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Abstract

Perception is often characterized computationally as an inference process in which uncer-

tain or ambiguous sensory inputs are combined with prior expectations. Although behavioral

studies have shown that observers can change their prior expectations in the context of a

task, robust neural signatures of task-specific priors have been elusive. Here, we analyti-

cally derive such signatures under the general assumption that the responses of sensory

neurons encode posterior beliefs that combine sensory inputs with task-specific expecta-

tions. Specifically, we derive predictions for the task-dependence of correlated neural vari-

ability and decision-related signals in sensory neurons. The qualitative aspects of our

results are parameter-free and specific to the statistics of each task. The predictions for cor-

related variability also differ from predictions of classic feedforward models of sensory pro-

cessing and are therefore a strong test of theories of hierarchical Bayesian inference in the

brain. Importantly, we find that Bayesian learning predicts an increase in so-called “differen-

tial correlations” as the observer’s internal model learns the stimulus distribution, and the

observer’s behavioral performance improves. This stands in contrast to classic feedforward

encoding/decoding models of sensory processing, since such correlations are fundamen-

tally information-limiting. We find support for our predictions in data from existing neurophys-

iological studies across a variety of tasks and brain areas. Finally, we show in simulation

how measurements of sensory neural responses can reveal information about a subject’s

internal beliefs about the task. Taken together, our results reinterpret task-dependent

sources of neural covariability as signatures of Bayesian inference and provide new insights

into their cause and their function.

Author summary

Perceptual decision-making has classically been studied in the context of feedforward

encoding/ decoding models. Here, we derive predictions for the responses of sensory neu-

rons under the assumption that the brain performs hierarchical Bayesian inference,
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including feedback signals that communicate task-specific prior expectations. Interest-

ingly, those predictions stand in contrast to some of the conclusions drawn in the classic

framework. In particular, we find that Bayesian learning predicts the increase of a type of

correlated variability called “differential correlations” over the course of learning. Differ-

ential correlations limit information, and hence are seen as harmful in feedforward mod-

els. Since our results are also specific to the statistics of a given task, and since they hold

under a wide class of theories about how Bayesian probabilities may be represented by

neural responses, they constitute a strong test of the Bayesian Brain hypothesis. Our

results can explain the task-dependence of correlated variability in prior studies and sug-

gest a reason why these kinds of correlations are surprisingly common in empirical data.

Interpreted in a probabilistic framework, correlated variability provides a window into an

observer’s task-related beliefs.

Introduction

To compute our rich and generally accurate percepts from incomplete and noisy sensory data,

the brain has to employ prior experience about which causes are most likely responsible for a

given input [1, 2]. Mathematically, this process can be formalized as probabilistic inference in

which posterior beliefs about the outside world (our percepts) are computed as the product of

a likelihood function (based on sensory inputs) and prior expectations. These prior expecta-

tions reflect statistical regularities in the sensory inputs and contain information about the

causes of those inputs and their relationships [3]. One approach to studying the neural basis of

learning these regularities is to track them over the course of development. This approach was

taken by Berkes et al (2011), who found signatures of learning a statistical model of sensory

data in the changing relationship between evoked and spontaneous activity in visual cortex of

ferrets [4]. A potential alternative approach exploits the experimenter’s control of the regulari-

ties in the stimulus in the context of a psychophysical task. Such an approach could lead to a

set of complementary predictions, different for each task, and comparable across tasks within

the same brain. However, robust, task-specific, signatures of Bayesian learning are currently

unknown, partly due to the fact that existing theories differ greatly in their assumptions for

how probabilistic beliefs relate to tuning curves and correlated variability [3, 5–7].

Classic models frame perceptual decision-making as a signal-processing problem: sensory

neurons transform input signals, and downstream areas separate task-relevant signals from

noise [8]. Theoretical results based on this framework have shown how correlated variability

among pairs of neurons impact both encoded information [9–17] as well as the correlations

between sensory neurons and behavior (“choice probabilities”), that are used to quantify the

involvement of individual neurons in a task [9, 18–21]. In particular, so-called “information-

limiting,” or “differential” correlations, which comprise neural variability in the same direction

as neurons’ tuning to some stimulus, have the greatest impact on both encoded information

about that stimulus [16] and choice probabilities in a discrimination task [20]. These insights

have motivated numerous experimental studies [20, 22–29] (reviewed in [30]). However, the

extent to which choice probabilities and noise correlations are due to causally feedforward or

feedback mechanisms is largely an open question [21, 24, 27, 31–35] that has profound impli-

cations for their computational role [30, 36–39]. Within the signal-processing framework,

feedback signals are commonly conceptualized as endogenous attention that shapes neural

tuning and covariability in such a way as to increase task-relevant information in the neural

responses [40–42], reviewed in [43]. Therefore, one should expect differential correlations to
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be reduced when a subject attends to task-relevant aspects of a stimulus. It is therefore notable

that differential correlations have been empirically found to be among the few dominant

modes of variance across a range of tasks and brain areas [26, 28, 29, 44]. From the classic sig-

nal-processing perspective, this is surprising because neural noise is usually assumed to be

independent of task context, and to the extent that task-specific attention is engaged, it is

expected to decrease these correlations. It is therefore puzzling that, when subjects switch

between multiple tasks, correlations appear to dynamically re-align with the direction that

maximally limits information in the current task [22, 27, 37] (but see [44]).

The Bayesian inference framework, on the other hand, premises that the goal of sensory

systems is to infer the latent causes of sensory signals [1] (Fig 1). This has motivated models

in which neural activity represents distributions of inferred variables [2, 45], reviewed in [3,

5, 6, 46, 47]. These models broadly fall into two categories that make specific assumptions

about the relationship between probabilistic beliefs and neural responses: those inspired by

Monte Carlo sampling algorithms [34, 48–55], and those inspired by parametric or varia-

tional algorithms [7, 45, 56–62]. Bayesian inference models interpret feedback connections

in the brain as communicating contextual prior information or expectations [63–66]. While

many neural models of Bayesian inference address neural (co)variability [34, 48, 52, 67–69],

connections to the classic signal-processing framework, and to differential correlations and

choice probabilities in particular, have been limited to the specific scope and assumptions of

each model [34, 70, 71].

Here, we analytically derive connections between the two frameworks of Bayesian infer-

ence and classic signal-processing, while abstracting away from assumptions about a particu-

lar theory of distributional codes or the nature of the brain’s internal model. Our key idea is

that, while various theories of distributional coding may predict idiosyncratic neural signa-

tures for the encoding of a given posterior distribution, the encoded posterior itself also

changes trial-by-trial, and these changes in the encoded posterior must obey a self-consis-

tency rule prescribed by Bayesian learning and inference. As we show, this self-consistency

rule imposes a kind of symmetry between sensory neurons’ sensitivity to an external stimulus

and their sensitivity to changes in internal beliefs about the stimulus. We begin by reviewing

concepts and introducing general notation for the relationship between the Bayesian infer-

ence and measured neural activity. We then turn to the specific case of discrimination tasks,

analytically deriving that, after learning a task, optimal feedback of decision-related informa-

tion should induce both differential correlations and choice probabilities aligned with neural

sensitivity to the task’s stimulus. These initial results require assumptions about noise and

experimental design, but (in the low-noise case) are not tied to a particular theory of distri-

butional codes, but hold for general distributional codes, including neural sampling [3],

probabilistic population codes [58], distributed distributional codes [7], and others. The

presence of non-negligible noise raises two additional considerations: first, we identify a

novel class of “Linear Distributional Codes” (LDCs) for which our first set of results on deci-

sion-related feedback still hold; second, we show numerically that the constraint of self-con-

sistent inference suppresses noise that is inconsistent with the task, leading to an apparent

increase in differential correlations with learning. In total, our results contain two distinct

normative mechanisms that predict apparent increases in differential correlations over learn-

ing, and one that predicts structure in choice probabilities. We then present initial evidence

for these predictions in existing empirical studies, and suggest new experiments to test our

predictions directly. Finally, we show in simulation how this theory allows the experimenter

to glean information about the brain’s beliefs about the task using only recordings from pop-

ulations of sensory neurons.
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Results

Distinguishing two sources of neural variability in distributional codes

A key challenge for Bayesian theories of sensory processing is linking observable quantities,

such as stimuli, neural activity, and behavior, to hypothesized probabilistic computations

which occur at a more abstract, computational level (Fig 1A and 1B). Following previous

work, we assume that the brain has learned a generative model of its sensory inputs [3, 64, 73–

75], and that populations of sensory neurons encode posterior beliefs over latent variables in

the model conditioned on sensory observations: a hypothesis we refer to as “posterior coding.”

The responses of such neurons necessarily depend both on information from the sensory

periphery, and on relevant information in the rest of the brain forming prior expectations. In a

hierarchical model, likelihoods are computed based on feedforward signals from the periphery,

and contextual expectations are relayed by feedback from other areas [64] (Fig 1B).

Fig 1. Illustration of the components of our framework and how they relate to experimentally observed quantities. a-b) The

experimenter varies the sensory evidence, E, (e.g. images on the retina) according to s (e.g. orientation). The brain computes

pb(x|E, I), its beliefs about latent variables of interest conditioned on those observations and other internal beliefs. I denotes these

other “internal state” variables that are probabilistically related to, and hence form expectations for x. c) Here, we have illustrated

x as Gabor patches which combine to form the image [72, 73], but our results hold independent of the nature of x. Solid black

arrows represent statistical dependencies in the brain’s implicit generative model, while red and blue lines show information

flow. Dashed lines cross levels of abstraction. d) Varying a stimulus, s, such as the orientation of the grating image in (c), results

in changes to the posterior over latent variables in the brain’s internal model, but these distributions on x cannot be directly

observed. e) The recorded neurons are assumed to encode the brain’s posterior beliefs about x as in panel (d) through a

distributional representation scheme, R, which is a hypothesized map from unobservable distributions over x to observable

distributions of r. We denote this map as R½pbðxjE; IÞ� [45]. Our derivation initially assumes only that smoothly changing

posteriors (d) correspond to smooth changes in neural response statistics (e); other restrictions on R will be introduced later. f)

Mean spike counts (or firing rates) as a function of some stimulus s define a tuning curve, f(s). Both the tuning curve, f(s), and its

tangent at a point, f0, thus reflect, in part, changes in the underlying posterior over x (insets).

https://doi.org/10.1371/journal.pcbi.1009557.g001
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In our notation, E is the variable observed by the brain—the sensory input or evidence—

and x is the (typically high-dimensional) set of latent variables. I is a high-dimensional vector

representing all other internal variables in the brain that are probabilistically related to, and

hence determine “expectations” for x. Note that the term “prior” is often overloaded, referring

sometimes to stationary statistics learned over long time scales, and sometimes to dynamic

changes in the posterior due to higher-level inferences or internal states. Therefore, we refer to

the dynamic effect of internal states on x as “expectations”. The brain’s internal model of how

these variables are related, pb(x, E, I), gives rise to a posterior belief, pb(x|E, I), that we assume

to be represented by the recorded neural population under consideration. In a typical experi-

ment, stimuli are parameterized by a scalar, s. For instance, when considering the responses of

a population of neurons in primary visual cortex (V1) to a grating, E(s) is the grating image on

the retina with orientation s, and x has been hypothesized to represent the presence or absence

of Gabor-like features at particular retinotopic locations [76] or the intensity of such features

[72, 77] (Fig 1B). We will return to this example throughout, but our results derived below are

largely independent of the exact nature of x. In higher visual areas, for instance, x could be

related to the features or identity of objects and faces [74, 75]. In these examples, I represents

all other internal information that is relevant to x, such as task-relevant beliefs, knowledge

about the context or visual surround, etc.

The rules of Bayesian inference allow us to derive expressions for structure in posterior dis-

tributions as the result of learning and inference. Importantly, the rules of probability apply to

the relationships between abstract computational variables such as E, x, I, and their distribu-

tions, and not generally those between neural responses implementing those computations; it

is a conceptually distinct step to link variability in posteriors to variability in neural responses

encoding those posteriors. We use ‘R’ to denote the encoding from distributions over internal

variables x into neural responses (Fig 1D) [45]. For reasonable encoding schemes R, the chain

rule from calculus applies: small changes in the encoded posterior result in small changes in

the expected statistics of neural responses (Fig 1E, Methods). Using fi to denote the mean firing

rate of neuron i, we can express its sensitivity to a change in stimulus, s, as

dfi
ds
¼

dfi
dpbðxjEðsÞÞ

;
dpbðxjEðsÞÞ

ds

� �

; ð1Þ

where h�, �i is an inner product in the space of distributions over x. In general, this expression

should average over variability in the posterior due to sources other than s. For now, we are

suppressing this extra “noise” for the sake of exposition, but will return to it later in Results.

The second term in brackets is the change in the posterior as s changes, and the first term

relates those changes in the posterior to changes in the neuron’s firing rate. Notice that Eq (1)

bridges two levels of abstraction, from Bayesian inference (what happens to the posterior over

x as s is changed) to neural activity (how these changes to the posterior manifest as observable

changes to neural activity).

It follows that, in the Bayesian inference framework, there are two distinct sources of neural

variability acting at different levels of abstraction: variability in the encoding of a given poste-

rior (Fig 2A–2C), and variability in the posterior itself (Fig 2D–2F) [78].

Distributional coding schemes [3, 5, 45, 47] typically assume that a given posterior may

be realized in a distribution of possible neural responses, which we refer to as variability

in the encoding (Fig 2A–2C). For instance, it has been hypothesized that neural activity

encodes samples stochastically drawn from the posterior [34, 48–55, 69, 79]. Alternatively,

neural activity may noisily encode fixed parameters of an approximate posterior [7, 58, 60–

62, 80, 81]. Such distributional encoding schemes are reviewed in [3, 5, 6, 46, 47]. Previous
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work has linked (co)variability in neural responses to sampling-based encoding of the poste-

rior [4, 34, 48, 52, 55, 67–69]. Our results are complementary to these; here we study trial-

by-trial changes in the posterior itself, and how these changes affect the expected statistics
of neural responses such as mean spike count and noise correlations of neural responses.

Importantly, our results apply to a wide class of distributional codes including all of the

above (Methods).

Trial-by-trial variability in the encoded posterior is an additional source of neural vari-

ability above and beyond variable encoding of a fixed posterior discussed above (Fig 2D–2F).

There are two principal causes for variability in the posterior itself. First, there is variability in

the observation E, or in neural signals relaying forward information about E, which induce

variability in the likelihood [82–85]. Second, there is variability in internal states that may

influence sensory expectations [37, 86]. Our initial results focus on the variability in the poste-

rior due to variability in task-relevant beliefs or expectations [34, 86] since our primary goal is

to understand task-specific influences on neural responses. Such variable expectations may

reflect a stochastic approximate inference algorithm [48] or model mismatch, for example if

the brain picks up on spurious dependencies in the environment as part of its model [78, 87–

89]. Later, we will describe the effect of task-independent sources of variability in the posterior

(“noise”), and how it is shaped by learning a task. In the remainder of this paper, we make

Fig 2. Two distinct sources of neural co-variability in the Bayesian inference framework: Stochastic encoding of a

fixed posterior (a-c) and variability in the posterior itself (d-f). a) Consider the case where there is no variability in I

or E and inference is exact (indicated by straight arrows from E and I to pb), but posteriors are noisily realized in

neural responses r (indicated by a zigzag arrow from pb to r). b) Exact inference always produces the same posterior

for x for fixed E and I. c) The neural encoding of a given distribution may be stochastic, so a single posterior (b)

becomes a distribution over neural responses r. The shape of this distribution may or may not relate to the shape of the

posterior in (b), depending on the encoding (e.g. there is a correspondence in sampling, but not in parametric codes).

d) Both sensory noise and variable expectations induce trial-to-trial variability in the posterior itself (indicated by

zigzag arrows from E and I to pb). This variability in the encoded posterior adds to variability in the encoding, as in (a-

c), and can be understood as affecting the average or expected neural responses (indicated by a straight arrow from pb

to r). e) Variability in the posterior can be thought of as a distribution of possible posteriors. f) Each individual

posterior in (e) is a point in the space of expected statistics of r, such as expected spike counts. Variability in the

underlying posterior may appear as correlated variability in spike counts.

https://doi.org/10.1371/journal.pcbi.1009557.g002
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these ideas explicit for the case of two-choice discrimination tasks for which much empirical

data exists.

Inference and discrimination with arbitrary sensory variables

In two-choice discrimination tasks, stimuli are classically parameterized along a single dimen-

sion, s, and subjects learn to make categorical judgments according to an experimenter-

defined boundary which we assume to be at s = 0. We will use C 2 {1, 2} to denote the two cate-

gories, corresponding to s< 0 and s> 0. While our analytical results hold for discrimination

tasks using other stimuli, for concreteness throughout this paper, our running example will be

of orientation discrimination, in which case s is the orientation of a grating with s = 0 corre-

sponding to horizontal, and C refers to clockwise or counter-clockwise tilts (Fig 3A). While

our derivations make few assumptions (see Methods) about the nature of the brain’s latent var-

iables, x, our illustrations will use the example of oriented Gabor-like features in a generative

model of images (Figs 1B and 3A).

Whereas much previous work on perceptual inference assumes that the brain explicitly

infers relevant quantities defined by the experiment [2, 58, 60, 90], we emphasize the distinc-

tion between the external stimulus quantity being categorized, s, and the latent variables in the

subject’s internal model of the world, x. For the example of orientation discrimination, a grat-

ing image E(s) is rendered to the screen with orientation s, from which V1 infers an explana-

tion of the image as a combination of Gabor-like basis elements, x. The task of downstream

areas of the brain—which have no direct access to E nor s—is to estimate the stimulus category

based on a probabilistic representation of x (Fig 3A) [34, 91]. Crucially it is the posterior over

x, rather than over s, which we hypothesize is represented by sensory neurons.

Task-specific expectations and self-consistent inference

Probabilistic relations are inherently bi-directional: any variable that is predictive of another

variable will, in turn, be at least partially predicted by that other variable. In the context of per-

ceptual decision-making, this means that sensory variables, x, that inform the subjects’ internal

belief about the category, C, will be reciprocally influenced by the subject’s belief about the

Fig 3. a) In a discrimination task, the brain performs inference over its latent variables (pb(x|. . .)) and trial category ((pb(C|. . .))) conditioned

on the sensory observation (E). We will first focus on the subject’s graded belief about the binary category, written as π� pb(C = 1|. . .), and

ignore the influence of other internal states that are part of I (or assume they are fixed), before returning to them later. Implicitly, all inferences

are with respect to an internal model pb (black arrows). A Bayesian observer learns a joint distribution between x and C, implying bi-directional

influences during inference: x! π is analogous to “decoding,” while π! x conveys task-relevant expectations. b) Visualization of how prior

expectations (top row) and likelihood (bottom row) contribute to the posterior (middle row), with x as a one-dimensional variable. Changes to s
change the likelihood (middle column). Changes in expectation, π, imply changes in expectations (right column). Crucially, changes in the

posterior in both cases (middle row) are approximately equal (gray arrow) as explained in the text.

https://doi.org/10.1371/journal.pcbi.1009557.g003
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category (Fig 3A). Inference thus gives a normative account for feedback from “belief states” to

sensory areas: changing beliefs about the trial category entail changing expectations about the

sensory variables whenever those sensory variables are part of the process of forming those cat-

egorical beliefs in the first place [34, 64, 86, 92].

A well-known self-consistency identity for probabilistic models is that their prior is equal to

their average inferred posterior, assuming that the model has learned the data distribution ([3,

4, 93]; Methods). We can use this identity to write an expression for the optimal prior over x

upon learning the statistics of a task (Methods):

pbðxjC ¼ cÞ ¼ EpeðsjC¼cÞ
½pbðxjEðsÞÞ� : ð2Þ

Eq (2) states that, given knowledge of an upcoming stimulus’ category, C = c, the optimal

prior on x is the average posterior from earlier trials in the same category [94].

Throughout, we use the subscript ‘b’ to refer to the brain’s internal model, and the subscript

‘e’ to refer to the experimenter-defined model (Methods). To use the orientation discrimina-

tion example, knowing that the stimulus category is “clockwise” increases the expectation that

clockwise-tilted Gabor features will best explain the image, since they were inferred to be present
in earlier clockwise trials. Importantly, Eq (2) is true regardless of the nature of x or s. It is a

self-consistency rule between prior expectations and posterior inferences that is the result of the

brain having fully learned the statistics of its sensory inputs in the task, i.e. pb(E) = pe(E) ([3, 4,

93]; Methods). This self-consistency rule allows us to relate neural responses due to the stimu-

lus (s) to neural responses due to internal beliefs (π) without specific assumptions about x.

In binary discrimination tasks, the subject’s belief about the correct category is a scalar

quantity, which we denote by π = pb(C = 1|. . .). Given π, the optimal expectations for x are a

correspondingly graded mixture of the per-category priors:

pbðxjpÞ ¼ ppbðxjC ¼ 1Þ þ ð1 � pÞpbðxjC ¼ 2Þ: ð3Þ

The posterior over x for a single trial depends on both the stimulus and belief for that trial:

pbðxjp; EðsÞÞ / pbðEðsÞjxÞpbðxjpÞ : ð4Þ

We assume beliefs about C (i.e. π) and x are represented by separate neural populations, for

instance if π is represented in a putative decision-making area of the brain while x is in sensory

cortex; however, their relation to each other via anatomically “feedforward” or “feedback”

pathways is not crucial for the main result except in the context of designing specific experi-

mental interventions. For simplicity, we will say task-related expectations “feed back” to x, as

this is the common and familiar case in which x stands for whatever is represented by sensory

cortex. We will next derive the specific pattern of neural correlated variability when π varies.

Variability in the posterior due to changing task-related expectations

Even when the stimulus is fixed, subjects’ beliefs and decisions are known to vary [8]. Small

changes in a Bayesian observer’s categorical belief (Δπ) result in small changes in their poste-

rior distribution over x, which can be expressed as the derivative of the posterior with respect

to π:

d
dp

pbðxjEðs ¼ 0Þ; pÞ

�
�
�
�
p¼1=2

;

where s = 0 and p ¼ 1
2= indicate that the derivative is taken at the category boundary where an

unbiased observer’s belief is ambivalent. Note that a 50/50 prior at s = 0 is not required, and
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our results would still hold after replacing all instances of p ¼ 1
2= with whatever the observer’s

belief is at s = 0.

Our first result is that this derivative is approximately proportional to the derivative of the

posterior with respect to the stimulus. Mathematically, the result is as follows:

d
dp

pbðxjEðs ¼ 0Þ; pÞ

�
�
�
�
p¼1=2

/
� d
ds

pbðxjEðsÞ; p ¼
1=

2
Þ

�
�
�
�
s¼0

; ð5Þ

where the symbol/
�

should be read as “approximately proportional to” (see Methods for

proof). This result is visualized in one dimension in Fig 3B: small changes in categorical expec-

tation (±Δπ) and small changes in the stimulus (±Δs) result in strikingly similar changes to the

posterior over x.

Eq (5) states that, for a Bayesian observer, small variations in the stimulus around the cate-

gory boundary have the same effect on the inferred posterior over x as small variations in their

categorical beliefs. The proof makes four assumptions: first, the subject must have fully learned

the task statistics, as specified by equations (2) and (3). Second, the two stimulus categories

must be close together, i.e. the task must be near or below psychometric thresholds. Third, var-

iations of stimuli within each category must be small.

We further discuss these conditions and possible relaxations in S1 Text, and visualize them

in S1 and S2 Figs. Finally, we have assumed that there are no additional noise sources causing

the posterior to vary; we consider the case of noise in the section “Effects of task-independent

noise” below.

Feedback of variable beliefs implies differential correlations

“Information-limiting” or “differential” correlations refer to neural (co)variability that is indis-

tinguishable from changes to the stimulus itself, i.e. variability in the f0 � df/ds direction for a

fixed s. For a pair of neurons i and j, differential covariance is proportional to f 0i f
0
j [16]. Covari-

ance is transformed to correlation by dividing by the square root of the product of both neu-

rons’ variances, σi σj, which gives an expression for differential correlation proportional to d0id
0
j,

where d0i � f 0i =si is the normalized “d-prime” neurometric sensitivity of neuron i [95].

Applying the “chain rule” in Eq (1) to Eq (5), it directly follows that

df
dp

�
�
�
� s¼0

p¼1=2

/
� df
ds

�
�
�
� s¼0

p¼1=2

; ð6Þ

implying that the effect of small changes in the subject’s categorical beliefs (π) is approximately

proportional to the effect of small changes in the stimulus on the responses of sensory neurons

that encode the posterior. Both induce changes to the mean rate in the f0 � df/ds direction.

Importantly, when a subject is trained on multiple tasks and given a cue about the task con-

text, the influence of their categorical expectations on posterior-coding neurons should then

depend on the cue, since the cue informs their expectations of possible stimuli. Below, this

task-dependence of f0 will enable strong experimental tests of this theory using a cued task-

switching paradigm.

A direct consequence of Eq (5) is that variability in π adds to neural covariability in the

f0−direction above and beyond whatever intrinsic covariability was present before learning.

We obtain, to a first approximation, the following expression for the noise covariance between

neurons i and j:

Sij ¼ Sintrinsic
ij þ Sbelief

ij ; ð7Þ
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where Sintrinsic captures “intrinsic” noise such as Poisson noise in the encoding. It follows

from (6) that

Sbelief
ij /

� varðpÞf 0if
0>

j : ð8Þ

Interestingly, this is exactly the form of so-called “information-limiting” or “differential”

covariability [16]. In the feedforward framework, differential covariability arises due to afferent

sensory or neural noise and limits the information about s in the population [16, 30, 33]. This

source of differential correlations is captured by Sintrinsic and is assumed to be always present,

independent of task context. Here, we highlight an additional source of differential correla-

tions due to feedback of variable beliefs about the stimulus category. Unless these beliefs are

true, or unless downstream areas have access to and can compensate for π, the differential cov-

ariability induced by π limits information like its bottom-up counterpart ([27, 30, 37]; also see

Discussion). Importantly, and unlike the feedforward component of differential covariability,

the feedback differential covariability predicted here arises as the result of task-learning and

is predicted to increase while behavioral performance in the task improves, and to change
depending on the cued task context in a task-switching paradigm.

Feedback of variable beliefs implies choice probabilities aligned with

stimulus sensitivity

A direct prediction of the feedback of beliefs π to sensory areas, according to (6), is that the

average neural response preceding choice 2 will be biased in the + f0 direction, and the average

neural response preceding choice 1 will be biased in the −f0 direction, since the subject’s behav-

ioral responses will be based on their belief, π. Excess variability in π, e.g. due to spurious serial

dependencies, or simply approximate inference, will therefore introduce additional correla-

tions between neural responses and choices above and beyond those predicted by a purely

feedforward “readout” of the sensory neural responses [8, 19, 20, 31, 32, 34, 96]. Our results

predict that this top-down component of choice probability should be proportional to neural

sensitivity:

CPi �
1

2
/
� d0i; ð9Þ

where d0i � f 0i =si is the “d-prime” sensitivity measure of neuron i from signal detection theory

[95] (Methods). Interestingly, the classic feedforward framework makes the same prediction

for the relation between neural sensitivity and choice probability assuming an optimal linear

decoder [19], raising the possibility that, contrary to previous conclusions, the empirically

observed relationship between CPs and neural sensitivity that emerges over learning [97] is

not just due to changes in the feedforward read-out as commonly assumed [8, 98] but is

instead the result of changes in feedback indicating variable beliefs.

Effects of task-independent noise

The above results assumed no measurement noise nor variability in other internal states

besides the relevant belief π. Just as in the previous sections, we will distinguish variability in
the encoded posterior, to which we can apply the self-consistency constraint of Bayesian infer-

ence, from neural variability due to the neural representation of a fixed posterior through R.

In the presence of noise, the posterior itself changes from trial to trial even for a fixed stimulus

s and fixed beliefs π [83]. To study the consequences of this added variability, we introduce a

variable, ϵ, that encompasses all sources of task-independent noise on each trial, and condition

the posterior on its value: p(x|E(s), π; ϵ) (Methods). Following our decomposition of variance
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in Fig 2D, this noise, like π, acts on the encoded posterior rather than on the neural responses

directly. Unlike π, ϵ is by definition task-independent (Methods). This impacts our initial

results in two principal ways, laid out in the following two sections: first, although ideal learn-

ing and self-consistent inference still implies that the average posterior equals the prior (Eq

(2)), the average must now be taken over both s and the distribution of noise p(ϵ). This reduces

the generality of our main result on the proportionality of df
ds and df

dp (Eq (6)), but leads us to con-

sider a new classification of linear distributional codes (LDCs) with interesting robustness

properties to noise. Second, task-independent noise can be amplified or suppressed by a task-

dependent prior, which we also find to have a task-dependent effect on neural covariability

that sometimes, but not always, increases differential correlations.

Variable beliefs in the presence of noise. Previously, we decomposed a neuron’s sensitiv-

ity to the stimulus into the product of its sensitivity to changes in the encoded posterior with

changes in the posterior due to the stimulus. In the presence of noise,
dfi
ds now requires averag-

ing over realizations of the posterior for different values of the noise, ϵ. On the other hand, we

previously saw that a neuron’s sensitivity to feedback of beliefs,
dfi
dp, depends on the sensitivity of

fi to the average posterior. This distinction between the average encoding of posteriors, which

defines
dfi
ds , and the encoding of the average posterior, which defines

dfi
dp, is crucial. In general, the

expected value of a nonlinear function is not equal to that function of the expected value,

hence the alignment between the two vectors, df
ds and df

dp, no longer holds in general (Methods).

However, there is a special class of encoding schemes in which firing rates are linear with

respect to mixtures of distributions over x. We call these Linear Distributional Codes (LDCs).

For LDCs, the two expectations mentioned above become identical, and we recover our earlier

results for both task-dependent noise covariance (Eq (8)) and structured choice probabilities

(Eq (9)) (Methods). Examples of LDCs include sampling codes where samples are linearly

related to firing rate [34, 48–51, 91] as well as parametric codes where firing rates are propor-

tional to expected statistics of the distribution [7, 45, 56, 99]. Examples of distributional codes

that are not LDCs include sampling codes with a nonlinear relationship between samples and

firing rates [52, 53, 55], as well as parametric codes in which the natural parameters of an expo-

nential family are encoded [58, 60, 62, 80].

This suggests a novel method for experimentally distinguishing between large classes of

models: if, across multiple task contexts, manipulating the amount of external noise results in

no changes to the axis along which feedback modulates sensory neurons, then this suggests

that the brain’s distributional code may be linear.

Interactions between task-independent noise and task-dependent priors. Although we

assumed that noise ϵ arises from task-independent mechanisms, it is nonetheless shaped by

task learning: task-independent noise in the likelihood interacts with a task-specific prior to

shape variability in the posterior (Fig 4). Below, we show that this mechanism can change task-

dependent differential correlations in neural responses even if a subject’s beliefs (π) do not

vary. This idea is reminiscent of recent mechanistic models of neural covariability in which a

static internal state, such as attention to a location in space, influences the dynamics of a recur-

rent circuit, allowing variation in some directions while suppressing others [100, 101]. Here,

we investigate what happens when the brain employs a static prior over stimuli for a given

task, finding that noise is selectively suppressed in certain directions by the prior.

We again study the trial-by-trial variability in the posterior itself as opposed to the shape or

moments of the posterior on any given trial. Formally, we study the covariance due to noise

(ϵ) in the posterior density at all pairs of points xi, xj, i.e. Sij� cov(pb(xi|. . .), pb(xj|. . .)). We

have shown (Methods) that, to a first approximation, the posterior covariance is given by a

product of the covariance of the task-independent noise in the likelihood, SLH(xi, xj), and the
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Fig 4. Numerical simulation of how variable likelihoods both determine and interact with the shape of the prior. Top two rows: mean of observations E depends on s
as shown in panel (a). Bottom two rows (gray background): covariance of observations E depends on s as shown in panel (l). a) In this setup, observations are noisy,

reflecting both internal and external noise. We set E to be two-dimensional, drawn from pe(E|s), a Gaussian whose mean depends on s (black curve). Ellipses indicate

one standard deviation of pe(E|s). b) Now visualizing the space of latent variables, x, which we also set to be two-dimensional, such that the brain’s internal model

assumes pb(E|x) is Gaussian, centered on x, with the shown variance. Each red circle shows a single contour of the likelihood, as a function of x, for a different E drawn

from the pe(E|s = 0) set of observations. c) After learning, the prior is extended along the curve that parameterizes the mean of x, such that the brain’s distribution on

observations, pb(E) marginalized over x, approximates the true distribution on observations, pe(E) marginalized over s (Methods). d) Posteriors in the zero-signal or

s = 0 case, given by the product of the likelihoods in (b) with the prior in (c). e) The direction in distribution-space corresponding to differential covariance in neural-

space is the dpb/ds-direction, averaged over instances of noise. f) The fraction of variance in distribution-space (d) along the dpb/ds-direction. After learning, a larger

fraction of the total variance is in the dpb/ds-direction, corresponding to increased differential correlations in neural space. g-k) Identical to (b) through (f), except that

the brain’s internal model is more precise relative to the variations in observations E, modeled as smaller variance for pb(E|x). This has the effect of reducing the effect

of learning a new prior in panel (k). l-v) Identical to (a) through (k), except that here, s parameterizes the covariance of observations E rather than their mean. This is

analogous to, for example, an orientation-discrimination task with randomized phases, such that the average stimulus in pixel-space is identical for both categories.

While panel (v) (precise model) shows a slight increase in variance in the dpb(x|. . .)/ds direction, consistent with (f) and (k), panel (q) (imprecise model) shows a slight

decrease.

https://doi.org/10.1371/journal.pcbi.1009557.g004
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brain’s prior over xi and xj:

Sðxi; xjÞ / pbðxiÞS
LHðxi; xjÞpbðxjÞ : ð10Þ

The effect of learning a task-dependent prior in Eq (10) can be understood as “filtering”

the noise, suppressing or promoting certain directions of variability in the space of posterior

distributions.

Differential correlations emerge from this process if variability in the dpb(x|. . .)/ds-direc-

tion is less suppressed than in other directions. Whether this is the case, and to what extent,

depends on the interaction of s and x, an analytic treatment of which we leave for future work.

Here, we present the results from two sets of numerical simulations: one in which the mean of

x depends on s (Fig 4A–4K) and one in which the covariance of x depends on s (Fig 4L–4V).

In these simulations, we assume both x and E to be two-dimensional, with isotropic Gauss-

ian likelihoods over E given x in the brain’s internal model. To connect back to our earlier

examples of visual discrimination tasks, this two-dimensional stimulus space can be thought of

as a simplified two-pixel image. We fixed the brain’s internal likelihood pb(E|x) over learning,

and modeled the learning process as gradient descent of a loss function that encourages the

brain’s model of observations to approach their true distribution, i.e. changing the prior pb(x)

so that the marginal likelihood pb(E) moves towards the true distribution of stimuli in each

experiment pe(E) (Methods). Importantly, learning such a correspondence between pe(E) and

pb(E) in the stimulus space is a sufficient condition for self-consistent beliefs about one’s inter-

nal latent variables, x [4]. In these simulations, the brain’s posterior pb(x|. . .) varies for a fixed

s because different values of E are provided for the same s; this variability in E given s is the

result of both external and internal noise sources. In the first set of simulations, the mean of

the observations depended on s (Fig 4A). Small variations in s around the boundary s = 0 pri-

marily translated the posterior, resulting in a two-lobed dpb(x|. . .)/ds structure (Fig 4E and

4J). After learning, the prior sculpted the noise such that trial-by-trial variance in posterior

densities was dominated by translations in the dpb(x|. . .)/ds-direction (Fig 4F and 4K).

The intuition behind this first set of results is as follows. During learning, both uninforma-

tive s = 0 and informative s< 0 or s> 0 stimuli are shown. As a result, the learned prior (equal

to the average posterior) becomes elongated along the curve that defines the mean of the likeli-

hood (Fig 4C and 4H), which is also the direction that defines dpb(x|. . .)/ds (Fig 4E and 4J).

After learning, if noise in E happens to shift the likelihood along this curve, then the resulting

posterior will remain close to that likelihood because the prior remains relatively flat along

that direction. In contrast, noise that changes the likelihood in an orthogonal direction will be

“pulled” back towards the prior (Fig 4B–4D). Thus, multiplication with the prior preferentially

suppresses noise orthogonal to dpb(x|. . .)/ds. Applying the chain rule from Eq (1), this directly

translates to privileged variance in the differential or f0f0> direction in neural space. As shown

in Fig 4G–4K, the magnitude of this effect further depends on the width of the brain’s likeli-

hood relative to the width of the prior. We find that decreasing the variance (increasing the

precision) of pb(E|x) dramatically attenuates the change (Fig 4K). Intuitively, this is because

any effect of changing the prior is less apparent when the likelihood is narrow relative to the

prior. Importantly, both scenarios occur in common perceptual decision-making tasks [102].

While these first results are intuitive, they rely, in part, on the assumption that the primary

effect of s is to translate the posterior on x. In a second set of simulations, we investigated what

happens when s determines the covariance of E rather than its mean (Fig 4L–V). This is analo-

gous to an orientation discrimination task with randomized phases, since the mean image is

identical in both categories, so the category is determined by coordinated changes in “pixels.”

Otherwise, the brain’s internal model, the learning procedure, and noise were identical to the
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first set of simulations. In the case of relatively narrow likelihoods, we again found that the

fraction of variance in the dpb(x|. . .)/ds-direction slightly increased after learning (Fig 4V),

consistent with the first set of results. Surprisingly, we found the reverse effect—a slight

decrease in the fraction of variance in the dpb(x|. . .)/ds-direction, when the brain’s likelihood

was relatively wide (Fig 4Q). While the first set of results—where s primarily translates the pos-

terior on x—appear robust, this second set of results indicates that the interaction between

Bayesian learning and noise is subtle, and whether it results in an increase or decrease in the

(relative) variability along the f0 direction in neural space depends on the particular relation-

ship between s, E, and x. We leave a further exploration of this interaction to future work.

Note that whereas our results on variability due to the feedback of variable beliefs implied

an increase in neural covariance along the f0f0>-direction over learning, the effect of “filtering”

the noise does not necessarily increase nor decrease variance, even in cases where the fraction
of variance along dpb(x|. . .)/ds increases. Adapting a prior to the task may affect both total and

relative amounts of variance in the task-relevant direction, depending on the brain’s prior at

the initial stage of learning.

Connections with empirical literature

To summarize, we have identified three signatures of Bayesian learning and inference that

should appear in neurons that encode the posterior over sensory variables: (i) a feedback com-

ponent of choice probabilities proportional to normalized neural sensitivity (Eq (9)), (ii) a

feedback component of noise covariance in the “differential” or f0f0> direction (Eq (8)), and

(iii) additional structure in noise correlations due to the “filtering” of task-independent noise

by a task-dependent prior. We emphasize that our results only describe how learning a task

changes these quantities, and makes no predictions about their structure before learning. In

this section, we highlight previous literature that has isolated changes in choice probabilities

and noise correlations associated with a particular task, whether over learning or due to task-

switching.

Eq (9) predicts that the top-down component of choice probability should be proportional

to the vector of normalized neural sensitivities to the stimulus.

Indeed, such a relationship between CP and d0 was found by many studies (reviewed in [96,

103, 104]). For instance, Law and Gold (2008) demonstrated a relationship between neuro-

metric sensitivity (quantified by neurometric threshold, proportional to 1/d0) and choice prob-

ability that only emerged after extensive learning. However, this finding can also be explained

in a purely feedforward framework assuming an optimal linear decoder [19, 98]. Thus, the

empirical finding that choice probabilities are often higher for neurons with higher neuro-

metric sensitivity supports both the theories of feedforward optimal linear decoding and our

theory based on feedback of a categorical belief, and in general CP will reflect a mix of both

feedforward and feedback mechanisms [35]. The relative importance of these two mechanisms

in producing CPs remains an empirical question. For much stronger support for our theory,

we will therefore focus on empirical data on noise correlations, whose task-dependence is

much harder to explain using feedforward mechanisms, and for which no feedforward expla-

nation has been proposed.

Two existing studies have isolated task-dependent component of noise covariance by

holding the stimulus constant while switching between two comparable tasks that a subject is

performing, thus altering their task-specific expectations while minimally affecting the feedfor-

ward drive. The difference in neural response statistics to a stimulus that is shared by both
tasks isolates the task-dependent component to which our results apply. Bondy et al [27]

recorded from neural populations in macaque V1 while the monkeys switched between
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different coarse orientation tasks. After removing the shared component of noise correlations

between tasks, the task-specific component was found to align with d0d0> structure as predicted

by Eq (8) (Fig 5A) (note that proportionality between covariance and f0f0 is equivalent to a pro-

portionality between correlation and d0d0 after dividing both sides by σi σj). While this is

encouraging for our theory, feedforward explanations of the results of [27] cannot be entirely

ruled out because of the long retraining time between tasks. Cohen and Newsome [22]

recorded from pairs of neurons in area MT while two monkeys switched discrimination tasks

on a trial-by-trial basis and found that correlations also changed in a manner that is consistent

with but not definitive of f0f0> structure (see Box 2 in [37]). By aligning the task to the recorded

neurons, the results of [22] only measure a narrow slice of the full set of possible covariances

(roughly f 0i � f 0j and f 0i � � f
0
j in the two tasks). Building on these studies, a stronger test for

task-dependent f0f0>−covariance structure would be to interleave tasks on a trial-by-trial basis

(as done by [22]) while recording from a large and random set of neurons (as done by [27]). A

strong test of the dependence of structured noise covariance on feedback would be to causally

manipulate cortico-cortical feedback during such a task, e.g. by cooling.

Another approach to differentiate between feedforward and feedback contributions to neu-

ral variability is to statistically isolate them within a single task using a sufficiently powerful

regression model. [Rabinowitz et al.] [26] used this type of approach to infer the primary top-

down modulators of V4 responses in a change-detection task. They found that the two

most important short-term modulators were indeed aligned with the vector corresponding to

neurometric sensitivity in the task (data replotted in Fig 5B). This is consistent with our pre-

dictions if the latent ‘modulator’ reflects variations in the subject’s belief state, which in this

case would be a graded belief in the two categories of “change” versus “no change.” Indeed,

Rabinowitz et al (2015) further reported that the modulator state correlates with subjects’

decisions.

A final line of evidence comes from simultaneous recordings of large populations of neu-

rons, and analyzing the magnitude of neural variability in the task-specific f0 direction relative

to other directions. While it is well established that there is often low-rank structure to noise

covariance (hypothesized to be at least partly due to recurrent dynamics [100, 101]), and while

it is expected that at least some variance is in the f0−direction due to feedforward noise [33],

Fig 5. Examples of predicted effects in existing empirical literature. Corr denotes correlation, and d0i is the normalized sensitivity of

neuron i defined as d0i � f 0i =si. a) Data replotted from Fig 5c of [Bondy et al. (2018)], who isolated the task-dependent component of

noise correlations in macaque V1 and found a strong relation between elements of this correlation matrix and neural sensitivities

(r = 0.61, p< 0.001, from original paper). This relationship between Corrij and d0id
0

j follows from the relationship between Sij and f 0i f 0j
as in Eq (8). b) Data replotted from Fig 2d of Rabinowitz et al. (2015) [26], who found that the strength of top-down ‘modulator’

weights is linearly related to d0. c) Illustration of the task-dependent and arbitrary nature of f0: each row of grating stimuli define a

different discrimination task, with each task defining a different f0 vector in neural space. For instance, relative to fine discrimination

around vertical (green), one may modify the spatial frequency (blue), the phase (purple), the reference orientation to horizontal (red),

or consider a coarse discrimination between vertical and horizontal (yellow). The span of possible f0 directions is large. Hence, the

probability is small of finding that the specific f0 direction corresponding to a given task is aligned with a leading principal component

of measured noise covariance, unless this alignment is the result of learning and/or performing the task.

https://doi.org/10.1371/journal.pcbi.1009557.g005
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these in principle need not be aligned. Even in orientation discrimination tasks, the f0 direction

depends on arbitrary experimental choices such as the particular discriminanda (e.g. fine dis-

crimination at vertical or horizontal, or coarse discrimination of cardinal or oblique targets)

and on other arbitrary features of the stimulus such as contrast, phase, spatial frequency, etc

(Fig 5C). This makes the f0 direction largely arbitrary, and implies that finding high variance

in the f0 direction for a particular task, out of the many possible f0 directions for other possible

tasks, is highly unlikely under the assumption of a fixed, task-independent covariance struc-

ture. In light of this, the results of Rabinowitz et al [26], as well as other recent findings of

alignment between f0 and the low-rank modes of covariance [27–29], suggests that task infor-

mation directly enters into the noise covariance structure, e.g. due to feedback of beliefs or the

“filtering” of noise by a task-specific prior as we have highlighted here.

Inferring variable internal beliefs from sensory responses

We have shown that internal beliefs about the stimulus induce corresponding structure in the

correlated variability of sensory neurons’ responses (Fig 6A). Conversely, this means that the

statistical structure in sensory responses can be used to infer properties of those beliefs.

In order to demonstrate the usefulness of this approach, we used it to infer the structure of

a ground-truth model [34] from synthetic data. The model discriminated either between a ver-

tical and a horizontal grating (cardinal context), or between a −45deg and +45deg grating

(oblique context). The model was given an unreliable (80/20) cue as to the correct context

before each trial, and thus had uncertainty about the exact context. We simulated the responses

of a population of primary visual cortex neurons with oriented receptive fields that perform

sampling-based inference over image features. The resulting noise correlation matrix—com-

puted for zero-signal trials—has a characteristic structure in qualitative agreement with empiri-

cal observations (Fig 6B) [27].

Interestingly, the resulting simulated neural responses have five significant principal com-

ponents (PCs) (Fig 6C and 6D). Knowing the preferred orientation of each neuron allows us

to interpret the PCs as directions of variation in the model’s belief about the current orienta-

tion. For instance, the elements of the first PC (blue in Fig 6C) are largest for neurons prefer-

ring vertical and negative for those preferring horizontal orientation, indicating that there is

Fig 6. Inferring the structure of internal beliefs about a task. a) Trial-to-trial fluctuations in the posterior beliefs about x imply trial-to-trial variability in the mean

responses representing that posterior. Each such ‘belief’ yields increased correlations in a different direction in r. The model in (b-d) has uncertainty in each trial about

whether the current task is a vertical-horizontal orientation discrimination or an oblique discrimination. b) Correlation structure of simulated sensory responses

during discrimination task. Neurons are sorted by their preferred orientation (based on [34]). c) Eigenvectors of correlation matrix (principal components) plotted as a

function of neurons’ preferred orientation. The blue vector corresponds to fluctuations in the belief that either a vertical or horizontal grating is present, and the yellow

corresponds to fluctuations in the belief that an obliquely-oriented grating is present. See Methods for other colors. d) Corresponding eigenvalues color-coded as in

(c). Our results on variable beliefs (π) predict an increase over learning in the eigenvalue corresponding to fluctuations in belief for the correct task, while our results

on filtering noise predict a relative increase in the task-relevant eigenvalue compared with variance in other tasks’ directions (e.g. if both blue and yellow decrease, but

yellow more so).

https://doi.org/10.1371/journal.pcbi.1009557.g006
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trial-to-trial variability in the model’s internal belief about whether “there is a vertical grating

and not a horizontal grating”—or vice versa—in the stimulus, corresponding to the f0−axis of

the cardinal task corresponding to the most likely task in our simulations. Analogously, one

can interpret the third PC (yellow in Fig 6C and 6D) as corresponding to the belief that a +45˚

grating is being presented, but not a −45˚ grating, or vice versa. This is the f0-axis for the

wrong (oblique) task context, reflecting the fact that the model maintained some uncertainty

about which was the correct task in a given trial. The remaining PCs in Fig 6C and 6D corre-

spond to task-independent variability (see S3 Fig). This example demonstrates that at least

some of a subject’s beliefs about the structure of the task can be read off of the principal direc-

tions of variation in neural space, possibly revealing cases of model mismatch, such as finding

significant variability corresponding to the “other” task in the third principal component here.

An interesting direction for future work will be to compare such an analysis to behavioral

data, which can also reveal deviations between the experimenter-defined task and a subject’s

model of the task, for instance through the use of psychophysical kernels.

Maintaining uncertainty about the task itself is the optimal strategy from the subject’s per-

spective given their imperfect knowledge of the world. However, when compared to perfect

knowledge of context, it decreases behavioral performance which is optimal when the internal

model learned by the subject matches the experimenter-defined one—an ideal which Bayesian

learners approach over the course of learning. An empirical prediction, therefore, is that eigen-

values corresponding to the correct task-defined stimulus dimension will increase with learn-

ing, while eigenvalues representing other tasks should decrease. Furthermore, the shape of the

task-relevant eigenvectors should be predictive of psychophysical task-strategy. Importantly,

they constitute a richer, higher-dimensional, characterization of a subject’s decision strategy

than psychophysical kernels or CPs [105], and can leverage simultaneous recordings from neu-

ronal populations of increasing size.

Discussion

We derived a novel analytical link between the two dominant frameworks for modeling sen-

sory perception: probabilistic inference and neural population coding. Under the assumption

that neural responses represent posterior beliefs about latent variables, we showed how a fun-

damental self-consistency relationship of Bayesian inference gives rise to differential correla-

tions in neural responses that are specific to each task and that emerge over the course of

learning. We identified two mechanisms by which this can happen: (i) variable beliefs about

the stimulus category that project back to the sensory population under study, and (ii) interac-

tions between a learned prior and variable likelihoods, such that noise in the f0 direction is

less-suppressed than other directions. Our first results (i) concern optimal feedback of deci-

sion-related information in a discrimination task and its effect on both choice probabilities

and noise correlations. While this result required almost no assumptions about how distribu-

tions are encoded in neural responses, it assumed negligible noise. Incorporating non-negligi-

ble noise, we identified a novel class of “Linear Distributional Codes” for which the same

predictions hold. Our second set of results (ii) were obtained numerically, and we found that

self-consistent inference can, in some cases, suppress irrelevant dimensions of noise and also

leads to an increase in differential correlations. Re-examining existing data, we found evidence

for such task-specific noise correlations aligned with neural sensitivity, which both supports

the hypothesis that sensory neurons encode posterior beliefs and provides a novel explanation

for previously puzzling empirical observations. Finally, we illustrated how measurements of

neural responses can in principle be used to infer aspects of a subject’s internal trial-by-trial

beliefs in the context of a task.
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Feedback, correlations, and population information

We began by distinguishing two principal ways in which correlated neural variability arises in

a Bayesian inference framework. The first is neural variability in the encoding of a fixed poste-

rior, which has previously been studied primarily in the context of neural sampling codes [48,

52, 55, 67, 68]. The second, which we study here, is variability in the posterior itself, which is

shaped by two further mechanisms. The first source of variability in the posterior itself that we

study comes from variability in task-relevant categorical belief (π), projected back to sensory

populations during each trial. We showed that variable categorical beliefs induce commensu-

rate choice probabilities and neural covariability in approximately the f0−direction, assuming

the subject learns optimal statistical dependencies. This holds for general distributional codes

if noise is negligible and stimuli are narrowly concentrated in the sub-threshold regime. Note

that this latter requirement of a narrow stimulus distribution is partly an artifact of our mathe-

matical approach, which was to show perfect alignment between feedback and f0 in a limit,

while making as few assumptions as possible about the brain’s internal model or how distribu-

tions are encoded in neural activity. We expect our results to degrade gracefully, e.g. near-per-
fect alignment between decision-related feedback and f0 may be predicted given only mild

restrictions on distributional codes and more permissive assumptions about the experimental

distribution of stimuli (see S1 Text for further discussion). When noise is non-negligible, the

same alignment result additionally holds for a newly-identified class of Linear Distributional

Codes (LDCs). A second source of variation in the posterior itself is task-independent noise

that interacts with a task-dependent prior. Although not solved analytically, we found in simu-

lation that the task-dependent component of this variability increased differential correlations

after learning in three out of four simulated conditions, through the mechanism of suppressing

variability that is inconsistent with the task-specific prior. The first set of these simulations

highlight the fact that empirically detecting effects of a changing prior requires using stimuli

that are “open to interpretation,” i.e. stimuli for which pb(E|x) is relatively wide [102]. The sec-

ond set of these simulations showed that an increase in differential correlations is not guaran-

teed by suppressing noise that is inconsistent with the prior, but depends on the particular

relationships between stimuli, noise, and the brain’s internal model. While this limits the

power of this noise-suppression mechanism to predict differential correlations that increase

with learning, such a mechanism may nonetheless play an important role in explaining exist-

ing data. We hope that future work on this noise-suppression mechanism will lead to new

empirically-decidable signatures of particular kinds of internal models.

Both of these two sources of task-dependent posterior variability depend on feedback: in

one case there is dynamic feedback of a particular belief π each trial, and in the other case

there is task-dependent (but belief-independent) feedback that sets a static prior each trial,

then interacts with noise in the likelihood, analogous to models of “state-dependent” recurrent

dynamics [100, 101, 106].

Our results directly address several debates in the field on the nature of feedback to

sensory populations. First, they provide a function for the apparent ‘contamination’ of sensory

responses by choice-related signals [17, 26, 27, 31, 32, 44]: top-down signals communicate

task-relevant expectations, not reflecting a choice per se but integrating information in a statis-

tically optimal fashion as previously proposed [64, 86]. Second, if this feedback is variable

across trials, reflecting the subject’s variable beliefs, it induces choice probabilities that are the

result of both feedforward and feedback components [31, 32, 34, 107].

Our results suggest that at least some of measured “differential” covariance may be due to

optimal feedback from internal belief states, or as the interaction between task-independent

noise and a task-specific prior. In neither case is information necessarily more limited as the
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result of learning, despite an increase in so-called “information limiting” correlations. In

the first case, while feedback of belief (π) biases the sensory population, that bias might be

accounted for by downstream areas [21, 30]. In principle, these variable belief states could add
information to the sensory representation if they are true [37] which is not the case in psycho-

physical tasks with uncorrelated trials that deviate from the temporal statistics of the natural

world [87]. In the second case, the noise in the f0−direction does limit information, but to the

same extent as before learning; there is not necessarily further reduction of information by

“shaping” the noise with a task-specific prior. For a fixed population size, it is covariance in the

f0−direction, not correlation, that ultimately affects information. Both of these possibilities

call for caution when interpreting studies that estimate the information content of sensory

populations by estimating the amount of variance (or correlation) in the f0− (or d0−) direction.

These insights must be taken into account when interpreting recent experimental evidence

for strong differential correlations [28, 29]. Take the recent results of [29], for example, who

analyzed V1 calcium imaging data in mouse V1 and found that the f0 direction was among

the top 5 principal components among thousands of neurons. We emphasize that these

results are highly statistically surprising from the feedforward perspective when considering

the arbitrariness of the f0 direction, which corresponds to the specific task in a given experi-

ment (Fig 5C).

Interpreting low-dimensional structure in population responses

Much research has gone into inferring latent variables that contribute to low-dimensional

structure in the responses of neural populations [108–110]. Our results suggest that at

least some of these latent variables can usefully be characterized as internal beliefs about sen-

sory variables. We showed in simulation that the influence of each latent variable on recorded

sensory neurons can be interpreted in the stimulus space using knowledge of the stimulus-

dependence of each neuron’s tuning function (Fig 6). Our results are complementary to behav-
ioral methods to infer the shape of a subject’s prior [111], but have the advantage that the

amount of information that can be collected in neurophysiology experiments far exceeds that

in psychophysical studies allowing for richer characterization of the subject’s internal model

[112].

A fresh look at distributional coding

We introduced a general notation for distributional codes, R, that encompasses nearly all pre-

viously proposed distributional codes. Thinking of distributional codes in this way—as a map

from an implicit space pb(x) to observable neural responses p(r)—is reminiscent of early work

on distributional codes [45], and emphasizes the convenience of computation, manipulation,

and decoding of pb(x|. . .) from r rather than its spatial or temporal allocation of information

per se [3, 5, 47]. Our results leverage this generality and show that there are properties of Bayes-

ian computations that are identifiable in neural responses without strong commitments to

their algorithmic implementation. Rather than assuming an approximate inference algorithm

(e.g. sampling) then deriving predictions for neural data, future work might productively work

in the reverse direction, asking what class of generative models (x) and encodings (R) are con-

sistent with some data. As an example of this approach, we observe that the results of Berkes

et al. (2011) are consistent with any LDC, since LDCs have the property that the average of

encoded distributions equals the encoding of the average distribution, as their empirical results

suggest [4].

Distinguishing between linear and nonlinear distributional codes is complementary to the

much-debated distinction between parametric and sampling-based codes. LDCs include both
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sampling codes where samples are linearly related to firing rate [34, 48–51, 91], parametric

codes where firing rates are proportional to expected statistics of the distribution [7, 45, 56,

99]. Examples of distributional codes that are not LDCs include sampling codes with nonlinear

embeddings of the samples in r [52, 53, 55, 69], parametric codes in which the natural parame-
ters of an exponential family are encoded [58, 60, 62, 80], as well as “expectile codes” recently

proposed based on ideas from reinforcement learning [113, 114].

Our focus on firing rates and spike count covariance is motivated by connections to rate-

based encoding and decoding theory. We do not assume that they are the sole carrier of infor-

mation about the underlying posterior pb(x|. . .), but simply statistics of a larger spatio-tempo-

ral space of neural activity, r [85, 93]. For many distributional codes, firing rates are only a

summary statistic, but they nonetheless provide a window into the underlying distributional

representation.

Posterior versus likelihood distributional coding

Probabilistic Population Codes (PPCs) have been instrumental for the field’s understanding of

the neural basis of inference in perceptual decision-making. However, they are typically stud-

ied in a purely feedforward setting assuming a representation of the likelihood, not posterior

[58, 60]. In contrast, Tajima et al. (2016) modeled a PPC encoding the posterior and found

that categorical priors bias neural responses in the f0−direction, consistent with our results

[70]. This clarifies and formalizes a connection between Tajima et al (2016) and Haefner et al

(2016) (who simulated sampling-based hierarchical inference and found excess variance in the

f0−direction): the crucial ingredient in both is the feedback of categorical beliefs rather than

the choice of sampling or parametric representation per se.
The assumption that sensory responses represent posterior beliefs through a general encod-

ing scheme agrees with empirical findings about the top-down influence of experience and

beliefs on sensory responses [64, 107, 115]. It also relates to a large literature on association

learning and visual imagery (reviewed in [116]). In particular, the idea of “perceptual equiva-

lence” [117] reflects our starting point that changes in the posterior belief (and hence changes

in the percept) can be the result of either changes in sensory inputs or changes in prior expec-

tations. When prior expectations vary, they manifest as correlated neural variability which can

be understood in terms of equivalent changes in sensory inputs (Fig 6). Through learning,

expectations come to align with past variations in stimuli (Fig 3) leading to testable predictions

for the induced structure in neural covariability (Eq (8)).

Attention and learning signals

Our results imply that the increase in alignment with neural sensitivity, f0, for both differential

correlations and choice probabilities, depends on the extent to which inference in the brain is

approximate. Attention, which is classically characterized as allocating limited resources [118],

can be expected to improve the approximation. This could happen either by reducing excess

variability in expectations about the stimulus category, or by reducing noise in the likelihood.

This would be compatible with empirical data which show that both noise correlations [40–

42] and choice probabilities [31] are reduced in high-attention conditions.

Also complementary to our work is a mechanistic network model by [119] in which choice-

related feedback was shown to be helpful for the learning of a categorical representation in areas

intermediate to sensory areas and decision-making areas. As in our work, correlated variability

and decision-related signals emerge as the result of task-specific changes in feedback connections.
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[44] provided an alternative rationale for the brain to introduce additional differential cor-

relations by showing that they make it easier for a decision-making area to learn the linear

decoding weights to extract task-relevant information from the sensory responses.

Limitations and deviations from assumptions

Our derivations implicitly assumed that the feedforward encoding of sensory information, i.e.

the likelihood pb(E|x), remains unchanged between the compared conditions. This is well-jus-

tified for lower sensory areas in adult subjects [120], or when task contexts are switched on a

trial-by-trial basis [22]. However, it is not necessarily true for higher cortices [121], especially

when the conditions being compared are separated by extended periods of task (re)training

[27]. In those cases, changing sensory statistics may lead to changes in the feedforward encod-

ing, and hence the nature of the represented variable x [122, 123].

In the context of our theory, there are three possible deviations from our assumptions

that can account for empirical results of a less-than-perfect alignment with f0 [42, 124]—each

of them empirically testable. First, it is plausible that only a subset of sensory neurons repre-

sent the posterior, while others represent information about necessary ingredients (likeli-

hood, prior), or carry out other auxiliary functions [50, 53]. Our predictions are most likely

to hold among layer 2/3 pyramidal cells, which are generally thought to encode the output of

cortical computation in a given area, i.e. the posterior in our framework [125]. Second, sub-

jects may not learn the task exactly implying a difference between the experimenter-defined

task and the subject’s “subjective” f0−direction for which our predictions apply. This explana-

tion could be verified using psychophysical reverse correlation to identify the task the subject

has effectively learned from behavioral data, in which case we would predict alignment

between decision-related feedback and the subject’s internal notion of the discriminanda.

However, not all deviations between the subject’s internal model and the experimenter

model result in deviations from our predictions. For instance, the subject’s categorical deci-

sion may be mediated by other variables between x and C, including an internal estimate of s
itself. In fact, one can treat a scalar internal estimate of s much like a large set of fine-grained

internal categorical distinctions beyond the two categories imposed by the experiment, such

as distinguishing “large positive s” from “small positive s.” Trial-by-trial variations in such

fine-grained categorical expectations should, unsurprisingly, feed back and modulate sen-

sory neurons in the f0 direction, even if the categories defined by the experimenter are broad

(discussed further in S1 Text). Third, some misalignment between f0 and decision-related

feedback may be indicative of significant task-independent noise in the presence of a nonlin-

ear distributional code, which could be tested by manipulating the amount of external noise

in the stimulus. If decision-related feedback is found to align with f0 under a range of noise

levels and tasks, this would be evidence in favor of a Linear Distributional Code. Given the

generality of our derivations, and subject to the caveats just discussed, empirically finding

misalignment between f0 and top-down decision-related signals may be interpreted as evi-

dence that neurons do not encode posterior distributions, that the encoding is instead non-

linear (i.e. not an LDC), or that task-learning is suboptimal. In the latter two cases, we would

nonetheless predict low-rank task-dependent changes in neural covariability, albeit not

aligned with f0.

Methods

Self-consistency is implied by learning the data distribution

Following previous work [3, 64, 72, 74], we assume that the brain has learned an implicit hier-

archical generative model of its sensory inputs, pb(E|x), in which perception corresponds to
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inference of latent variables, x, conditioned on those inputs. The subscripted distributions

pb(�) and pe(�) refer to the brain’s internal model and the experimenter’s “ground truth”

model, respectively.

Here we provide a brief proof that, once a probabilistic model learns the data distribution,

its average posterior is equal to its prior [3, 4, 93]. This proof is not novel, and a similar argu-

ment can be found in the supplement of Berkes et al (2011). Assume that pb(E) = pe(E). Then,

Z

E
pbðE; xÞdE ¼

Z

E
pbðxjEÞpbðEÞdE ¼ pbðxÞ

¼ EpeðEÞ
½pbðxjEÞ�

; ð11Þ

where the top line (the prior) follows from the definition of marginalization, and the bottom

line (the average posterior) follows from the assumption. In other words, the self-consistency

rule we use—that the prior equals the average posterior—is implied by the brain’s internal

model learning the statistics of the task. Further discussion and an alternative approach to this

proof is given in S1 Text.

Optimal self-consistent expectations over x

In the classic two-alternative forced-choice paradigm, the experimenter parameterizes the

stimulus with a scalar variable s and defines category boundary which we will arbitrarily

denote s = 0. If there is no external noise, the scalar s is mapped to stimuli by some function

E(s), for instance by rendering grating images at a particular orientation. In the case of noise,

below, we consider more general stimulus distributions pe(E|s).
We assume that the brain does not have an explicit representation of s but must form an

internal estimate of the category each trial, C, based on the variables represented by sensory

areas, x [91]. From the “ground truth” model perspective, stimuli directly elicit perceptual

inferences—this is why we include pe(x|E) as part of the experimenter’s model. In the brain’s

internal model, on the other hand, the stimulus is assumed to have been generated by causes x,

which are, in turn, jointly related to C. These models imply the following conditional indepen-

dence relations:

peðC; s;E; xÞ ¼ peðCÞpeðsjCÞpeðxjEÞdðE � EðsÞÞ

¼ peðCÞpeðsjCÞpeðxjEðsÞÞ

pbðE; x;CÞ ¼ pbðCÞpbðxjCÞpbðEjxÞ :

We assume the brain learns the joint distribution pb(x, C) that maximizes reward, or equiv-

alently that best matches the ground-truth distribution pe(C, x) in expectation. This entails a

conditional distribution “decoding” C from x of the form

pbðCjxÞ ¼
Z

s
peðCjsÞpeðEðsÞjxÞds : ð12Þ
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We next derive the reciprocal influence of C on x (Eq (2) in the main text) by applying

Bayes’ rule to Eq (12):

pbðxjCÞ ¼
pbðxÞ
pbðCÞ

Z

s
peðCjsÞpeðEðsÞjxÞds

¼
peðCÞ
pbðCÞ

Z

s
peðsjCÞpeðxjEðsÞÞds

¼

Z

s
peðsjCÞpbðxjEðsÞÞds

pbðxjCÞ ¼ EpeðsjCÞ
½pbðxjEðsÞÞ� ðð2Þ restatedÞ

The substitution of pb for pe in the third line follows from the fact that, even from the per-

spective of an external observer, pe(x|s) is the inference made by the brain about x induced by

the stimulus E(s). Hence, pe(x|s) is equivalent to pb(x|E(s)). The fractions pe(C)/pb(C) and

pb(x)/pe(x) become one, assuming that the subject learns the correct categorical prior on C
and a consistent internal model. We note that this distribution can be learned even if s is not

directly observable by the brain, since its model has access to the true category labels if subjects

are informed of the correct answer each trial, as well as to each individual posterior pb(x|s), as

this is what we assume is represented by the sensory area.

As described in the main text we marginalize over the subject’s belief in the category,

π = pb(C = 1), to get an expression for expectations on x given the belief (Eq (3)). Unlike C, π is

not a random variable in the generative model but the parameter defining the subject’s belief

about the binary variable C. The resulting posterior on x, abbreviated in Eq (4), is given by

pbðxjEðsÞ; pÞ ¼
pbðEðsÞjxÞpbðxjpÞ

pbðEðsÞjpÞ
ðð4Þ restatedÞ

¼ pbðEðsÞjxÞ
ppbðxjC ¼ 1Þ þ ð1 � pÞpbðxjC ¼ 2Þ

ppbðEðsÞjC ¼ 1Þ þ ð1 � pÞpbðEðsÞjC ¼ 2Þ

� �

;

ð13Þ

We assume that the category boundary s = 0 is itself equally likely to occur conditioned on

each category (usually true by definition), but note that this is not a requirement that the cate-

gories are a priori equally likely. This simplifies Eq (13) when conditioning on s = 0:

pbðxjEðs ¼ 0Þ; pÞ ¼
pbðEðs ¼ 0ÞjxÞ
pbðEðs ¼ 0ÞÞ

ppbðxjC ¼ 1Þ þ ð1 � pÞpbðxjC ¼ 2Þ
� �

: ð14Þ

Proof of (5): Symmetry between changes in the stimulus s and categorical belief π. Our

first main result is the approximate proportionality in (5), restated here:

d
ds

pbðxjEðsÞ; p ¼
1=

2
Þ

�
�
�
�
s¼0

/
� d
dp

pbðxjp; Eðs ¼ 0ÞÞ

�
�
�
�
p¼1=2

: ðð5Þ restatedÞ

We use p ¼ 1
2= to denote the true prior over categories, pe(C). This is often 50/50, but our

results generalize to cases with asymmetric prior probabilities, in which case derivatives must

be taken around the point s = 0, π = pe(C).

Since s = 0 is fixed in the right-hand-side of (5), the total derivative with respect to π equals

its partial derivative, assuming that there are no additional internal variables that are depen-

dent on both x and π. In the left-hand-side of (5), the total derivative with respect to s includes

two terms, one due to the direct effect of s on the posterior, and the other due to the mean
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dependence of π on s, since changes in s elicit changes in the subject’s beliefs:

d
ds

pbðxjEðsÞÞ
�
�
�
�
s¼0

¼
@

@s
pbðxjEðsÞ; p ¼

1=
2
Þ

�
�
�
�
s¼0

þ
@p

@s
@

@p
pbðxjEðs ¼ 0Þ; pÞ

�
�
�
�
p¼1=2

:

Below, we will replace pb xjEðsÞ; p ¼ 1

2

� �
with pb(x|E(s)) to reduce notational clutter since

p ¼ 1
2= corresponds to marginalizing over categories with the true prior. The second partial

derivative term in the previous equation is equal to the right-hand-side of (5), scaled by @π/@s,
and hence does not affect the overall proportionality in (5). To prove the approximate propor-

tionality in (5), we therefore need only prove proportionality in the partial derivatives:

@

@s
pbðxjEðsÞÞ

�
�
�
�
s¼0

/
� @

@p
pbðxjp;Eðs ¼ 0ÞÞ

�
�
�
�
p¼1=2

: ð15Þ

Using a small Δs finite-difference approximation, we rewrite t the left-hand-side of (15) as

@

@s
pbðxjEðsÞÞ

�
�
�
�
s¼0

�
1

2Ds
pbðxjEðs ¼ þDsÞÞ � pbðxjEðs ¼ � DsÞÞ
� �

: ð16Þ

While this is an approximation to the “true” derivative, it is usually a good one based on

theoretical reasons (range of s small in the threshold regime of psychophysical tasks) and

empirical observations [27].

Next, consider the right-hand-side of (15) using the expression for the posterior condi-

tioned on s = 0 (Eq (14)). The partial derivative of this posterior with respect to the belief π is

@

@p
pbðxjp;Eðs ¼ 0ÞÞ ¼

pbðEðs ¼ 0ÞjxÞ
pbðEðs ¼ 0ÞÞ

pbðxjC ¼ 1Þ � pbðxjC ¼ 2Þ
� �

:

Applying the self-consistency constraint implied by learning (i.e. substituting in Eq (2) to

the terms inside the brackets), this becomes

@

@p
pbðxjp; Eðs ¼ 0ÞÞ ¼

pbðEðs ¼ 0ÞjxÞ
pbðEðs ¼ 0ÞÞ

EpeðsjC¼1Þ½pbðxjEðsÞÞ� � EpeðsjC¼2Þ½pbðxjEðsÞÞ�
h i

:

Re-arranging terms, we arrive at

@

@p
pbðxjp; s ¼ 0Þ ¼

pbðxjEðs ¼ 0ÞÞ

EpeðsÞ
½pbðxjEðsÞÞ�

EpeðsjC¼1Þ½pbðxjEðsÞÞ� � EpeðsjC¼2Þ½pbðxjEðsÞÞ�
h i

; ð17Þ

where we have used the identity pbðxÞ ¼ EpeðsÞ
½pbðxjEðsÞÞ� to write the denominator of the

fraction outside the brackets as expectations over s. This identity is valid because we assumed

subjects have completely learned the task, so the self-consistency rule holds that the prior pb(x)

equals the average posterior seen in the task [3, 4, 93].

Having re-arranged terms, we must now establish conditions under which (16) and (17) are

proportional. While they appear similar by inspection, they are not proportional in general

because so far we have placed no restrictions on the experimenter’s distribution of stimuli

pe(s). We therefore next consider the special case of sub-threshold tasks. One way to formalize

this mathematically is by taking the limit of (17) as pe(s) approaches a Dirac delta around s = 0,

as this appears to result in agreement between the individual terms of (17) and (16). However,

in this limit (17) itself goes to zero (indeed, it should be expected that beliefs are irrelevant in a

task that has zero variation in stimuli).

This suggests an approximate solution by breaking the problem into two limiting processes:

one in which the distribution of stimuli within each category concentrates on some ±Δs, and a
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second in which Δs gets small (but does not reach zero). S1 Fig visualizes these two steps. To

realize the first limit, we set

peðsjC ¼ 2Þ ¼ ð1 � p0Þdðs � DsÞ þ p0dðs � 0Þ; ð18Þ

and likewise for C = 1 and −Δs. We include the δ(s−0) term to ensure that zero-signal stimuli

are always included with probability p0, otherwise evaluating (17) at s = 0 would not be possi-

ble in practice. Marginalizing over categories, the full distribution of stimuli becomes

peðsÞ ¼
ð1 � p0Þ

2
d s � Dsð Þ þ d sþ Dsð Þ½ � þ p0dðs � 0Þ : ð19Þ

Substituting Eqs (18) and (19) into (17) simplifies the expectations. First, the terms inside

the brackets in (17) go to

½EpeðsjC¼1Þ½pbðxjEðsÞÞ� � EpeðsjC¼2Þ½pbðxjEðsÞÞ��

¼ ð1 � p
0
Þ½pbðxjEðs ¼ � DsÞÞ � pbðxjEðs ¼ þDsÞÞ�;

which matches the corresponding term in (16) to the extent that Δs is small enough to approxi-

mate the derivative df
ds. Thus, the extent to which (17) is proportional to (16) depends only on

the extent to which the first term in the right-hand-side of (17) is constant, or equivalently

whether pbðxjEðs ¼ 0ÞÞ approximately equals EpeðsÞ
½pbðxjEðsÞÞ�. Considering the special case

of stimulus distributions given in (18) and (19), this near-equality condition holds as the prob-

ability of true zero-signal stimuli (p0) grows, or as the category differences (Δs) shrink: an

approximation to sub-threshold psychophysics conditions.

Taken together, this establishes the approximate proportionality in (15), which in turn

concludes the proof of (5), in the special case of sub-threshold psychophysics. See S1 Text for

further discussion of the applicability and interpretation of these limits, as well as potential

relaxations.

Encoding the posterior in neural responses

Our above derivations considered perturbations of an approximate Bayesian observer’s poste-

rior over their internal variables, pb(x|E(s), π). We next link these computational-level changes

in the posterior to predictions for observable changes in neural firing rate. “Posterior coding”

hypothesizes that the (possibly high-dimensional) posterior pb(x|E(s), π) is encoded in the

spiking pattern of a population of neurons over some time window. We do not restrict the

space of neural responses r to total spike counts or average spike rates, but instead consider r

on a single trial to live in a high-dimensional “spatiotemporal” space, i.e. an N × B array of

spike counts for all N neurons in a population resolved into B fine-timescale bins [93]. That is,

r 2 RN�B, where rib is the spike count of neuron i at time b. This definition subsumes both

“spatial” and “temporal” codes, a distinction that lies at the center of some debates over the

neural representation of distributions [3, 5, 47].

We define distributional codes of the posterior as any encoding scheme R where the poste-

rior distribution on x is sufficient to determine the neural response distribution over the range

of possible stimuli. (Note that this excludes the possibility of separately encoding the likelihood

and the prior.) Formally, we say

pðrjs; pÞ ¼ R½pbðxjEðsÞ; pÞ�ðrÞ; ð20Þ

where R is a higher-order function that maps from distributions over x to distributions over r.

In the notation of Zemel et al (1998), the distribution on r is conditioned directly on the

PLOS COMPUTATIONAL BIOLOGY Neural signatures of Bayesian learning and inference

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009557 March 8, 2022 25 / 39

https://doi.org/10.1371/journal.pcbi.1009557


encoded distribution on x, or p(r|pb(x|. . .)). Our only restrictions on x and R are that

pb(x|. . .) must change sufficiently smoothly with s, and R must be sufficiently smooth over the

relevant range of stimulus values, so that the derivatives and linear approximations throughout

are valid. A second restriction on x and R is that the dominant effect of s on r must be in the

mean firing rates rather than their higher-order moments of r. While this is a theoretically

complex condition to meet involving interactions between s, x, and R, it is easily verified

empirically in a given experimental context: if changes to s primarily influence the mean spike

count, it is irrelevant whether these changes coded for the mean, variance, or higher-order

moments of pb(x|. . .). If the space of r is the full “spatiotemporal” space of neural activity pat-

terns, this definition encompasses all previously proposed parametric [7, 62, 70, 80], and sam-

pling-based [34, 48, 49, 51–53] encoding schemes as special cases, among others. However, it

excludes sub-populations of neurons in which only the likelihood or prior, but not the poste-

rior, is encoded [58, 60, 126].

Tuning curves as statistics of encoded distributions

The total spike count of neuron i in terms of r is a function of r that sums responses over time

bins:

spike counti � SiðrÞ ¼
XB

b¼1

rib :

In an encoding model defined as in Eq (20), each neuron’s tuning curve is thus defined by

the expectation of Si at each value of the stimulus s:

fiðsÞ ¼ Er�R½pbðxjEðsÞÞ�
½SiðrÞ� : ð21Þ

The slope of this tuning curve,
dfi
ds , is given by the chain rule:

dfi
ds
¼

dfi
pbðxjEðsÞÞ

;
dpbðxjEðsÞÞ

ds

� �

; ðð1Þ restatedÞ

where the inner product is taken between two functions, since derivatives were taken with

respect to the distribution pb(x|E(s), π). Eq (1) shows how we use smoothness and linearization

assumptions to decouple our analysis of changes in posteriors (e.g. dpb/ds) from their effect on

mean firing rates under arbitrary distributional encodings (e.g. dfi/dpb). The proportionality

between dpb/ds due to changing stimuli and dpb/dπ due to feedback of beliefs (Eq (5)) implies

an analogous proportionality in neural responses:

df
dp

�
�
�
� s ¼ 0

p ¼ 1=2

/
� df
ds

�
�
�
� s ¼ 0

p ¼ 1=2

: ðð6Þ restatedÞ

Derivation of (9): Feedback of categorical belief implies choice probability

proportional to d0

We assume the subject’s choice is based on their posterior belief in the stimulus category, i.e.

value of π. Conditioning neural responses on choice is then equivalent to conditioning on the

sign of p � 1
2= (if there is an additional stage of randomness between belief π and behavioral

choice, what follows will remain true up to a proportionality, [21]).

Let CTAi be the “choice triggered average” of neuron i, defined as the difference in mean

response to choice 1 and choice 2. To isolate top-down effects, consider the noiseless case
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where neural responses depend exclusively on s (which is fixed) and π (which is varying). We

then write CTA as the difference in expected neural response between the p > 1
2= and p < 1

2=

cases:

CTAi � Ep>1=2
½fiðs ¼ 0; pÞ� � Ep<1=2

½fiðs ¼ 0;pÞ� :

For small variability in π, this can be approximated linearly:

CTAi � fiðs ¼ 0;p ¼ 1=
2
Þ þ Dp

dfi
dp

� �

� fiðs ¼ 0; p ¼ 1=
2
Þ � Dp

dfi
dp

� �

¼ 2Dp
dfi
dp

:

Substituting in the proportionality df=dp/� df=ds (6), it follows that CTAi /
� f 0i . Dividing

both sides of this proportionality by the standard deviation of the neuron’s response, σi, and

incorporatig the fact that CPi �
1

2
/ CTAi=si [19, 20], we arrive at the following equation for

the top-down component of choice probability after learning:

CPi �
1

2
/ f 0i =si � d0i; ðð9ÞrestatedÞ

where d0 is the “d-prime” sensitivity measure from signal detection theory [95].

Derivation of (8): Feedback of categorical belief implies differential

covariance

Consider any scalar variable a that linearly shifts neural responses in an arbitrary direction u,

above and beyond all of the other factors influencing the population (denoted “. . .”):

fð. . . ; aÞ ¼ fð. . .Þ þ auþ noise:

When a varies from trial to trial (independently of other factors in “. . .”), it adds a rank-1

component to the covariance matrix:

S ¼ Sintrinsic þ varðaÞuu>;

where Sintrinsic is the covariance due to all other factors, i.e. due to neural noise and variability

in any of the terms in “. . .” [37].

It follows that variability in the posterior along dpb/ds manifest as covariability among neu-

rons in the f0f0> direction. The noise covariance structure due to var(π) is predicted to be

S � Sintrinsic þ a2varðpÞf 0f 0>
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Sbelief

:
ð22Þ

Sintrinsic may be thought of as neural noise above and beyond variability in belief. Sbelief is the

rank-one component in the f0f0> direction due to feedback of variable beliefs, and α is the pro-

portionality constant from (5).

Mathematical details for task-independent noise

We consider three potential sources of task-independent noise in posteriors: first, there are

additional “high level” variables in I that may be probabilistically related to x but are not task-

relevant. Just as variability in π induces variability in pb(x|E(s), π), variability in these other

internal states may induce variability in the posterior. Second, there may be measurement

PLOS COMPUTATIONAL BIOLOGY Neural signatures of Bayesian learning and inference

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009557 March 8, 2022 27 / 39

https://doi.org/10.1371/journal.pcbi.1009557


noise in the observation of E or noise in the neurons afferent to those representing x, resulting

in a variable likelihood function even for constant stimuli [83]. Third, the stimulus itself may

be stochastic by design, drawn according to some pe(E|s), which we reparameterize below as a

deterministic function of both s and the noise, E(s, ϵE). In our notation, we partition the com-

plete noise in the posterior, ϵ, into {ϵI, ϵL, ϵE} corresponding to “internal state” noise, “likeli-

hood” noise, and stimulus noise respectively.

We assume that the all noise sources are unaffected by task learning or task context and are

independent of both s and π.

By approximating the joint effect of π and ϵI on the density of x as multiplicative, the full

posterior decomposes as follows:

pbðxjs; p; �Þ ¼
pbðEðs; �EÞjx; �LÞpbðxj�I; pÞpbð�IÞpbðpÞ

pðs; pÞpð�Þ
/ pbðEðs; �EÞjx; �LÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ðiÞ

pbðxjpÞ|fflfflffl{zfflfflffl}
ðiiÞ

pbðx; �IÞ|fflfflfflffl{zfflfflfflffl}
ðiiiÞ

:

The first term (i) is the “noisy likelihood” conditioned on the noisy stimulus E(s, ϵE). The

second term (ii) is the task-dependent component of the prior studied above. The third term

(iii) captures the influence due to other internal variables besides π.

The two noise terms, (i) and (iii), may be combined into a single term. With some slight

abuse of notation, we can replace pb(E(s, �E)|x; �L) with pb(s|x; �L, �E) so that the ϵ terms appear

together. Combining terms, one can thus interpret both (iii) and (i) as noise in the likelihood,

despite one arising from feedback and the other being feed-forward:

pbðxjs; p; �Þ / pbðsjx; �L; �EÞpbðx; �IÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

ðiÞ;ðiiiÞ

pbðxjpÞ
zfflfflffl}|fflfflffl{
ðiiÞ

/ pbðsjx; �ÞpbðxjpÞ :

This motivates our discussion only of “noisy likelihoods” in the main text—it implicitly

includes stimulus noise, feedforward noise, and noise due to variable internal states besides π.

Definition of linear Distributional Codes (LDCs). We define a Linear Distributional

Code (LDC) as any distributional code with the property that the spike count of neurons

encoding a mixture of two distributions is equal to the corresponding average of spike counts

(note that this is a weaker condition than requiring the same to hold for all statistics of r, so

a bimodal p need not be encoded with a bimodal neural response distribution). Formally, let

pα(x) be a mixture of two arbitrary distributions, αp1(x) + (1 − α)p2(x), 0� α� 1. We define

“Linear Distributional Codes” (LDCs) as those codes where the following property holds for

all neurons i:

Er�R½paðxÞ�
½SiðrÞ� ¼ aEr�R½p1ðxÞ�

½SiðrÞ� þ ð1 � aÞEr�R½p2ðxÞ�
½SiðrÞ� : ð23Þ

Recall that Si(r) was defined earlier as the function that simply counts spikes of neuron i.
Stated simply, (23) requires that the average firing rate encoding a mixture of distributions is

equal to the mixture of the two firing rates for each individual distribution.

LDCs have the property that average firing rates are unaffected by averaging over noise.

This is because if firing rates are linear for mixtures of any two distributions as in (23), then

they will be linear in mixtures of three, four, or any number of distributions by simply applying

(23) recursively (summing distributions is associative). Below, we will make use of this by
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passing noise through the firing rate as follows:

Er�R½
R

�
pðx;�Þd��½SiðrÞ� ¼ Epð�Þ½Er�R½pðx;�Þ�½SiðrÞ�� : ð24Þ

On the left is the firing rate response to the marginal p(x), and on the right is the average fir-

ing response across noise draws. By definition, this expression only holds in general for LDCs,

but note that a nonlinear distributional code may still appear “locally” linear in a particular

task with a particular kind of noise.

Extending results on variable beliefs to non-negligible noise, applying LDCs. In what

follows, expressions which do not explicitly contain “ϵ” should be understood as the marginal

distribution over x with noise averaged out. For instance, Eq (2) in the main text is unchanged:

optimal learning in the presence of noise again implies a prior that is equal to the average of

(noisy) posteriors seen in the task. Explicitly,

pbðxjC ¼ cÞ ¼ E�½EpeðsjC¼cÞ
½pbðxjs; �Þ�� ;

which implies a prior conditioned on graded beliefs π of the form

pbðxjpÞ ¼ E�½pEpeðsjC¼2Þ½pbðxjs; �Þ� þ ð1 � pÞEpeðsjC¼1Þ½pbðxjs; �Þ�� ; ð25Þ

which is identical to (3) if p(x|s) is likewise understood to be marginalized over ϵ. Thus, the

introduction of noise does not affect either
dpbðxj...Þ

dp nor, by extension, df
dp, at least in terms of

notation, but should now be understood as containing an inner marginalization step over ϵ.

Tuning with respect to s, on the other hand, will in general be altered by noise. Let fi(s, π, ϵ)

denote the expected spike count for neuron i given a fixed stimulus s, belief π, and noise ϵ (it is

still an expected spike count because of remaining stochasticity in R). As before, we fix p ¼ 1
2=

and study the changes in fi in response to ±Δs:

dfi
ds
�

1

2Ds
E� fiðþDs;

1=2; �Þ � fið� Ds;
1=2; �Þ½ � :

Crucially, the noise term ϵ appears as an outer expectation, since on each individual trial at

s = ±Δs the noise will manifest differently. Expanding the definition of fi and applying the lin-

earity property of LDCs in (24), we get

dfi
ds
�

1

2Ds
Er�R½pðxjþDs;p¼1=2Þ�

½SiðrÞ� � Er�R½pðxj� Ds;p¼1=2Þ�
½SiðrÞ�

� �
: ð26Þ

The LDC assumption allows the outer expectation over ϵ to be pushed into an expectation

inside of the R½. . .�, which is equivalent to marginalizing the posterior p xj � Ds; 1
2= Þð over ϵ.

Note that by marginalizing out the noise, both (25) and (26) can be written without an

explicit ϵ, so the remaining proof becomes identical to the proof of (5) given above. This

implies that in cases with significant task-independent noise, LDCs will have the property that
df
ds/
� df

dp, and hence make all the same predictions for data described in the main text, such as the

emergence of both differential correlations and a top-down component of choice probabilities

proportional to neural sensitivities over learning. While the LDC assumption is sufficient to

guarantee our initial results generalize to cases with non-negligible noise in all contexts, it is

not strictly necessary in any one context since a nonlinear distributional code may appear lin-

ear in a particular context.

Derivation of (10): Filtering noise by a static self-consistent prior. Throughout this sec-

tion, we will fix s = 0 and p ¼ 1
2= to isolate the effects of ϵ in “zero-signal” conditions. We will
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also assume that x is discrete so that we can use finite-length vectors of probability mass rather

than probability density functions, but this is only for intuition and notational convenience.

Above, we used the chain rule of derivatives to write neurons’ sensitivity to various factors

in terms of their sensitivity to the posterior density, df/dpb(x|. . .). To a first approximation, the

same trick can be applied to write the covariance of neural responses in terms of their sensitiv-

ity to pb(x|. . .) and the covariance in the posterior mass itself due to task-independent noise

(ϵ). To make use of vector notation and linear algebra intuitions, let p� p(x|. . .) denote the

vector of probability mass over a discrete x. Then, to a first approximation, the covariance

between neurons i and j is

Sϵ
ij � rpf >i Sprpfj : ð27Þ

The inner term, Sp, is the covariance of the elements of the posterior p—i.e. how the proba-

bility mass at pairs of points x1 and x2 (co)varies due to ϵ (see S1 Text for further discussion of

this term). The termrp fi is the gradient of neuron i’s firing rate with respect to first-order

changes in the probability mass p.

Recall that the noisy posterior, pb(x|s, π; ϵ), can be written with all noise terms in the likeli-

hood, i.e. pb(x|π)pb(s|x; ϵ) (up to constants). Because of this, the prior may be pulled out of Sp

as follows (we drop p ¼ 1
2= here to reduce clutter):

Spðx1; x2Þ ¼ E�½ðpbðx1js ¼ 0; �Þ � E�0 ½pbðx1js ¼ 0; �0Þ�Þ

� ðpbðx2js ¼ 0; �Þ � E�0 ½pbðx2js ¼ 0; �0Þ�Þ�

/ E�½ðpbðx1Þpbðs ¼ 0jx1; �Þ � E�0 ½pbðx1Þpbðs ¼ 0jx; �0Þ�Þ

� ðpbðx2Þpbðs ¼ 0jx2; �Þ � E�0 ½pbðx2Þpbðs ¼ 0jx; �0Þ�Þ�

¼ pbðx1Þpbðx2ÞS
LH
p ðx1; x2Þ ;

where

SLH
p ðx1; x2Þ � E�½ðpbðs ¼ 0jx1; �Þ � E�0 ½pbðs ¼ 0jx; �0Þ�Þ

� ðpbðs ¼ 0jx2; �Þ � E�0 ½pbðs ¼ 0jx; �0Þ�Þ� :

In the second line, we absorbed pb(s = 0) terms into a proportionality constant since we are

primarily interested in the shape of Sp, or its relative rather than absolute eigenvalues. This

can be rewritten in matrix notation as

Sp / diagðpbðxÞÞS
LH
p diagðpbðxÞÞ; ðð10ÞrestatedÞÞ

where SLH
p is the covariance of the likelihood with s = 0 and is task-independent. The prior,

pb xjp ¼ 1
2= Þð ), is task-dependent. Eq (10) thus gives, to a first approximation, an expression

for how noise in the likelihood is sculpted by learning: the “intrinsic” covariance in the likeli-

hood, which is present even before learning, is pre- and post-multiplied by a diagonal matrix

of the task-dependent prior mass vector.

One way to reason about (10) is by considering its eigenvector decomposition. For instance,

differential correlations are introduced to the extent that the relative variance in the
dpb
ds direc-

tion is increased after left- and right-multiplying the intrinsic noise (SLH
p ) by the diagonal

matrix of prior probabilities. It is nontrivial, however, to state this in terms of conditions on x,

s, or R, which we leave as a problem for future work.
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Numerical details for Fig 4: Filtering noise by a static self-consistent prior

Fig 4 was created by simulating a discretized 2D space with both x and y coordinates ranging

in [−5, 5] for both E and x. We set the distribution of observations, pe(E|s), to be a Gaussian

whose mean or covariance depended on s. One value of E was sampled from this Gaussian on

each “trial” and provided to the learning model as an observation. In Fig 4A–4K, the mean of

pe(E|s) was parameterized by a smooth (cubic) function of s,

m1ðsÞ ¼ s; m2ðsÞ ¼ ðsþ s3Þ=10;

and the covariance of pe(E|s) was set to a constant
0:5 0

0 0:5

" #

. For Fig 4L–4V, the mean of

pe(E|s) was set to zero while the covariance of pe(E|s) was parameterized by s as follows:

S ¼
S0 þ tanhðsÞSþ if s > 0

S0 � tanhðsÞS� if s � 0

8
<

:

where S0 ¼
0:5 0

0 0:5

" #

, Sþ ¼
1 1

1 1

" #

, and S� ¼
1 � 1

� 1 1

" #

. In all cases, pe(s) was set to

a uniform distribution in [−3, + 3].

In addition to the two different distributions on E just defined, we considered two cases

for the brain’s internal model—one in which the generative model pb(E|x) is assumed to

be precise, and one in which it is assumed to be imprecise. In both cases, we assumed

pbðEjxÞ ¼ N ðE; x;SEÞ, i.e. that E is Gaussian-distributed, centered at the corresponding

value of x. In the precise case, we set SE ¼
0:04 0

0 0:04

" #

, and in the imprecise case we set

SE ¼
0:36 0

0 0:36

" #

. These parameters were chosen so that pb(E|x) was always narrower than

the marginal distribution of evidence pe(E), which ensured that a prior pb(x) could be found

such that the marginal distribution on E is correct, or pb(E) =
R

x pb(x)pb(E|x) = pe(E).

We are interested in adapting the brain’s prior, pb(x), to the marginal statistics of observa-

tions defined by the task, or pe(E) =
R
s pe(s)pe(E|s)ds. To achieve this, we discretized x space so

that pb(x) is a high-dimensional vector, and optimized the following objective by gradient

descent:

Loss � KLðpeðEÞjjpbðEÞÞ � lHðpbðxÞÞ ; ð28Þ

where HðpbðxÞÞ is the entropy of the prior, included for regularization, and λ sets its impor-

tance; we used λ = 0.001 throughout.

Gradient descent in this space is both more stable and simpler to implement using the log

prior rather than the prior. Changing variables to the log-prior simply requires multiplying the

Loss gradient by the prior itself, sincerlog pbðxÞ
Loss ¼ pbðxÞrpbðxÞ

Loss. The gradient of the KL

term in (28), with respect to the prior density pb(x), is given by

rpbðxÞ
KLðpeðEÞjjpbðEÞÞ ¼ �

1

pbðxÞ
EpeðEÞ

pbðxjEÞ
� �

;

PLOS COMPUTATIONAL BIOLOGY Neural signatures of Bayesian learning and inference

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009557 March 8, 2022 31 / 39

https://doi.org/10.1371/journal.pcbi.1009557


which after the log-transform simplifies to

rlog pbðxÞ
KLðpeðEÞjjpbðEÞÞ ¼ � EpeðEÞ

½pbðxjEÞ� : ð29Þ

Remarkably, (29) means that updating the prior in the direction that maximally improves

the match to the marginal distribution of observations simply requires taking a step with the

log prior in the direction of the average posterior. Next, the gradient of HðpbðxÞÞ with respect

to the log prior is

rlog pbðxÞ
HðpbðxÞÞ ¼ � pbðxÞð1þ log pbðxÞÞ ; ð30Þ

giving a combined gradient of

rlog pbðxÞ
Loss ¼ � EpeðEÞ

½pbðxjEÞ� þ lpbðxÞð1 þ log pbðxÞÞ : ð31Þ

Starting with a uniform prior over the discretized 2D space of x values, learning consisted

of drawing a large number of random likelihoods (randomizing both s and E) to estimate the

average posterior, then the log prior was updated by taking a gradient descent step along (31)

while ensuring the constraint that
R

x pb(x)dx = 1 after each iteration. We found that a large ini-

tial stepsize of 100 was required for learning, which we then halved every hundred iterations

for a total of 300 iterations.

To measure the change in covariance of the posterior density itself along dpb(x|. . .)/ds, we

compared the first and last iteration, which have the same set of variable likelihoods (i.e. iden-

tical pe(E|s)) but different priors. For each, we drew a large set of E� pe(E|s = 0), and numeri-

cally computed the covariance of the posterior mass on x in the discretized space, Sp. Because

we had discretized x into 85 bins in each dimension, this makes Sp a 7225 × 7225 matrix. We

likewise computed dpb(x|. . .)/ds separately before and after learning (Fig 4E, 4J, 4P and 4U

show dpb(x|. . .)/ds after learning) by drawing a large number of random posteriors and taking

the difference of their average at s = +.01 and s = −.01. We plotted the change in relative vari-

ance along dpb(x|. . .)/ds in Fig 4F, 4K, 4Q and 4V, defined as

u>Spu
TraceðSpÞ

;

where u is the unit vector pointing in the dpb(x|. . .)/ds-direction.

This entire process—including learning and estimating the fraction of variance along the

dpb(x|. . .)/ds direction—was repeated 4 times for each experiment configuration. We found

that these results were highly repeatable; error bars in Fig 4F, 4K, 4Q and 4V indicate standard

error of the mean across the 4 runs of each condition.

Numerical details for Fig 6: Inferring the internal model

Complex tasks (e.g. those switching between different contexts), or incomplete learning (e.g.

uncertainty about fixed task parameters), will often induce variability in multiple internal

beliefs about the stimulus. Assuming that this variability is independent between the beliefs,

we can write the observed covariance as S � S0 þ
P

kl
ðkÞuðkÞuðkÞ>. Here, each vector u(k) cor-

responds to the change in the population response corresponding to a change in internal belief

k. The coefficients λ(k) are proportional to the variance of the trial-to-trial variability in belief

k, as in var(π) above, and S0 represents all task-independent covariance.

The model in our proof-of-concept simulations has been described previously [34]. In

brief, it performs inference by neural sampling in a linear sparse-coding model [3, 48, 72].

The prior is derived from an orientation discrimination task with two contexts—oblique
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orientations and cardinal orientations—that is modeled on an analog direction discrimination

task [22]. We simulated the responses of 1024 V1 neurons whose receptive fields uniformly

tiled the orientation space. Each neuron’s response corresponds a set of samples from the pos-

terior distribution over the intensity of its receptive field in the input image. We simulated

zero-signal trials by presenting white noise images to the model. The eigenvectors not

described in the main text correspond to stimulus-driven covariability, plotted in S3 Fig for

comparison.

Supporting information

S1 Fig. Visualizing the limiting process(es) of stimulus distributions as defined by Eqs (18)

and (19). a) Initially, the distribution on stimuli may be wide, here illustrated as a Gaussian

that is split by the two categories. b) Eq (18) considers the case where each category goes to a

Dirac delta around some ±Δs, plus a delta at zero. c) As the magnitude of Δs gets small, the

approximation in (5) gets better. As discussed in the methods, this limit may not be taken fully

to Δs! 0.

(EPS)

S2 Fig. Gaussian-mixture demonstration of the limiting process(es) of stimulus distribu-

tions. a) Simple generative model simulated in b-d. x is a scalar drawn from a Gaussian

around ±μx (matching the sign of C), and the stimulus s is drawn from a Gaussian around x. b)

The prior on x is a mixture of two Gaussians. Colors correspond to different values of μx. c)

Derivatives of the posterior with respect to s. d) Derivatives of the posterior with respect to π.

The match to c improves as μx gets closer to 0, which simulates changes to the learned model

as stimulus categories μx draw closer together (as in S1c Fig).

(EPS)

S3 Fig. Principal components of model neurons due to only stimulus-driven correlations.

Note that the sinusoidal eigenvectors at the same frequency have indistinguishable eigenvalues

and hence form quadrature pairs, implying circular symmetry with respect to neurons’ tuning.

There is no more variance along the vertical-horizontal preferred orientation axis than then

oblique axis.

(EPS)

S1 Text. Supplemental text.

(PDF)
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