
Pool-hmm: a Python program for estimating the allele
frequency spectrum and detecting selective sweeps from next
generation sequencing of pooled samples

SIMON BOITARD,* ROBERT KOFLER,† PIERRE FRANC�OISE,* DAVID ROBELIN,* CHRISTIAN

SCHL €OTTERER† and ANDREAS FUTSCHIK‡

*Laboratoire de G�en�etique Cellulaire, INRA, 24 Chemin de Borde Rouge, Auzeville CS 52627, Castanet Tolosan Cedex 31326,

France, †Institut f€ur Populationsgenetik, Vetmeduni Vienna, Veterin€arplatz 1, Wien A-1210, Austria, ‡Institute of Statistics and

Operations Research, University of Vienna, Universit€atsstrasse 5/9, Wien A-1010, Austria

Abstract

Due to its cost effectiveness, next generation sequencing of pools of individuals (Pool-Seq) is becoming a popular

strategy for genome-wide estimation of allele frequencies in population samples. As the allele frequency spectrum

provides information about past episodes of selection, Pool-seq is also a promising design for genomic scans for

selection. However, no software tool has yet been developed for selection scans based on Pool-Seq data. We intro-

duce Pool-hmm, a Python program for the estimation of allele frequencies and the detection of selective sweeps in a

Pool-Seq sample. Pool-hmm includes several options that allow a flexible analysis of Pool-Seq data, and can be

run in parallel on several processors. Source code and documentation for Pool-hmm is freely available at

https://qgsp.jouy.inra.fr/.

Keywords: allele frequency spectrum, hidden Markov models, next generation sequencing, pooled DNA, selective

sweeps.

Received 10 July 2012; revision received 26 November 2012; accepted 29 November 2012

Introduction

The detection of genomic regions that evolved under nat-

ural selection is an important topic in population genet-

ics. The case of hard sweeps, where a new mutant goes

to fixation in a population due to strong directional selec-

tion, has received particular attention (Kim & Stephan

2002; Nielsen et al. 2005; Jensen et al. 2007; Boitard et al.

2009; Alachiotis et al. 2012).

The advent of next generation sequencing (NGS) tech-

nologies provides a new dimension to such genome

scans for selection. In spite of the considerable reduction

in the cost of sequencing, the sequencing of individuals

on a population scale remains expensive. However, hard

sweeps can be detected using only the sample allele fre-

quencies along the genome, and this information can be

obtained by sequencing DNA from a pool of individuals

(Pool-Seq). Although Pool-Seq is considerably cheaper

than the sequencing of individuals, there are some meth-

odological challenges associated with the analysis of the

resulting data. First, the reads covering a given position

of the reference genome arise from a random sampling

among the pooled chromosomes, so observations can be

redundant. Second, sequencing error probabilities are

larger than with classic Sanger sequencing (Luo et al.

2011) and are variable among and within reads.

Recently, Boitard et al. (2012) proposed a hidden Mar-

kov model (HMM) for detecting sweeps based on Pool-

Seq data. This method involves computing the likelihood

of the observed read information conditional on allele

counts in the pool, for each genome position. Down-

stream analyses—estimation of the background allele

frequency spectrum (AFS) and detection of selective

sweeps—are then based on these likelihoods. Uncer-

tainty concerning the true allele frequencies in the pool,

which might typically be higher for sites with low cover-

age or bad quality scores, is thus taken into account in

the analyses. Possible biases arising from unequal DNA

concentration or quality among individuals are not

accounted for by this method, but these effects are

expected to be limited for large sample sizes (Futschik

et al. 2010).

In this work, we propose a Python program, denoted

Pool-hmm, that implements the method of Boitard et al.

(2012). The two main applications of this program are
Correspondence: Simon Boitard, Fax: +33 561285308;

E-mail: simon.boitard@toulouse.inra.fr

© 2013 Blackwell Publishing Ltd

Molecular Ecology Resources (2013) 13, 337–340 doi: 10.1111/1755-0998.12063



AFS estimation and detection of selective sweeps, in a

given region. These two applications are implemented

independently, so it is possible, for instance, to detect

selective sweeps based on a background AFS that is

specified by the user. In addition, Pool-hmm provides an

estimation of allele frequencies at each genomic position,

which can be used in other population genetics software.

These model-based estimations are preferable to na€ıve

estimates obtained by computing the ratio of allele

counts at a position, as discussed below.

Input data

The main input of the program is the Pool-Seq data,

which must be provided in the SAMtools pileup format

(Li et al. 2009). Any alignment file in BAM or SAM for-

mat can easily be converted to the pileup format using

the samtools mpileup command (without -u or -g options),

independently of the software used to align or prepro-

cess the reads.

Allele frequency estimation

The method assumes an infinite sites model, where at

most two alleles can be observed at each genomic posi-

tion, the ancestral allele and the derived allele. By

default, the ancestral allele is considered unknown, and

Pool-hmm focuses on folded (rather than derived) allele

frequencies. Two other strategies might also be specified

(option —ancestral-allele). First, the reference allele pro-

vided in the pileup can be considered to be the ancestral

allele. Second, ancestral alleles at each genomic position

can be provided in an additional column of the pileup

file.

For a given genomic region, Pool-hmm estimates the

derived or folded AFS using an expectation maximiza-

tion (EM) algorithm. The starting value for this EM is the

expected AFS under a model with constant population

size and scaled mutation rate h = 4 Nl = 0.005, which

can be modified by the user (option –theta).

Pool-hmm can also estimate the derived (or minor)

allele frequency at each position in a specified region

(option—estim). For this estimation, the previously esti-

mated AFS (or any other AFS provided by the user) is

considered as a prior. At a given position, it is combined

with the likelihood of the observed reads to obtain a pos-

terior distribution of the derived (or minor) allele fre-

quency. The estimated frequency is the one maximizing

this posterior distribution. This estimation procedure is

more reliable than a direct estimation based on the ratio

of allele counts at a position because it accounts for addi-

tional properties of the read data, namely the coverage

and the base qualities at a given position. For instance,

low-quality base calls have less influence on the allele

frequency estimation. In addition, the estimated allele

frequency at genomic positions with low coverage is

essentially determined by the prior AFS.

Our likelihood-based approach for estimating the

AFS in a region or allele frequencies at each genomic

position is an alternative to discarding base calls or geno-

mic positions based on arbitrary thresholds, and has the

advantage of using the available information in a more

continuous way. One important implication is that we

can estimate without bias the proportion of singletons or

other low allele counts, even at low (down to 0.5 9 ) per

chromosome coverage (Boitard et al. 2012), which is

clearly not possible when thresholding genomic posi-

tions based on the number of alternative alleles.

Pool-hmm can be also used to compare the AFS of

genomic regions with different annotations (e.g. introns

vs. exons). We provide a script that filters the input

pileup file for any feature present in an annotation .gtf

file. Pool-hmm then infers the AFS based on the filtered

pileup.

Note that the allele frequencies considered by Pool-

hmm are sample allele frequencies (from 0 to n) and not

population allele frequencies (from 0 to 1), see for

instance the AFS in Fig. 1. Population and sample

frequencies are closely related and essentially provide

the same information, but inference based on coalescent

theory, as the derivations of Nielsen et al. (2005) that are

used in our sweep detection model, naturally involve

sample allele frequencies.

Detection of selective sweeps

In the HMM of Boitard et al. (2012), each genomic posi-

tion is assumed to have a hidden state, which can take

one of the three following values: ‘Selection’, for the sites

that are very close to a swept site, ‘Neutral’, for the sites

that are far away from any swept site and ‘Intermediate’

for the sites in between. These three values are associated

with different AFS. The ‘Neutral’ AFS corresponds to the

background (whole genome) AFS of the population. It

can either be estimated from the Pool-Seq data or pro-

vided using option —spectrum-file. The ‘Intermediate’

and ‘Selection’ AFS are then deduced from the ‘Neutral’

AFS using the derivations in Nielsen et al. (2005), and are

typically more skewed towards low and high allele fre-

quencies. The hidden states form a Markov chain along

the genome with a per-site probability q of switching

state (argument –k). The observed variable at each geno-

mic position is a vector summarizing the information

provided by reads at this position.

In the HMM described above, a selective sweep is

detected if the hidden state ‘Selection’ is inferred for

a window of sites. Using Pool-hmm, this inference

(option —pred) relies on two different criteria. First, the

© 2013 Blackwell Publishing Ltd

338 S . BOITARD ET AL .



sequence of hidden states maximizing the likelihood of

the HMM is computed using the Viterbi algorithm (Ra-

biner 1989) and returned in a file with suffix .pred. A

summary of the sweep windows detected from this algo-

rithm (genomic regions with predicted hidden state

‘Selection’) is also returned in a file with suffix .stat. Sec-

ond, the posterior probability of hidden state ‘Selection’

is computed for each genomic position using the for-

ward–backward algorithm, and is returned in a file with

suffix .post.

Parallelization

Analysis of whole genome NGS data can be very time-

demanding. To speed up the execution of Pool-hmm, we

parallelized the parts of the code where the likelihood of

the observed read information conditional on the num-

ber of derived alleles in the pool is computed. These

computations represent the largest computational cost

(other algorithms, such as EM or Viterbi, are very fast in

comparison), but they can be performed independently

for each genomic position. Taking advantage of this

property, our strategy is thus to build a queue of 10 kb

blocks that are distributed for analysis to different pro-

cessors. The management of this queue and the coordi-

nation of all processors are implemented using the

Python multiprocessing library.

This parallelization strategy enables an optimized use

of multiple processors on a single machine. When running

Pool-hmm on a computer cluster, we also recommend cut-

ting the whole genome data into large regions (typically

chromosomes) and analysing these regions independently

on different nodes. This can be combined with paralleliza-

tion within each node, as described above.

Example

We applied Pool-hmm to a sample of 10 quails that were

sequenced in a single pool at 20 9coverage. Reads were

aligned against the chicken genome release WUGSC2.1

using glint (Courcelle et al. 2008) and converted to pileup

format using samtools (Li et al. 2009). We focused on

chromosome 1 (�200-Mb long, with 20 million observed

segregating sites) and conducted the analyses described

above. We used option —a ‘reference’, thereby assuming

that quail ancestral alleles are those that are found on the

chicken reference genome. The execution time of all

Pool-hmm commands with one, four or eight processors

is given in Table 1. As expected, it decreases significantly

when the number of processors increases, although not

linearly because some parts of the code, as for instance

the queue management, are not parallelized. Using eight

cores, a standard analysis involving AFS estimation and

sweep detection took about 5 h. Additional sweep analy-

ses with a different sensitivity (parameter -k) are then

very fast because they can use intermediate results (the

HMM emission probabilities at each observed segregat-

ing site) that are stored from the first analysis. Note also

that AFS estimation is much faster than allele frequency

estimation because it is based on only 2% of the genomic

positions of chromosome 1 (chosen at random). The pro-

portion of genomic positions used for AFS estimation

can be defined using option —ratio.

The AFS on chromosome 1 is shown in Fig. 1. For com-

parison, Fig. 1 also shows the AFS obtained using only

genomic positions located within exons (as the number of

these positions is much smaller, we used all of them rather

thanonly2%).Wefiltered thepileupwithPool-hmm,using

a gtf file corresponding to the latest Ensembl annotation of

Fig. 1 AFS in a quail sample of n = 20 chromosomes, computed from a random sample of genomic positions (empty circles), genomic

positions within exons (full circles, left panel), genomic positions within sweep window 1 (empty triangles, right panel) or genomic

positions within sweep window 2 (plus, right panel). Probabilities of 0- and 20-derived alleles are not shown because they are not at the

same scale. The large probability observed for 19-derived alleles may be due to the misspecification of the ancestral allele at a small

proportion of segregating sites. Such errors are expected if there is shared polymorphism between quail and chicken.

© 2013 Blackwell Publishing Ltd

POOL-HMM: A PROGRAM FOR ANALYSING POOLED NGS DATA 339



the chicken assembly used for the alignment (url:ftp://ftp.

ensembl.org/pub/release-68/gtf/gallus_gallus/). Exonic

regions have an overall deficit of segregating sites, but

apart fromthat the shapeof theAFS in these regions is close

to thatobtained fromrandomregions.

Seventy-four sweep windows were detected on chro-

mosome 1. The .stat file reporting these regions is pro-

vided as supporting information. The evidence for each

sweep window can be assessed using the third column

of this file, which represents the maximum of the poster-

ior probability of hidden state ‘Selection’ along the win-

dow (in log scale). To illustrate the specificity of the

sweep windows detected by our approach, we estimated

the AFS in the sweep windows corresponding to the two

first lines of the .stat file (Fig. 1, right panel). Sweep

window 1 was characterized by an excess of low- and

high-frequency alleles, whereas sweep window 2 was

characterized by a general deficit of segregating sites.

Indeed, the detection method implemented in Pool-hmm

makes use of both the density of segregating sites and

the allele frequency pattern among segregating sites to

distinguish sweep regions from neutral regions. Further

details on this point and comparisons with alternative

approaches can be found in Boitard et al. (2009, 2012).

Conclusion

Pool-hmm is the first software tool for Pool-Seq data that

provides a probabilistic allele frequency estimation and

detects selective sweeps on a genomic scale. The imple-

mented statistical algorithms account for two important

features of Pool-Seq data, the random sampling among

chromosomes within the pool and sequencing errors.

Pool-hmm includes several options that allow a flexible

analysis of Pool-Seq data.

Software availability

Source code and documentation for Pool-hmm is freely

available at https://qgp.jouy.inra.fr/. Several test data

sets are also provided.

Acknowledgements

We thank Christine Leterrier for providing the quail data, and

Andrea Rau for her careful reading of the manuscript. Christian

Schl€otterer is supported by grants of the Austrian Science Fund

(FWF, P19467). Travels between France and Austria were

funded by the PHC Amadeus grant 25154QH.

References

Alachiotis N, Stamatakis A, Pavlidis P (2012) Omegaplus: a scalable tool

for rapid detection of selective sweeps in whole-genome datasets. Bio-

informatics, 28, 2274–2275.

Boitard S, Schl€otterer C, Futschik A (2009) Detecting selective sweeps: a

new approach based on hidden Markov models. Genetics, 181, 1567–

1578.

Boitard S, Schl€otterer C, Nolte V, Pandey R, Futschik A (2012) Detecting

selective sweeps from pooled next generation sequencing samples.

Molecular Biology and Evolution, 29, 2177–2186.

Courcelle E, Beausse Y, Letort S et al. (2008) Narcisse: a mirror view of

conserved syntenies. Nucleic Acids Research, 36, D485–D490.

Futschik A, Schl€otterer , C (2010) Massively parrallel sequencing of

pooled DNA samples – the next generation of molecular markers.

Genetics, 186, 207–218.

Jensen J, Thornton K, Bustamante C, Aquadro C (2007) On the utility of

linkage disequilibrium as a statistic for identifying targets of positive

selection in nonequilibrium populations. Genetics, 176, 2371–2379.

Kim Y, Stephan W (2002) Detecting a local signature of genetic hitchhik-

ing along a recombining chromosome. Genetics, 160, 765–777.

Li H, Handsaker B, Wysoker A et al. (2009) The sequence alignment/

map (sam) format and samtools. Bioinformatics, 25, 2078–2079.

Luo L, Boerwinkle E, Xiong M (2011) Association studies for next-genera-

tion sequencing. Genome Research, 21, 1099–1108.

Nielsen R, Williamson L, Kim Y, Hubisz M, Clark A, Bustamante C

(2005) Genomic scans for selective sweeps using SNP data. Genome

Research, 15, 1566–1575.

Rabiner L (1989) A tutorial on hidden markov models and selected appli-

cations in speech recognition. Proceedings of the IEE, 77, 257–287.

S.B., D.R., C.S. and A.F. designed the software. S.B., R.K.

and P.F. implemented the software. S.B., R.K., A.F. and

C.S. wrote the manuscript.

Table 1 Execution time of Pool-hmm for the analysis of chromosome 1 in a quail sample of n = 20 chromosomes. Results are provided

for several types of analyses and for one, four or eight available processors on a computing cluster. Pool-hmm commands correspond-

ing to these analyses in the case of one available processor are listed below the table.

Number of processors AFS estimation* First sweep prediction† Additional sweep prediction‡ Allele frequency estimation§

1 6 h 4 min 9 s 12 h 21 min 36 s 0 h 10 min 14 s 31 h 7 min 47 s

4 1 h 57 min 46 s 4 h 32 min 57 s 0 h 09 min 21 s 7 h 47 min 9 s

8 1 h 33 min 30 s 3 h 15 min 53 s 0 h 07 min 06 s 4 h 17 min 14 s

*Python pool-hmm.py –input-file quail -n 20 -a ‘reference’ –only-spectrum –theta 0.005 –ratio 50.

†Python pool-hmm.py –input-file quail -n 20 -a ‘reference’ –pred –spectrum-file quail –k 0.0000000001.

‡Python pool-hmm.py –input-file quail -n 20 -a ‘reference’ –pred –emit-file –k 0.0000000001.

§Python pool-hmm.py –input-file quail -n 20 -a ‘reference’ –estim –spectrum-file quail.

© 2013 Blackwell Publishing Ltd

340 S . BOITARD ET AL .


