike amplitudes and synaptic
strength (Wang et al., 2020). Cdc42 is also involved in memory.
For example, although neuron-specific Cdc42 conditional KO
mice did not show alterations in short-term or long-term
memory, they exhibited impairments in remote memory in
both fear and spatial memory tests (Kim et al., 2014). In
mouse nucleus accumbens (NAc), Cdc42 was activated by
methamphetamine (METH) and viral expression of dominant
negative and constitutively active Cdc42 impaired and enhanced
METH-induced CPP memory, respectively (Tu et al., 2019). In
Drosophila olfactory memory mediated by the mushroom bodies
(MBs), ASM, and ARM were affected by different Rho GTPases
(Shuai et al., 2010; Zhang et al., 2016; Gao et al., 2019). Expression
of dominant negative Cdc42 in the MBs caused slower decay
of ARM, whereas expression of constitutively active Cdc42 led
to faster ARM decay (Zhang et al., 2016). The role of Rac1 in
memory has been studied more extensively compared to Rho A
and Cdc42. In Rac1 conditional KO mice where Rac1 was deleted
in mature neurons, working memory in the delayed matching-to-
place (DMP) water maze test was impaired (Haditsch et al., 2009),
implicating Rac1 in memory acquisition but not in memory
consolidation. However, subsequent studies using conditional
expression of mutant Rac1 suggested that Rac1 is associated with
memory forgetting instead of formation. This effect of Rac1 was
initially demonstrated in Drosophila (Shuai et al., 2010) where
controlled expression of dominant negative and constitutively
active Rac1 mutants in the MBs using the Gal/UAS binary
system delayed and facilitated aversive olfactory memory decay,
respectively, without affecting memory acquisition (Shuai et al.,
2010). Other than the passive memory decay, Rac1 was also
investigated in the active memory forgetting using retroactive
interference (RI) and reversal learning and shown to have
similar effects as in the passive memory decay (Shuai et al.,
2010). The effects of Rac1 in Drosophila memory forgetting
are mediated by scribble scaffold protein (Cervantes-Sandoval
et al., 2016). In mice, expression of constitutively active Rac1
hastened the memory forgetting in a novel object recognition
(NOR) test whereas the expression of dominant negative Rac1
delayed forgetting (Liu et al., 2016). A similar role of Rac1
was shown in social memory, where increased Rac1 activity
in the hippocampus by expressing constitutively active Rac1
accelerated the decay of social memory whereas inhibition of
Rac1 activity delayed the social memory decay (Liu et al., 2018).
In addition, it was found that Rac1 activity was elevated by social
isolation and that socially isolated mice displayed faster social
memory decay (Liu et al., 2018). Manipulations of Rac1 activity
in the hippocampus using Rac1 inhibitor (NSC23766) and
activator (CN04-A) were also reported to alter the maintenance
of contextual fear memory in a similar fashion (Gan et al., 2016;

Jiang et al., 2016). The role of Rac1 in forgetting is also supported
by studies where Rac1 upstream regulators were manipulated.
For example, KO mice lacking the Rac1 GAP protein, BCR/ABR,
showed impaired spatial, and NOR memory by facilitating their
decay (Oh et al., 2010). In KO mice deficient of another Rac1
GAP protein, ArhGAP15, the hyperactive Rac1 led to longer
escaping latency during the reversal phases in the water maze
test without affecting the learning process, as well as less freezing
in both contextual and cued fear memory test (Zamboni et al.,
2016). Recent studies have used optogenetic techniques that allow
a more precise temporal and spatial control of Rac1 activity.
For example, optical activation of photo-activable (PA) Rac1 in
the amygdala was found to facilitate the cue-based long-term
fear memory decay that was observed 24 h after training (Das
et al., 2017). It was found that Rac1 activity increased after fear
conditioning training and this increased Rac1 activity remained
until fear memory disappeared, and that interfering Rac1 activity
specifically during this period of time by optical stimulation of
PA-Rac1 controlled the speed of memory decay (Lv et al., 2019).

In summary, while Cdc42 and RhoA seem to be involved
the formation of memory, Rac1 is more important in memory
forgetting. However, given that Rac1 KO in the excitatory neuron
can also impair memory formation (Haditsch et al., 2009; Gao
et al., 2015), the endogenous Rac1 level could be normally
maintained at an intermediate level, which can then be up-
or down- regulated to facilitate or slow down memory decay.
Because the RI effect on memory and Rac1 activity was only
evident 22 h (but not 8 h) after the initial training, there
may exist a time window in which the Rac1 activity level is
sensitive to endogenous modulation (Liu et al., 2016). This is
consistent with the observations that activation of Rac1 during
training but not after training impaired long-term memory,
and that Rac1 inhibition during LTP induction, not after
induction, impaired LTP (Martinez and Tejada-Simon, 2011; Das
et al., 2017). Defining the molecular events during this critical
window will be important to understand how memory is stored
and consolidated.

RHO GTPases IN BRAIN DISEASES

Considering the critical roles of Rho GTPases in spine
formation and morphology, synaptic plasticity, and memory,
it is not surprising that dysfunctions in these proteins are
linked to various brain diseases, some of which will be briefly
discussed below.

ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by progressive loss of memory. The pathological
hallmark of AD is the accumulation of extracellular amyloid
plaques formed by amyloid beta (Ab) peptides and the
aggregation of intracellular neurofibrillary tangles containing
hyperphosphorylated Tau proteins (Hardy and Selkoe, 2002).
Aβ peptides have been shown to induce abnormal assembly
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of actin bundles and the formation of cofilin-actin rods in
neurons accompanied by neurite dystrophy and neuronal loss
(Maloney and Bamburg, 2007), suggesting the involvement
of Rho proteins. Evidence supporting the association between
the elevated Rac1 activity and AD comes from both human
and animal studies. Elevated Rac1 activity was observed in the
hippocampus of post-mortem brains of AD patients as well as
in APP/PS1 transgenic mice across different ages (3–9 months)
and a fruit fly AD model (Wu et al., 2019). Suppression of
Rac1 activity either by intragastric application of Rac1 inhibitor,
Ehop-016, or by expression of dominant negative Rac1 rescued
memory loss of APP/PS1 mice in water maze test, suggesting
that increased Rac1 activity was responsible for the memory loss
(Wu et al., 2019). Abnormalities in Rac1 were also reported in
another AD mouse model in which elevated Rac1 activity was
observed in the hippocampus of 6-week old 3xTg-AD mice,
while the total Rac1 protein level was reduced in 7-month old
3xTg-AD mice (Borin et al., 2018). Contrary to the results
obtained from the APP/PS1 mouse model, the intranasal
treatment using constitutively active Rac1 rescued spine deficits
in in 6.5-month-old 3xTg-AD mice (Borin et al., 2018). These
results suggest that alterations in Rac1 may be age-dependent
and affected by animal models. The effect of Rac1 in AD is
likely mediated by changes in the actin cytoskeleton as Rac1
activation induced by Aβ peptides was associated with increased
colocalization with actin filaments in hippocampal neurons, and
the inhibition of Rac1 abolished the increased actin filaments
(Mendoza-Naranjo et al., 2007). Increased Rac1 activity may
also exacerbate AD symptoms through free radicals in astrocytes
as Rac1 was required for Aβ-induced production of reactive
oxygen species in these cells (Lee et al., 2002). The relationship
between Aβ and Rac1 activity is not unidirectional; while Aβ

treatment was shown to increase Rac1 activity, the expression
of constitutively active Rac1 was able to increase the production
of Aβ via increasing gamma-secretase-mediated cleavage of
amyloid precursor protein (APP) (Gianni et al., 2003). Rac1 was
also shown to enhance the transcription of APP via acting on the
−233 to −41 bp region in the APP gene promoter, and inhibition
of Rac1 activity by the Rac1 inhibitor, NSC23766, dominant
negative Rac1, or siRNA knockdown, all reduced APP mRNA
and protein level in the HEK293 cells (Wang et al., 2009).

Abnormal upregulation of Ccd42 was also shown in the brain
of AD patients (Zhu et al., 2000). In addition, Aβ treatment
of hippocampal neuronal culture induced the activation of
Cdc42, along with Rac1, in a time- and dose-dependent
manner (Mendoza-Naranjo et al., 2007). Similar to Rac1, the
increased Cdc42 activity was colocalized with actin filaments
and the inhibition of Cdc42 resulted in decreased actin
filaments, supporting the involvement of actin changes in
AD pathogenesis (Mendoza-Naranjo et al., 2007). In cultured
hippocampal neurons from rats, Aβ-induced cofilin-actin rods
were suppressed by dominant negative Cdc42 and enhanced
by constitutively active Cdc42 (Davis et al., 2009). Although
elevated Cdc42 level was found to be associated with AD,
its downregulation in non-neuronal cells may also potentially
contribute to AD. For example, KO mice of triggering receptor
expressed on myeloid cells 2 (TREM2), a receptor predominantly

expressed in the microglia and whose mutations were associated
with increased risk of AD, showed alterations in Cdc42,
and Rac1 signaling and their activator partially ameliorated
impaired microglial migration in response to Aβ treatment
(Rong et al., 2020).

In contrast to increased Rac1 and Cdc42 activity, decreased
RhoA activity was found in the hippocampus of AD brains
(Huesa et al., 2010). In addition, RhoA protein level was reduced
in neuropil but increased in neurons that have neurofibrillary
tangles. In the Tg2576 AD mouse model, altered distribution
of RhoA was observed with a higher expression found in the
dystrophic neurites but a lower level at the synapses (Huesa et al.,
2010). In cultured PC12 cells, Aβ treatment caused activation of
RhoA within 2 h of treatment and inhibition of RhoA by C3
transferase or dominant negative RhoA prevented Aβ-induced
morphological alterations and neuronal death in cultured
hippocampal neurons (Chacon et al., 2011). RhoA/ROCK
signaling pathway is also involved in the production of Aβ

peptides. In SH-SY5Y cells transfected with APP and in PDAPP
AD mouse model, the amount of Aβ was decreased by the
application of Y-27632 (Zhou et al., 2003). The role of RhoA in
Aβ production could be mediated by Rac1 and Cdc42 through
affecting the gamma-secretase cleavage of APP (Zhou et al.,
2003). Unlike Rac1 and Cdc42 that can be palmitoylated on
their C-terminus to facilitate their recruitment to the lipid raft
on the plasma membrane where gamma-secretase was located,
RhoA was found mainly in the non-raft fraction (Kumanogoh
et al., 2001; Levental et al., 2010; Albanesi et al., 2020). Therefore,
the effect of RhoA/ROCK pathway on APP processing and
Aβ production is likely indirect. RhoA has also been shown
to contribute to Aβ-mediated neurotoxicity by interfering with
microtubule stability (Pianu et al., 2014). In non-neuronal cells
such as cerebral endothelial cells and platelets, Aβ was found
to activate RhoA/ROCK signaling and lead to the disruption of
blood-brain barrier and activation of platelets, both of which are
associated with AD (Sonkar et al., 2014; Park et al., 2017).

AUTISM SPECTRUM DISORDER

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by impaired social interaction and
communication, and repetitive interests and behaviors.
The pathogenesis of ASD is associated with genetic and
environmental factors. To date, many genes have been identified
that are linked to increased risk of developing ASD, and
among these genes, 20 of them encode proteins involved in
Rho signaling pathways (Guo et al., 2020), underscoring the
importance of Rho proteins in the pathogenetic process of
ASD. In addition, alterations in the activity of Rho GTPases are
associated with many other genes linked to ASD. For example,
duplication or deletion of the p11.2 region on chromosome 16
(16p11.2) is linked to ASD, and among the genes located in this
region, potassium channel tetramerization domain containing
13 (kctd13) appeared to be important. kctd13 deficiency
decreased synaptic transmission in the hippocampus and this
was accompanied with increased RhoA activation. Inhibition
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of RhoA activity reversed the deficits caused by kctd13 deletion
(Escamilla et al., 2017). Altered RhoA activity was also reported
in the loss-of-function mutations of another key gene in 16p11.2,
TAO kinase 2 (TAOK2) (Richter et al., 2019). TAOK2 deficiency
caused dosage-dependent impairments in cognitive processes
as well as abnormalities in neuronal structures and functions
(Richter et al., 2019) and these changes were accompanied
by reduced RhoA activity, and importantly pharmacological
enhancement of RhoA activity restored abnormalities in
neuronal structures (Richter et al., 2019). Alterations in Rac1
activity were also affected by several autism-risk gene mutations,
including fragile X mental retardation 1 (Fmr1), neurexin 1
(Nrx1), neuroligin 4 (Nlg4), and tuberous sclerosis 1 (Tsc1). The
mutations of these genes in Drosophila impaired reversal learning
by affecting Rac1-mediated forgetting, and this impairment was
rescued by overexpressing constitutively active Rac1 (Dong et al.,
2016). Abnormal actin cytoskeleton was observed in the brain of
ASD patients with compromised Rho signaling, suggesting that
dysregulated actin may underlie the effects of Rho proteins in
ASD (Griesi-Oliveira et al., 2018). In SH3 and multiple ankyrin
repeat domains 3 (Shank3) KO mice, a widely used mouse model
with autistic-like social deficit and repetitive behavior, reduced
cortical actin filaments and Rac1/PAK activity were observed,
which were rescued by reactivating Rac1 or inhibiting cofilin
activity (Duffney et al., 2015).

Fragile X Syndrome
Many Rho signaling proteins were reported to be linked
to intellectual disability (Newey et al., 2005; van Galen and
Ramakers, 2005). Fragile X syndrome (FXS) is the most
commonly known single gene cause of ASD and intellectual
disability. It is caused by a trinucleotide expansion within the
Fmr1 gene on the X chromosome, resulting in an absence of
FMR1 protein 1 (FMRP1) (Verkerk et al., 1991). Fmr1 KO
mice displayed excessive immature spines, aberrant activation
of Rac1, increased cofilin inactivation and actin polymerization
(Pyronneau et al., 2017). Viral expression of constitutively
active cofilin in the somatosensory cortex of Fmr1 KO mice
or inhibition of PAK1, rescued cofilin changes and synaptic
phenotypes in FXS mice (Pyronneau et al., 2017). Interestingly,
although the overall baseline activity of Rac1 was increased in the
brain of Fmr1 KO mice (Bongmba et al., 2011), the activation of
Rac1 and PAK induced by TBS was impaired (Chen et al., 2010).
Consistent with the impairment in activity-dependent Rac1
activation, inhibition of Rac1 rescued impaired LTP, elevated LTD
and memory deficits in Fmr1 KO mice (Bongmba et al., 2011;
Martinez and Tejada-Simon, 2018a,b).

SUMMARY

By using various approaches and techniques, including KO
mouse models, pharmacological compounds and expression of
mutant proteins, Rho GTPases and their effectors have been
shown to play essential roles in the regulation of spine formation,
spine morphology, receptor trafficking and synaptic plasticity,
and learning and memory. It is important to note that the
results obtained from these different approaches are not always
consistent and this could be due to caveats associated with specific
techniques used. For example, genetic KO mice may suffer from
developmental compensation, whereas pharmacological reagents
may have non-specific effects, both of which may complicate the
interpretation of the data. Although members of Rho GTPases
share many signaling molecules targeting the actin cytoskeleton,
they often exert differential effects on synaptic structure and
function. How these differential effects are achieved remains a
challenging question to address. Downstream effector proteins
targeting cellular processes other than actin dynamics may be
important in this aspect. The temporal and spatial regulation
of Rho GTPases also provides an important direction for future
studies. In this regard, the use of photo-activatable Rac1 and
cofilin may be particularly attractive (Wu et al., 2009; Das
et al., 2017; Stone et al., 2019). Studies of Rho proteins in
other brain cells, including astrocytes and microglia, are also
of importance in understanding the role of Rho signaling in
synaptic regulation. Given the extensive involvement of Rho
signaling proteins in various brain diseases, understanding how
these proteins are altered in the diseased brain continues to be
a focus of future investigations. All these studies should aid the
development of new strategies and molecular targets to treat
related brain disorders.
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